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Abstract

Motivation: Although high-content image cytometry is becoming increasingly routine, processing
the large amount of data acquired during time-lapse experiments remains a challenge. The major-
ity of approaches for automated single-cell segmentation focus on flat, uniform fields of view
covered with a single layer of cells. In the increasingly popular microfluidic devices that trap indi-
vidual cells for long term imaging, these conditions are not met. Consequently, most techniques
for segmentation perform poorly. Although potentially constraining the generalizability of soft-
ware, incorporating information about the microfluidic features, flow of media and the morphology
of the cells can substantially improve performance.
Results: Here we present DISCO (Data Informed Segmentation of Cell Objects), a framework for
using the physical constraints imposed by microfluidic traps, the shape based morphological
constraints of budding yeast and temporal information about cell growth and motion to allow
tracking and segmentation of cells in microfluidic devices. Using manually curated datasets, we
demonstrate substantial improvements in both tracking and segmentation when compared with
existing software.
Availability and implementation: The MATLAB code for the algorithm and for measuring perform-
ance is available at https://github.com/pswain/segmentation-software and the test images and the
curated ground-truth results used for comparing the algorithms are available at http://datashare.is.
ed.ac.uk/handle/10283/2002.
Contact: mcrane2@uw.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the primary methods through which information is acquired

from biological samples is by optical imaging. Imaging by both

transmitted light and fluorescence is essential to modern biology,

and the proliferation of innovative imaging techniques continues to

increase its importance (Meijering et al., 2016). The automated ap-

plication of these imaging methodologies, often in time-lapse mi-

croscopy experiments, has left biomedical researchers with a deluge

of data, and a common bottleneck to analysis is the necessary seg-

mentation into either cells or other regions of interest.

This challenge, recognized for nearly fifty years, has been the

subject of intense research (Meijering, 2012). The most widely used

and most generalizable methods rely on thresholding images into a

foreground and background (Kamentsky et al., 2011). Nevertheless,

these methods have several problems that warrant the development

of bespoke tools (Sommer and Gerlich, 2013). Importantly, a fluor-

escent marker is often used to label either part of the cell (Conrad

et al., 2011; Federici et al., 2012; Held et al., 2010; Kamentsky

et al., 2011; Pelet et al. 2012; Schiegg et al., 2015; Zhong et al.,

2012) or the media (Pelet et al., 2012) to achieve an acceptable
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accuracy of segmentation. For example, a large proportion of the

ORF-GFP library in budding yeast (Huh et al., 2003), over 4000 cell

lines, were tagged with red fluorescent protein to facilitate auto-

mated segmentation (Chong et al., 2015). Such markers can both in-

crease the workload of constructing strains and interfere with other

measurements of fluorescence (Zimmermann et al., 2003) and al-

ways occupy a fluorescence channel, limiting the amount of data

that can be acquired. Fluorescent proteins can provide substantial

information about the biology of the cell, and thus requiring fluores-

cence channels specifically for segmentation can preclude desirable

experiments. Additionally, fluorescence imaging damages cells and

should be kept to a minimum (Magidson and Khodjakov, 2013).

There is thus a need for reliable segmentation based on bright-

field and differential interference contrast (DIC) images. Existing

approaches mostly assume a uniform field of view and therefore can

preclude images obtained in microfluidic devices, which are rapidly

being adopted to study single cells (Bennett and Hasty, 2009). Many

of these approaches rely primarily on local image features (Doncic

et al., 2013; Gordon et al., 2007; Pelet et al., 2012; Versari et al.,

2017) or a combination of fluorescence and bright-field features

(Chen et al., 2006).

Methods for image segmentation, and computer vision in gen-

eral, have to balance trade-offs between generalizability and preci-

sion. This requirement is especially acute in imaging in the life

sciences, where a wide range of model organisms and imaging envir-

onments are employed (Crane et al., 2012; Federici et al., 2012;

Kamentsky et al., 2011; Zhan et al., 2015). Methodologies that

apply to all these diverse organisms and experimental conditions are

necessarily agnostic about the constraints that are specific to a par-

ticular case. With this limitation in mind, we here confined our

interest to the automated segmentation of cells of Saccharomyces

cerevisiae in microfluidic experiments: specifically, long-term

imaging using devices containing traps for individual cells (Fig. 1).

