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Introduction

Memory and chance are two properties or, more evocatively, two strategies that cells have
evolved. Cellular memory is beneficial for broadly the same reasons that memory is beneficial
to humans. How well could we function if we forgot the contents of the refrigerator every time
the door was closed, or forgot where the children were, or who our spouse was? The inability
to form new memories, called anterograde amnesia in humans, is tremendously debilitating, as
seen in the famous psychiatric patient H.M. [1] and the popular movie “Memento” (Christopher
Nolan, 2000).

Cells have limited views of their surroundings. They are able to sense various chemical
and physical properties of their immediate environment, but distal information can come only
through stochastic processes, such as diffusion of chemicals. Cells lack the ability to directly
sense distal parts of their environment, as humans can through vision and hearing. Thus, we
might expect that cells have adopted memory of the past as a way of accumulating information
about their environment and so gain an advantage in their behaviour. In a simple application,
memory can be used to track how environmental signals change over time. For example, in
the chemotaxis network of E. coli, cells use memory of previous measurements of chemical
concentrations to estimate the time derivative of the chemical concentration and so to infer
whether the organism is swimming up or down a chemical gradient [2]. Conversely, memory
can be useful in enabling persistent behaviour despite changing environments. For example,
differentiated cells in a multicellular organism must remain differentiated and not redifferentiate
despite existing under a variety of conditions. If such cells become damaged or infected, they may
undergo apoptosis, but we do not observe neurons becoming liver cells, or liver cells becoming
muscle cells, and so on.

Different mechanisms for achieving cellular memory operate at different time scales. For
example, the chemotaxis machinery of E. coli can change response in seconds. Gene regulatory
systems controlling sugar catabolism, such as the lac operon in E. coli [3] or the galactose network
in Saccharomyces cerevisiae [4], take minutes or hours to switch state. Terminally differentiated
cells can retain their state for years – essentially permanently, although scientists are learning
how to reset their memories and return cells to a pluripotent status [5]. Of course, that cells
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have complex internal chemical and structural states implies a certain amount of “inertia”. A
cell cannot change its behaviour instantly, so in a weak sense, all cellular systems display some
degree of memory. We, however, will focus primarily on forms of cellular memory that operate on
longer time scales than the physical limits imposed by changing cellular state. We will describe
forms of memory that require active maintenance, as embodied by positive feedback. These
memories are more similar to human memories in that their state may represent some specific
feature of the cell’s environment, such as “high lactose”.

While the potential for memory to be advantageous is clear, the benefit of chance behaviour
is perhaps less obvious. Some human activities provide clear examples, especially in competitive
situations. For example, if a tennis player always served to the same spot on the court, the
opponent would have a much easier time of returning the ball. Predictable behaviours give
competitors an opportunity to adapt and gain an advantage, if they can detect the pattern
of the behaviour. Thus, intentional randomization of one’s own behaviour can be beneficial.
Unicellular organisms are virtually always in a competitive situation – if not from other species,
then from others of their own kind seeking out limited resources such as nutrients or space.
One well-known example is the phenomenon of bacterial persistence, where some members of a
genetically identical population of bacteria spontaneously and stochastically adopt a phenotype
that grows slowly but is more resistant to environmental insults such as antibiotics [6]. The cells
spend some time in the persister state and then spontaneously and stochastically switch back to
normal, more rapid growth. This strategy allows most of the population to grow rapidly in ideal
conditions, but prevents the extinction of the population if an insult should occur. Its stochastic
aspect makes it challenging to predict which cells will be persisters at any particular time.
Thus the population as a whole, in its competition with the doctor prescribing the antibiotics,
increases its chances of success.

Like memory, chance behaviour can have different time scales and specificities. For example,
fluctuations in numbers of ribosomes can affect the expression of virtually all genes and persist
for hours or longer in microbes. Fluctuations in the number of transcripts of a particular gene
may last for only seconds or minutes and may directly influence only the expression of that gene.