The microfluidic device we predominantly consider is ALCATRAS

(Crane et al., 2014), with additional images provided using the de-

vice developed by Li et al. (2017).

Widespread interest in the replicative aging of single cells has re-

sulted in an explosion in the number of microfluidic devices that can

trap mother cells of the eukaryote S. cerevisiae for their entire life-

span (Crane et al., 2014; Jo et al., 2015; Ryley and Pereira-Smith,

2006; Sik et al., 2012; Xie et al., 2012; Zhang et al., 2012). Budding

yeast divide rapidly—growing exponentially in glucose with a dou-

bling period of 80–90 min. To image the same cells over a long

period of time, newborn cells (daughters) must be removed to pre-

vent the device from becoming overcrowded. In contrast to typical

tracking, where there is only a small probability of losing a tracked

cell if the cell either dies or moves outside the field of view (Li and

Kanade, 2007), this removal means that cells regularly appear, dis-

appear and replace each other.

Here we present a comprehensive framework to segment and

track budding yeast cells. By focusing on budding yeast in microflui-

dic traps, we can leverage prior knowledge about shape, motion and

appearance to improve accuracy and performance. This approach,

employing both fitted probabilistic models and supervised machine

learning, is generally applicable and can provide substantial im-

provements in accuracy. An example of its benefits is a study of the

response of yeast to osmotic stress where precise volume and signal-

ling dynamics of single cells were obtained (Granados et al., 2017).

2 Approach

Our framework for integrated identification, segmentation and

tracking of cells is structured into four stages:

i. the microfluidic features of the traps are located and used to de-

fine regions of interest and to register images;

ii. a classifier based on supervised learning is applied to each pixel

to score whether the pixel is interior to the cell, an edge, or

background;

iii. seeds for cellular locations at the current time point are pro-

posed based on both the classification of pixels and the location

of cells at previous time points;

iv. a shape-based active contour is iteratively applied to the pro-

posed seeds until the image is segmented.

3 Materials and methods

3.1 Identifying physical features of the microfluidic
device
Microfluidic devices with traps have floor to ceiling pillars that hold

cells and create regular optical features (Chen et al., 2017). Such

microfluidic features are not only consistent, stable landmarks, but

predictably constrain cellular motion (Fig. 1). We therefore use these

physical landmarks at all stages of processing to inform and con-

strain the segmentation and so increase the accuracy of both seg-

mentation and tracking.

To locate the microfluidic features, the software predicts the lo-

cations of traps by performing a normalized cross-correlation

(Guizar-Sicairos et al., 2008) between the initial time point of the

experiment and a canonical image of the microfluidic features.

Following this prediction, feedback by the user is required to correct

(add or remove) any features that were inaccurately detected. The

importance of identifying the locations of the traps mandates input

from the user, but this input is only performed at the initial time

Fig. 1. Microfluidic devices for long term imaging of cells impose physical

constraints. (A) A microfluidic device for budding yeast where cells (light

circles) are pushed against traps (dark rectangles) by the flow of media and

imaged over long periods. (B) An image of a single trap containing multiple

cells. The cells and traps share many similarities in shape and optical proper-

ties. (C) The trap’s design imposes specific physical constraints on where

cells can be located and where they are likely to move. Arrows represent the

flow of fluid. (D) Time-lapse images of a single trap show both the appear-

ance of new cells washed in from above and the disappearance of daughters

washed away after birth. Cells are individually labelled to show the continuity

between time points and the appearance of new cells (bold). Scale bar is

5 lm (Color version of this figure is available at Bioinformatics online.)
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point and consequently is not laborious. Following this identifica-

tion, the microfluidic traps are tracked through time to correct for

any motion and drift by the stage of the microscope.

3.2 Supervised classification of pixels
Supervised classification of pixels has frequently proved to be an ef-

ficacious first step in image segmentation (Ciresan et al., 2012; Grys

et al., 2017; Sommer et al., 2011; Xing et al., 2016; Zhang et al.,

2014). In these methods, a training set is constructed from images in

which pixels are assigned to a discrete set of categories (e.g. the

image background, the edge of a cell and the interior of a cell). This

ground-truth dataset is then used to train a classifier to categorize

pixels based on features extracted from the image, which can be ei-

ther defined beforehand (Sommer et al., 2011) or learnt by the clas-

sifier (Ciresan et al., 2012; Zhou et al., 2015). Such supervised

classifiers can leverage multiple features to improve accuracy

(Zhang et al., 2014) and can often be retrained for different imaging

modalities by only changing the training set and not the underlying

algorithm (Ciresan et al., 2012; Sommer et al., 2011).

In constructing our classifier, we used an approach similar to

Sommer et al. To classify pixels in an image, a large set of prede-

fined transforms are run on the image to extract information about

both local properties and properties dependent on the invariant lo-

cations of the microfluidic traps. These features are then fed into

two linear support vector machines (SVMs) classifiers, which have

been trained on ground-truth pixels. The first SVM is trained on

all pixels to classify pixels as either foreground or background; the

second SVM is trained solely on foreground objects to separate

these objects into cell edges and interiors. This two-stage structure

was chosen because the foreground and background are relatively

easy to discriminate and removing background pixels improves

the separation of interior and edge pixels. Extracting the features

from the pixels is an order of magnitude slower than classification,

and we therefore use the same feature set for both stages of the

classification.

Training an SVM corresponds to finding a decision boundary in

the space of features that separates the two categories in the training

set. To determine this decision boundary, we define the training set

as the set of vector-label pairs fx1; y1Þ; . . . ; xN ; yNð Þg where xi is a

point in the feature space, yi indicates the class xi belongs to and k is

a slack variable that constrains the cost of misclassification. The

support vector, w;bð Þ, where w is the vector containing the weight

for each feature used in the classification and b is an offset, is se-

lected to minimize

kjj~wjj2 þ
XN

i¼1
max 0; 1% yig xð Þð Þ½ '

with the score of each pixel being its distance from the decision

boundary:

g xð Þ ¼ w ( x% b

For a given image to be segmented, the features are calculated and

passed to the SVMs to generate two scores for each pixel:

• gBG ! xð Þ: the score from the SVM for the foreground versus

background
• gedge ! xð Þ: the score from the SVM for the edge versus centre

Interpreting these scores as Bayes factors determining the ratios of

the probabilities for the identity of each pixel, we can write:

gBG ¼ log
pbackground

pinterior þ pedge

! "
(1)

where pbackground þ pinterior þ pedge ¼ 1 and

gedge ¼ log
pedgejforeground

pinteriorjforeground

! "
(2)

with pforeground ¼ pinterior þ pedge. Using the product rule for proba-

bilities, we can solve these equations to find pbackground; pinterior, and

pedge in terms of gBG and gedge and so calculate the two Bayes factors

of interest (see SOM for more details):

interior Bayes factor ¼ log
pbackground þ pedge

pinterior

! "
(3)

edge Bayes factor ¼ log
pbackground þ pinterior

pedge

! "
: (4)

The interior Bayes factors for all pixels are reconstituted into a new

image of the same size as the original, where low values indicate pix-

els likely to be cell interiors (Fig. 2). We refer to this image as the de-

cision image. The edge Bayes factors for all pixels are similarly

reconstituted into what we call the edge image, where low values in-

dicate pixels likely to be on a cell edge. These images are used for

identifying cell seeds and edges.

For the images we acquired, we used out of focus bright-field

images (Gordon et al., 2007), which provided the most consistent

imaging conditions. Although DIC does give high contrast images,

the gradient is dependent on the orientation relative to the centre of

the cell, which complicates segmentation (Ning et al., 2005). We

acquired images both 2 lm above and below the central focal plane

to give two distinct bright-field image (either with bright cells and

dark edges or dark cells and bright edges). Both images were used in

the generation of features for classifying pixels.