The phenomena of memory and chance can be at odds. Memory implies that decision or
behaviours are contingent on the past. Chance implies that decisions are randomized, implying a
lesser dependence on the past or present. If chance plays a role in the memory mechanism itself,
then it tends to degrade the memory, resulting in a neutral or random state that is independent
of the past. Yet, both memory and chance are important cellular strategies. Intriguingly, they
are often found in the same systems. Many of the model systems used as examples of cellular
memory, such as gene regulatory networks involved in catabolism, determination of cell type,
and chemotaxis, have also been used in studies of cellular stochasticity. In this chapter, we
will discuss the dual and often related phenomena of cellular memory and chance. We begin
by reviewing stochastic effects in gene expression and some of the basic mathematical and
computational tools used for modelling and analyzing stochastic biochemical networks. We then
describe various model cellular systems that have been studied from these perspectives.

Chance, or stochasticity

Life at the cellular level is inevitably stochastic [7, 8]. Biochemistry drives all of life’s processes,
and reactants come together through diffusion with their motion being driven by rapid and
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Figure 1: Intrinsic and extrinsic fluctuations. A Extrinsic fluctuations are generated by interactions of
the system of interest with other stochastic systems. They affect the system and a copy of the system
identically. Intrinsic fluctuations are inherent to each copy of the system and cause the behaviour of
each copy to be different. B Strains of Escherichia coli expressing two distinguishable alleles of Green
Fluorescent Protein controlled by identical promoters. Intrinsic noise is given by the variation in colour
(differential expression of each allele) over the population and extrinsic noise by the correlation between
colours. C The same strains under conditions of low expression. Intrinsic noise increases. From Elowitz
et al. (2002).

frequent collisions with other molecules. Once together, these same collisions alter the reactants’
internal energies and so their propensities to react. Both effects cause individual reaction events
to occur randomly and the overall process to be stochastic. Such stochasticity need not always
be significant. Intuitively, we expect the random timings of individual reactions to matter only
when typical numbers of molecules are low, because then each individual event, which at most
changes the numbers of molecules by one or two, generates a substantial change. Low numbers
are not uncommon intracellularly: gene copy numbers are usually one or two, and transcription
factors, at least for microbes, frequently number in the tens [9, 10].

Intrinsic and extrinsic stochasticity

Two types of stochasticity affect any biochemical system [11, 12]. Intuitively, intrinsic stochas-
ticity is stochasticity that arises inherently in the dynamics of the system from the occurrence of
biochemical reactions. Extrinsic stochasticity is additional variation that is generated because
the system interacts with other stochastic systems in the cell or in the extracellular environment
(Fig. 1A).

In principle, intrinsic and extrinsic stochasticity can be measured by creating a copy of the
system of interest in the same cellular environment as the original network (Fig. 1A) [12]. We can
define intrinsic and extrinsic variables with fluctuations in these variables together generating
intrinsic and extrinsic stochasticity [11]. The intrinsic variables will typically specify the copy
numbers of the molecular components of the system. For the expression of a particular gene, the
level of occupancy of the promoter by transcription factors, the numbers of mRNA molecules,
and the number of proteins are all intrinsic variables. Imagining a second copy of the system
– an identical gene and promoter elsewhere in the genome – then the instantaneous values of
the intrinsic variables of this copy of the system will frequently differ from those of the original
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system. At any point in time, for example, the number of mRNAs transcribed from the first copy
of the gene will usually be different from the number of mRNAs transcribed from the second
copy. Extrinsic variables, however, describe processes that equally affect each copy. Their values
are therefore the same for each copy. For example, the number of cytosolic RNA polymerases
is an extrinsic variable because the rate of gene expression from both copies of the gene will
increase if the number of cytosolic RNA polymerases increases and decrease if the number of
cytosolic RNA polymerases decreases.