When applying the algorithm to the phase contrast images from Li

et al. (2017), we retrained the classifier for these images, but did not

change any of the transforms used to generate features. The range of

features is therefore broad enough that DISCO can be used for diverse

images without altering the underlying code and algorithm.

A complete list of all 56 features is in SOM, but we include the

radial Hough transform, image smoothing and sharpening features,

and relational features to incorporate proximity to the microfluidic

traps. Ranking and importance of the features is shown in the SOM

and is determined by the weights associated with each feature from

the training of the SVM. Training and prediction were performed

using the publicly available liblinear library (En Fan et al., 2008).

Both polynomial and RBF-kernel SVMs (using the libSVM library)

were tested, but offered negligible improvements in accuracy despite

a large increase in run-time. We use a five-fold cross-validation ap-

proach to determine the cost parameter, k.

3.3 Segmentation using a morphologically constrained
model of cell shape
Cells often have a constrained morphology, and including this infor-

mation can dramatically improve the accuracy of segmentation (Ali
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et al., 2015; Charmi et al., 2008; Chen et al., 2002; Delgado-

Gonzalo et al., 2015; Foulonneau et al., 2006; Leventon et al.,

2000). Here we employ a model of cell shape based on budding

yeast, which typically have round to elliptical morphologies.

Although the shapes of young cells are constrained, these constraints

become less rigid as cells age and become more irregular.

Methods based on active contours provide a straightforward and

physically motivated means of encoding information on shapes and

have been used extensively for image segmentation (Delgado-Gonzalo

and Unser, 2013; Garner, 2011; McInerney et al., 1996; Xing et al.,

2016), including for S. cerevisiae (Bredies and Wolinski, 2011;

Kvarnström et al., 2008). The boundary of a cell is defined by a de-

formable contour parameterized by a small number of parameters

(Blake and Isard, 2012; McInerney et al., 1996). The image to be seg-

mented is processed to give a forcing image in which pixels that are

likely to be part of an edge have low values. The ‘best’ contour is then

found by minimizing a cost function that depends on both this forcing

image and the shape of the contour. If the same object is seen in mul-

tiple frames of a time-lapse movie, the cost function can also include

terms spanning time points to punish physically improbable changes

in the object’s outline. Further, if the interior pixels of the object can

be highlighted, a region term can be added to enforce inclusion of an

object’s interior within its boundary (Huang and Liu, 2015). Such

methods can additionally integrate prior knowledge on the range of

possible shapes with the image data.

Given that cells of S. cerevisiae generally have ovoid, concave

shapes, we use the two-dimensional polar coordinates, r and h, to

define our contour. If s is a periodic cubic B spline with six evenly

spaced knots at fixed angles in the range 0 to 2p and denoted by r (a

vector with six elements), then the contour is all pixels intersected

by the curve (Fig. 3Aii):

r ¼ s h; rð Þ: (5)

This definition allows a range of physically reasonable cell shapes

with only six parameters (the elements of r) and balances the com-

peting interests of complexity and flexibility (Delgado-Gonzalo and

Unser, 2013).

We use both a forcing image, the edge image, and a region term,

the decision image. Following others (Bredies and Wolinski, 2011;

Huang and Liu, 2015), we also add an inflation term to prevent the

contour collapsing onto a single pixel of low value. These three

terms together make the first component of our cost function:

F s h; rtð Þð Þ ¼
P

p2pixels on s edge image pð Þ
Npixels on s

þ
P

p2pixels within s decision image pð Þ
Npixels within s

þ c

Npixels within s

(6)

where c is a tuning parameter. If the edge and interior pixels have

been accurately identified by the classifier, this cost function will

Fig. 2. A SVM allows the use of almost 60 features to robustly determine probable cell centres. Two bright-field images, one above and one below the plane of

focus, are captured at each time point, and a large range of transformations are applied to generate a set of features for each pixel. Two linear SVMs, trained on a

curated set of images, provide a probability for the pixel to be either background, in the interior of a cell or on the edge of a cell. These probabilities are reconsti-

tuted into a decision image and an edge image, which are used to seed probable cells and identify probable cell edges. In the image, low values indicate cell inter-

iors in the decision image and cell edges in the edge image (Color version of this figure is available at Bioinformatics online.)

Fig. 3. Using a morphological model for cells allows prior information about their

shape to be exploited during segmentation. (A) The definition of a cell’s contour:

the contour is defined by a periodic cubic B spline in polar coordinates (line con-

necting dots in Aii) centred on the cell’s seed and is completely defined by the

six knots of the spline (circles in Aii). This spline is mapped back to the coordin-

ates in the image to produce a cell’s contour (Ai). (B) Identification: we define a

cost function combining the values of the pixels in the edge image along the con-

tour, the values of the pixels in the decision image inside the contour and a fitted

probability distribution of potential cell shapes (B, centre). Starting from an initial

guess (B, left), this cost function is minimized to give the correct contour (B, right)

(Color version of this figure is available at Bioinformatics online.)
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maintain edge pixels on its boundary and interior pixels in its inter-

ior and have lower values for larger cells.

We next include terms in our cost function that push the contour

towards physically reasonable shapes. To do so, we used a dataset

of manually curated cell shapes to determine the empirical distribu-

tion of the parameters defining the morphological space.

For new cells, which are not in any previous images, we fit a

multivariate normal distribution for the parameter vector r, which is

added to the cost function to punish unphysical morphologies. With

F as the forcing term (Equation 6) and N as the probability density

of the normal distribution with parameters l and R fitted to the

curated data, the cost function becomes

Cnew cells rtð Þ ¼ F h; rtð Þ % a log N rt; l;Rð Þ½ ' (7)

where a is a tuning parameter. We applied the Jarque-Bera test

(Jarque and Bera, 1980) to confirm a normal distribution appropri-

ately modelled the data (SOM).

For tracked cells, we find that it is advantageous to include cell

growth. Cells are more likely to grow than shrink, although often

keep the same shape. To capture these growth effects, we use a log-

normal distribution, which has a positive skewness. Fitting the dis-

tribution to the element-wise division of the parameter vector for

the cell at the current time point rtð Þ by the parameter vector for the

same cell at the previous time point rt%1ð Þ punishes the relative

change in shape, rather than the absolute change, which improves

identifying the outline of larger cells. We curated a time-lapse data-

set to fit the multivariate log-normal distribution to the element-

wise division. Writing lnN as the probability density of the log-

normal distribution with parameters l0 and R0 fitted to the curated

data and the vector r 1ð Þ
t =r 1ð Þ

r%1; . . . ; r 6ð Þ
t =r 6ð Þ

r%1

# $
as rt=t%1, the final cost

function is:

Ctracked cells rtð Þ ¼ F h; rtð Þ % b log lnN rt=t%1;l
0;R0

% &' (
(8)

with b being another tuning parameter.

For both new and tracked cells, the boundary of the cell is found

by optimizing this cost function for rt using a Powell- like line-

search algorithm (Powell, 1964; Ziegel et al., 1987; Fig. 3B).

3.4 Incorporating temporal information to refine the
prediction of cell centres
Yeast grow and divide, and coupling information on temporal track-

ing with knowledge on fluid flow can increase the accuracy of iden-

tifying cells. Fluid flow on the small length scales of microfluidic

devices has a low Reynolds number and so is predictable and con-

sistent. The cell traps and predictable flow profile affect both where

cells are initially located and where cells are likely to move to as

they grow.

For time points after the first, we developed a method that in-

corporates this prior knowledge. We generate a prior image m(x, y)

for the motion of each cell at the previous time point, which encodes

the probability that the centre of the cell has moved to the point (x,

y) at the current time point. The motion prior is indexed by a cell’s

size and location in the trap and is generated from empirical meas-

urements: we use the displacement vectors between the curated pairs

of cells used to train the distribution of tracked cell shapes

(Equation 8). When a motion prior is calculated for a particular cell,

two probability densities are retrieved, one indexed by its size and

one indexed by its location, and the average returned as the motion

prior for that particular cell.

To combine this motion prior with the likely cell locations at the

current time point, a probable location image is calculated for each

cell as:

probable location imagei x; yð Þ ¼ log mi x; yð Þ½ '
% decision image x; yð Þ: (9)

Figure 4 shows some probable location images.