Stochasticity is quantified by measuring an intrinsic variable for both copies of the system.
For our example of gene expression, the number of proteins is typically measured by using
fluorescent proteins as markers [13, 12, 14, 15] (other techniques are described in the chapter by
B. Munsky). Imaging a population of cells then allows estimation of the distribution of protein
levels, typically at steady-state. Fluctuations of the intrinsic variable will have both intrinsic
and extrinsic sources in vivo. We will use the term “noise” to mean an empirical measure of
stochasticity – for example, the coefficient of variation (the standard deviation divided by the
mean) of a stochastic variable.

Intrinsic noise is defined as a measure of the difference between the value of an intrinsic
variable for one copy of the system and its counterpart in the second copy. For gene expression,
the intrinsic noise is typically the mean absolute difference (suitably normalized) between the
number of proteins expressed from one copy of the gene, which we will denote I1, and the number
of proteins expressed from the other copy [12, 16], denoted I2:

η2
int =

〈(I1 − I2)2〉
2〈I〉2

(1)

where we use angled brackets to denote an expectation over all stochastic variables, and 〈I1〉 =
〈I2〉 = 〈I〉. Such a definition supports the intuition that intrinsic fluctuations cause variation in
one copy of the system to be uncorrelated with variation in the other copy. Extrinsic noise is
defined as the correlation coefficient of the intrinsic variable between the two copies:

η2
ext =

〈I1I2〉 − 〈I〉2

〈I〉2
. (2)

Extrinsic fluctuations equally affect both copies of the system and consequently cause correlations
between variation in one copy and variation in the other. Intuitively, the intrinsic and extrinsic
noise should be related to the coefficient of variation of the intrinsic variable of the original
system of interest. This so-called total noise is given by the square root of the sum of the
squares of the intrinsic and the extrinsic noise [11]:

η2
tot =

〈I2〉 − 〈I〉2

〈I〉2
= η2

int + η2
ext (3)

which can be verified from adding Eqs. 1 and 2.
Such two-colour measurements of stochasticity have been applied to bacteria and yeast where

gene expression has been characterized by using two copies of a promoter integrated in the
genome with each copy driving a distinguishable allele of Green Fluorescent Protein [12, 15]
(Fig. 1B and C). Both intrinsic and extrinsic noise can be substantial giving, for example, a total
noise of around 0.4: the standard deviation of protein numbers is 40% of the mean. Extrinsic
noise is usually higher than intrinsic noise. There are some experimental caveats: both copies of
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Figure 2: Stochasticity is generated by bursts of translation. A Time-series showing occasional ex-
pression from a repressed gene in E. coli, which results in the synthesis of a single mRNA, but several
proteins. Proteins are membrane proteins tagged with Yellow Fluorescent Protein (yellow dots). From
Yu et al. (2006). B The two-stage model of constitutive gene expression. Transcription and translation
are included. C Quantitation of the data from A showing exponentially distributed bursts of translated
protein. From Yu et al. (2006).

the system should be placed “equally” in the genome so that the probabilities of transcription
and replication are equal. This equality is perhaps best met by placing the two genes adjacent
to each other [12]. Although conceptually there are no difficulties, practically problems arise
with feedback. If the protein synthesized in one system can influence its own expression, the
same protein will also influence expression in a second copy of the system. The two copies of
the system have then lost the (conditional) independence they require to be two simultaneous
measurements of the same stochastic process.

Understanding stochasticity

Although measurements of fluorescence in populations of cells allow us to quantify the magnitude
of noise, time-series measurements, where protein or mRNA levels are followed in single cells over
time, best determine the mechanisms that generate noise. With the adoption of microfluidics
by biologists [17, 18], such experiments are becoming more common, but, at least for bacteria,
simpler approaches have also been insightful.