3.5 Greedy optimization of cell contours
To select cell seeds we use a heuristic based on greedy optimization,

encoding the assumption that cells centred on good pixels in the de-

cision are more likely to be accurate.

For the first time point, the decision image is calculated and the

first seed is selected as the pixel in the decision image with the lowest

value (i.e. the pixel most likely to be a cell centre). Provided the

value of this pixel is below a user-defined threshold for identifying

new cells, the active contour algorithm is applied using the cost

function of Equation (7) and returns the outline of the putative cell

and its score: the value of the cost function. If the score is below an-

other user-defined threshold, the cell is deemed to be a true cell and

assigned a unique label for tracking. The cell is then blotted out of

the decision image so that no new seeds will be found within previ-

ously identified cells. The procedure is repeated until no pixels re-

main that are below the user’s threshold.

At subsequent time points, the set of probable location images is

used to generate cell seeds. We use a similar greedy optimization:

identifying the highest scoring pixel in the set of images, applying the

active contour algorithm with the cost function of Equation (8) cen-

tred on this highest scoring pixel, and storing the cell if its score and

change in shape meet appropriate thresholds. With each successful

identification, the probable location and decision images are modified

to include the newly identified cell. Once all previously identified cells

have been tracked, new cells are identified by applying the iterative

procedure for the first time point to the modified decision image.

This division into tracked cells and new cells has a number of ad-

vantages: improving consistency in the location and shape of the

cells across time by using information on the shape and location of

cells at previous time points to identify and segment cells at the cur-

rent time point; reducing false positive identifications of new cells

and false negatives for cells present over multiple time points by

allowing both a more lenient criteria to be applied to cells identified

at the previous time point and a more stringent one to be applied to

new cells; preventing large and irregularly shaped older cells from

being confused for multiple smaller new cells by allowing us to de-

lineate the new-cell and existing cell shape models.

The procedure is applied iteratively over all time points, seg-

menting the time-lapse images and tracking the cells (Fig. 4). Further

details, with pseudo code and a comparison with selecting cell seeds

without using historical information, is in the SOM.

All aspects of the pixel classifiers and shape information are ob-

tained from the curated ground-truth images, and the software can

therefore be retrained for new imaging modalities and microfluidic

devices by curating a new set of ground-truth examples. For example,

statistics characterizing performance for images provided by Li et al.

(2017) were acquired using only a retrained classifier. Once trained,

DISCO can be used for different datasets from the same microscope

with minimal tuning. We characterized DISCO’s performance using

the same values for the classifier and tuning parameters, demonstrat-

ing that modifications for new datasets are not necessary.
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4 Comparison with existing methods

To measure performance, we use metrics taken from the ISBI cell-

tracking challenge (Ma!ska et al., 2014), and the ground truth for

comparison was generated by manually curating multiple datasets.

The ISBI approach provides a single score each for tracking and seg-

mentation, which makes it possible to compare methods directly. To

ensure the ground-truth datasets were representative of the variabil-

ity seen in real experiments, the dataset was composed of images

acquired over multiple months in different conditions and by differ-

ent individuals (SOM). To maintain independence and prevent bias-

ing of the measures of performance, we used strains in which a

fluorescent reporter was strongly expressed in the cytoplasm. This

fluorescent reporter was used for segmentation by applying a circu-

lar Hough transform and an active contour fit using the Chan-Vese

algorithm, ensuring the initial segmentation was independent of any

method to be tested. Following segmentation of the fluorescence

channel, we manually curated all outlines using bright-field images.

These datasets are separate from those used for training DISCO’s

pixel classifier. The curation is in two parts: one for quantifying

errors in cell shape and size (>1000 manually curated cell outlines)

and a second for errors between time points (>1200 curated cell

trajectories).

The metric for the accuracy of segmentation is the Jaccard index:

SEG ¼ jA \ Bj
jA [ Bj

(10)

where A is the ground-truth outline and B is the outline identified by

the algorithm. The inclusion of the intersection and union means

that this score punishes over-segmentation and under-segmentation

to the same degree. Cells that are either false positives or false nega-

tives receive a score of 0; cells that are perfectly segmented receive a

score of 1.

For estimating the accuracy of tracking, the score is based on

transformations applied to an acyclic oriented graph (Ma!ska et al.,

2014; Matula et al., 2015). Each node in the graph is a detected cell

at a specific time point, and the edges connect cells identified to be

the same at different time points. The error for an individual cell is

determined by the number of operations that must be performed to

make the acyclic oriented graph for the test dataset match the

ground truth. Operations are weighted by the time required to per-

form them manually (i.e. more mouse clicks incur a higher cost).

The tracking cost for each individual cell is normalized by the num-

ber of time points for which the cell is present to give a score be-

tween 0 and 1.

We selected three alternative approaches for comparison: CellX

(Dimopoulos et al., 2014), CellSerpent (Bredies and Wolinski, 2011)

and CellStar (Versari et al., 2017). We focused on methods that use

bright-field images as does DISCO. CellSerpent and Cellstar are

similar to our approach: cell seeds are identified based on specific

features of the image and are used as a starting point for segmenta-

tion. CellSerpent identifies seeds via the circular Hough transform;

CellStar separates the image into foreground (cells) and background

(non-cells) through intensity. Unlike DISCO, however, a single heur-

istic feature is used to identify seeds and temporal information is

ignored. Both impose cell morphologies: CellSerpent enforces cell

shapes by penalizing deviations from circularity; CellStar punishes

large changes in arc length. CellX, in contrast, is substantially

Fig. 4. Greedy optimization prioritizes cells identified at previous time points to ensure reliable tracking. To segment cells at the current time point (t), a decision image

and probable location images are generated and subjected to greedy optimization. The probable location images are used to propose a seed: the highest scoring pixel

in the image set. If this score is above a threshold, the seed is used to generate a cell contour following Figure 3. If the contour meets criteria for its shape and its over-

all score, the contour is stored and the decision and probable location images updated to prevent new cells being found in the contour’s location. If the contour is a

tracked cell rather than a new cell, the probable location image for this cell is no longer considered when seeds are generated. The procedure is repeated until no pix-

els remain above threshold. Then, seeds for new cells are proposed from the decision image (Color version of this figure is available at Bioinformatics online.)
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different from DISCO with little constraint on the shape of cells.

Although CellX uses a Hough-based seeding, the cell outline is

found by a graph-cut algorithm applied to an edge image generated

using a membrane profile and the proposed seed. CellX and CellStar

providing tracking, but Cell Serpent does not, and so we added a

commonly used tracking methodology (Chen et al., 2006): cells are

assigned the same labels if the fraction of overlap between cells at

adjacent time points is > 0.5. CellStar, CellX and CellSerpent were

designed for single layers of cells.

Prior to comparison, we attempted to optimize the performance

of all the packages on each test dataset according to the instructions

provided, and with input from the authors for CellX. To ensure fair

comparison, traps identified as cells were removed before scoring.

For CellStar, we followed the guidelines provided to optimize seg-

mentation using 30 cells for brightfield training, and 22 cells for

phase contrast training. Furthermore, the results of the segmentation

for CellX, CellSerpent and CellStar were uniformly dilated and

eroded over a range of sizes and scored. We used the best score for

each test dataset. We note that DISCO was neither re-trained nor

optimized on any of the test datasets, and the results used were un-

altered without dilation or erosion. The run-time of each software is

similar (SOM).

Although DISCO outperforms the alternatives (Fig. 5), we empha-

size that these comparisons are to demonstrate the advantages of

including a priori knowledge and are not a general critique because

the other algorithms are designed for vertically constrained cells and

images without microfluidic traps. The slight freedom of movement in

z makes a consistent membrane profile difficult to define, complicating

detecting cell centres and increasing the importance of the temporal

and morphology information we incorporate. Additionally, the pillars

of the microfluidic traps change the refractive index that many auto-

mated focus systems rely on to maintain focus. This can cause small

changes in focus to occur sporadically during long timelapses, compli-

cating both the identification of cell centres and cell membranes.