Translational bursts

Following over time the expression of a repressed gene in E. coli, where occasionally and stochasti-
cally repression was spontaneously lifted, revealed that translation of mRNA can occur in bursts
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Figure 3: Stochasticity arises from transcriptional bursting. A Time-lapse data of the number
of mRNAs from a phage lambda promoter in single cells of E. coli. Red dots are the number
of mRNAs in one cell; the green line is a smoothed version of the red dots; the blue dots are
the number of mRNAs in the sister cell after division; and the black line is a piece-wise linear
fit. From Golding et al. (2005). B The three-stage model of gene expression with activation
of the promoter, transcription, and translation and the potential for both transcriptional and
translational bursting. The rate k0 is inversely related to the mean ∆tON in A and the rate k1

is inversely related to the mean ∆tOFF.

[19]. Using a lac promoter and a fusion of Yellow Fluorescent Protein to a membrane protein so
that slow diffusion in the membrane allowed single-molecule sensitivity, Yu et al. showed that
an individual mRNA is translated in a series of exponentially distributed bursts (Fig. 2A) [19].
Such bursting was expected because of the competition between ribosomes and the RNA degra-
dation machinery for the 5’ end of the mRNA [20]. If a ribosome binds first to the mRNA, then
translation occurs, and the mRNA is protected from degradation because the ribosome physi-
cally obstructs binding of the degradation machinery; if the degradation machinery binds first,
then further ribosomes can no longer bind and the mRNA is degraded from its 5’ end. Let v1 be
the probability of translation per unit time of a particular mRNA and d0 be its probability of
degradation (Fig. 2B). Then the probability that a ribosome binds rather than the degradation
machinery is v1

v1+d0
or b

1+b
, where b = v1/d0 is the typical number of proteins translated from one

mRNA during the mRNA’s lifetime – the so-called burst size [21]. The probability of r proteins
being translated from a particular mRNA, Pr, requires that ribosomes win the competition with
the mRNA degradation machinery r times and lose once [20]:

Pr =

(
b

1 + b

)r (
1− b

1 + b

)
. (4)

The number of proteins translated from one mRNA molecule thus has a geometric distribution,
which if b < 1 can be approximated by an exponential distribution with parameter b. Such
exponential distributions of bursts of translation (Fig. 2C) were measured by Yu et al. [19].

If the mRNA lifetime is substantially shorter than the protein lifetime, then all the proteins
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translated from any particular mRNA appear “at once” if viewed on the timescale associated with
typical changes in the number of proteins: translational bursting occurs [22]. This separation of
timescales is common, being present, for example, in around 50% of genes in budding yeast [22].
It allows for an approximate formula for the distribution of proteins [23], which if transcription
occurs with a constant probability per unit time is a negative binomial distribution (Fig. 2B):

Pn =
Γ(a+ n)

Γ(n+ 1)Γ(a)

(
b

1 + b

)n (
1− b

1 + b

)a
(5)

with a being the number of mRNAs synthesized per protein lifetime (v0/d1). This distribution
is generated if translation from each mRNA is independent and if translation occurs in geomet-
rically distributed translational bursts [22]. Such bursting allows the master equation for the
two-dimensional system of mRNA and protein to be reduced to a one-dimensional equation just
describing proteins. This equation is, however, more complex than a typical master equation
for a one-step process because it contains a term that is effectively a convolution between the
geometric distribution of bursts and the distribution for the number of proteins.

Transcriptional bursts

Transcription can also occur in bursts. By using the MS2 RNA-binding protein tagged with a
fluorescent protein and by inserting tens of binding sites for MS2 in the mRNA of a gene of inter-
est, Golding et al. were able to follow individual mRNAs in E. coli over time [24]. They observed
that these tagged mRNAs are not synthesized with a constant probability per unit time even for
a constitutive promoter, but that synthesis is consistent with a random telegraph process where
the promoter stochastically transitions between an “on” state, capable of transcription, and an
“off” state, incapable of transcription (Fig. 3A). These “on” and “off” states of the promoter
could reflect binding of RNA polymerase or a transcription factor, changes in the structure of
chromatin in higher organisms, or even transcriptional “traffic jams” caused by multiple RNA
polymerases transcribing simultaneously [24, 25]. Whatever its cause, transcriptional bursting
has been observed widely, in budding yeast [14, 15], slime molds [26], and human cells [27], as
well as in bacteria. This broad applicability has led to what might be called the standard model
of gene expression, which includes stochastic transitions of the promoter and translational burst-
ing if the mRNA lifetime is substantially smaller than the protein lifetime (Fig. 3B). An exact
expression for the distribution of mRNAs [27] and an approximate expression for the distribution
of proteins are known [22], although both include only intrinsic but not extrinsic fluctuations.

Simulation methods

We may gain intuition about the behaviour of more complex networks using stochastic simu-
lation. For intrinsic fluctuations or for networks where all the potential chemical reactions are
known, Gillespie’s algorithm [28] is most commonly used. At its simplest, this algorithm in-
volves rolling the equivalent of two dice for each reaction that occurs (further details are given
in the chapter by B. Munsky). One die determines which reaction out of the potential reac-
tions happens, with the propensity for each reaction being determined by the probability per
unit time of occurrence of a single reaction times the number of ways that reaction can occur
given the numbers of molecules of reactants present. The second die determines the time when
this reaction occurs by generating a sample from an exponential distribution. Usually extrinsic
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fluctuations enter into simulations because kinetic rate constants are often implicitly functions
of the concentration of a particular type of protein. For example, degradation is commonly de-
scribed as a first-order process with each molecule having a constant probability of degradation
per time. Yet the rate of degradation is actually a function of the concentration of proteasomes,
and if the number of proteasomes fluctuates the rate of degradation fluctuates. Such fluctuations
are extrinsic and can also occur, for example, in translation if the number of ribosomes or tR-
NAs fluctuates or in transcription if the number of RNA polymerases or nucleotides fluctuates.
Extrinsic fluctuations can be simulated by including, for example, a model for the availability
of proteasomes, but such models can be complicated containing unknown parameters and, in
principle, other extrinsic fluctuations. It therefore can be preferable to have an effective model
of extrinsic fluctuations by letting the rate of a reaction, or potentially many rates, fluctuate di-
rectly in the Gillespie algorithm. These fluctuations can be simulated with a minor modification
of the algorithm to include piece-wise linear changes in reaction rates and then by simulating
the extrinsic fluctuations of a particular reaction rate ahead of time and feeding these fluctua-
tions, or more correctly a piece-wise linear approximation of the fluctuations, into the Gillespie
algorithm as it runs [16]. Such an approach also has the advantage of potentially generating
extrinsic fluctuations with any desired properties. Where measured, extrinsic fluctuations have
a lifetime comparable to the cell-cycle time [29] – they are “coloured” – and it is important
to include this long lifetime because such fluctuations are not typically averaged away by the
system and can generate counter-intuitive phenomena [16].

Bistability and stochasticity

Given that life is fundamentally biochemistry, how do biochemical systems generate memory?
One mechanism is positive feedback that is sufficiently strong to create bistability [31]. At long
times, a bistable system tends towards one of two stable steady-states. If the system starts with
an initial condition in one particular collection of initial conditions, it will tend to one steady-
state; if it starts with any other initial condition, it will tend to the other steady-state. The
space of initial conditions – the space of all possible concentrations of the molecular components
of the system – has two, so-called, domains of attraction, one for each stable steady-state (Fig.
4A). Sufficiently strong positive feedback can create such bistable behaviour. If the output
of a system can feedback on the system and encourage more output, then intuitively we can
see that an output sufficiently low only weakly activates such positive feedback, and the system
remains at a low level of output. If, however, the output becomes high then the positive feedback
is strongly activated and the output becomes higher still generating more feedback and more
output. This “runaway” feedback causes the system to tend to a high level of output. No
intermediate output level is possible: either output is high enough to start “runaway” positive
feedback or it is not.