Although the median score for segmentation is similar for the com-

parison software, DISCO performs with reasonable accuracy on all

cells giving a higher mean score. This difference is important as the ac-

curacy of the subsequent tracking is dependent upon the segmentation,

and indeed DISCO substantially improves upon the alternatives.

To demonstrate DISCO’s flexibility, we obtained also images

from Li et al. (2017). These images are from a microfluidic device

with an alternative trap design and were obtained with phase con-

trast rather than bright-field microscopy (Fig. 5B). Of the three data-

sets obtained, two were used for training and the third for assessing

performance. A subset of the test data was curated by hand because

no fluorescence channel was available for an unbiased segmentation.

For this data too (Fig. 5C-Phase), DISCO performs well despite its

difference from the type of data for which DISCO was developed.

5 Discussion

With the increasing popularity of microfluidic methods, segmenting

and tracking cells from images obtained by time-lapse microscopy is

a pressing problem that must be addressed to enable high-

throughput, high-content image cytometry. We have presented a

new approach that improves accuracy by using information on the

physical constraints imposed by the design of the microfluidic sys-

tem, on the expected morphologies of cells, and on cells at earlier

time points.

Our algorithm is innovative for combining multi-feature, multi-

class supervised classification, trained prior knowledge and

temporal information to achieve robust segmentation and tracking.

Using multiple features, not only improves accuracy but also reduces

the degree of intervention by the user. This increased accuracy in

identifying cell seeds then boosts accuracy in segmenting cells, which

in turn boosts accuracy in tracking, and can remove the need to ad-

just for new experiments. Using the prior knowledge available about

the imaging system and the cells being studied further improves per-

formance. Although shape- and model-based segmentation are com-

monly used, our algorithm fits generative models to curated datasets

and exploits temporal information, improving robustness and reduc-

ing sensitivity to values of parameters. Indeed, the segmentation is

independent of imaging modality, relying solely on the probabilities

for classifying cell edges and centres. We have shown that in total

this design allows DISCO to be retrained for alternative images and

trap designs with only minor tuning.

Microfluidic devices can both provide unprecedented quantities

of high-content data and enable investigation of the effects of dy-

namic cellular environments. For ageing research in particular,

where traditional approaches are notoriously low throughput

(Kaeberlein, 2010), microfluidic techniques are potentially revolu-

tionary, but only if quantifying the resulting data can be automated.

The importance of using more natural, changing environments, such

Fig. 5. Comparing performance for segmentation and tracking for DISCO,

CellSerpent, CellX and CellStar. (A) A representative image of cells acquired

using brightfield imaging in the ALCATRAS device and which compose the

datasets BF 1–4. (B) Representative image of cells from Li et al. (2017) which

were acquired using phase contrast imaging and compose the Phase dataset.

Each of the four software packages were applied to all cells in the segmentation

and tracking ground-truth datasets. Mean performance over all cells in each

dataset is shown. Error bars are 95% CIs for the mean calculated from boot-

strapping with replacement. Differences between software packages are there-

fore at a 5% significance level when the error bars do not overlap (*). (C) Mean

segmentation accuracy. DISCO improves on segmentation accuracy on all data-

sets. (D) Tracking: DISCO, CellX and CellStar were run using their native track-

ing algorithms and CellSerpent was run using overlap tracking. The substantial

differences in performance illustrate the challenge these images pose for seg-

mentation (Color version of this figure is available at Bioinformatics online.)
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as those that can be generated by microfluidic technologies, to study

cellular behaviour is now being recognized (Alexander et al., 2009;

Nurse, 2008), but again analysing the time-lapse data produced can

be a bottleneck to progress (Locke and Elowitz, 2009). Although

moving to these assays may be as revealing as the switch from study-

ing bulk populations to studying behaviour in single cells, automa-

tion of segmenting and tracking cells is necessary. To impact fully,

then, microfluidics-based time-lapse microscopy depends on the cap-

ability to robustly and consistently process the information in the

images acquired using analytical frameworks such as the one we pre-

sent here.
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