Bistable systems can have memory

Biochemical systems that are bistable have the potential for history-dependent behaviour and
so for memory. Imagine a typical dose-response curve: as the input to the system increases
so too does the output. A linear change in input often gives a non-linear change in output
and so a sigmoidal input-output relationship. For bistable systems, the output increases with
respect to the input for low levels of input (Fig. 4B). Such levels are not strong enough to
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Figure 4: Bistability. A A steady-state has its own domain of attraction. The unshaded region is the
domain of attraction of stable steady-state a; the shaded region is the domain of attraction of stable
steady-state c. The steady-state b is unstable. B Bifurcation diagram as a function of the level of
input signal. With positive feedback an otherwise monostable system (dark line) can become bistable
(medium shaded line). Two saddle-node bifurcations occur when the input is at I1 and I2. The system
is bistable for inputs between I1 and I2 and will tend to steady-state at either a or c depending on
initial concentrations. It is monostable otherwise. For sufficiently strong positive feedback, the system
becomes irreversible (light line); it becomes “locked” at steady-state c once it jumps from a to c. C
Stochasticity undermines bistability. Although deterministically the system is either at steady-state a
or c, stochastic effects generate non-zero probabilities to be at either steady-state in the bistable regime.
D Single-cell measurements can reveal differences between graded and bistable responses that are lost
in population-averaged measurements [30].
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generate output that can initiate runaway positive feedback, and all initial conditions tend
to one “inactivated” steady-state. As the input increases, however, the system can undergo
what is called a saddle-node bifurcation that creates a second steady-state (at I1 in Fig. 4B):
the input has become sufficiently high to generate positive feedback strong enough to create
bistability. This second, “activated” steady-state is not apparent at this level of input though,
and only on further increases is there a dramatic, discontinuous change in output at a critical
threshold of input when the system “jumps” from one steady-state to the other (at I2 in Fig.
4B). This jump occurs at another saddle-node bifurcation where the inactivated steady-state is
lost because the positive feedback is so strong that all systems have sufficient output to generate
runaway feedback. Regardless of the initial condition, there is just one steady-state, and the
system is no longer bistable. At this new steady-state, the output again increases monotonically
with the input. If the input is then lowered, the strength of the feedback falls, a saddle-node
bifurcation occurs (at I2), and the low, inactivated steady-state is again created at the same
threshold of input where it was lost. This bifurcation does not typically perturb the dynamics of
the system until the input is lowered sufficiently that a second saddle-node bifurcation removes
the activated state and the bistability of the system (at I1). At this threshold of input, the
steady-state behaviour of the system changes discontinuously to the inactivated steady-state,
and there its output decreases continuously with decreasing input. The system has memory,
and the past affects whether the system jumps or not. For example, if the system has already
experienced levels of input higher than I2, there will be a jump at I1 as the input decreases; if
the system has not previously experienced input higher than I2, there will be no jump at I1.
Such history-dependent behaviour is called hysteresis. It allows information to be stored despite
potentially rapid turnover of the system’s molecules [32].

Permanent memory can be created by sufficiently strong feedback. If the feedback is so strong
that the system is bistable even with no input then once the input is enough to drive the system
from the inactivated to the activated state then no transition back to the inactivated state
is possible. Although biochemical bistability has been proposed to describe neural memories
[33, 34], permanent memory is perhaps more appropriate for differentiation where cells should
remain differentiated once committed to differentiation [35].

Stochasticity undermines memory

Biochemical systems are stochastic, and stochasticity undermines bistability by generating fluc-
tuations that drive the system from one stable steady-state to the other. Typically, we can think
of two sets of timescales in the system: fast timescales that control the return of the system to
steady-state in response to small, frequent perturbations and determine the lifetime of typical
fluctuations around a steady-state; and slow timescales generated by rare fluctuations between
steady-states that determine the time spent by the system at each steady-state. Stochasticity
in a bistable system can cause the distribution for the numbers of molecules to become bimodal
(Fig. 4C). Frequent (fast) fluctuations determine the width of this distribution close to each
steady-state; rare fluctuations determine the relative height of each peak. If both fluctuations
are common, they can drive a bimodal distribution to be unimodal. With measurements of pop-
ulations of cells, however, averaging can obscure bistable behaviour [30]: the average response
of a population of bistable cells, particularly if stochastic effects cause each cell to respond at a
different threshold of input concentration, and the average response of cells with a monostable,
graded behaviour can be indistinguishable (Fig. 4D).
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Nevertheless, a bimodal distribution of, for example, the numbers of protein does not mean
that the system’s underlying dynamics are necessarily bistable. Even expression from a single
gene can generate a bimodal distribution if the promoter transitions slowly between an active
and an inactive state [23, 22, 36, 37, 38]. This bimodality is lost if fluctuations at the promoter
are sufficiently fast because they are then averaged by other processes of gene expression [39].

Estimating the time spent at each steady-state

A challenge for theory is to calculate the fraction of time spent near each steady-state in a bistable
system. Such a calculation requires a description of the rare fluctuations that drive the system
from one steady-state to the other. It therefore cannot be tackled with Van Kampen’s linear noise
approximation [40], the workhorse of stochastic systems biology, because this approximation
requires that fluctuations generate only small changes in numbers of molecules compared to the
deterministic behaviour and therefore can only be applied near one of the system’s steady-states.
Formally, the master equation for a vector of molecules n obeys

∂

∂t
P (n, t) = AP (n, t) (6)

where the operator A is determined by the chemical reactions (see also the chapter by B. Mun-
sky). This equation has a solution in terms of an expansion of the eigenfunctions of A:

P (n, t) = a0ψ0(n) +
∑
i=1

aie
−λitψi(n) (7)

where ψi(t) is the eigenfunction of A with eigenvalue λi. The steady-state distribution P (s)(n)
is determined by the zero’th eigenfunction, P (s)(n) = a0ψ0(n), which has a zero eigenvalue. If
the system is bistable, this distribution will typically be bimodal with maxima at n = a and
n = c, say, and a minimum at n = b, corresponding deterministically to stable steady-states at
a and c and an unstable steady-state at b (Fig. 4C). The next smallest eigenvalue λ1 determines
the slow timescales. As the system approaches steady-state, peaks at a and c will develop, and
we expect metastable behaviour with molecules mostly being near the steady-state at either a
or c but undergoing occasional transitions between a and c. The probability distribution at this
long-lived metastable stage will be approximately

P (n, t) ' P (s)(n) + a1e−λ1tψ1(n). (8)

Defining Πa as the probability of the system being near the steady-state at a and Πc as the
probability of the system being near the steady-state at c:

Πa =
∫ b
0 dnP (n, t) ; Πc =

∫∞
b dnP (n, t) (9)

then we expect
∂Πa

∂t
= −∂Πc

∂t
= κc→aΠc − κa→cΠa (10)

because Πa + Πc = 1, and if κa→c is the rate of fluctuating from the neighbourhood of a to
the neighbourhood of c and κc→a is the rate of fluctuating back. At steady-state, we have
Π(s)

a κa→c = Π(s)
c κc→a. If we integrate Eq. 8 with respect to n following Eq. 9, insert the resulting

expressions into Eq. 10, and simplify with the steady-state equation, we find that κa→c +κc→a =
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λ1 [41]: the rate of fluctuating from one steady-state to another is, indeed, determined by the
slow timescale, 1/λ1.

For a one-dimensional system where chemical reactions, which may occur with non-linear
rates, only increase or decrease the number of molecules by one molecule (bursting, for example,
cannot occur), an analytical expression for the average time to fluctuate from one steady-state to
another can be calculated [40]. The exact initial and final numbers of molecules are not important
because the time to jump between steady-states is determined by the slow timescales and the
additional time, determined by the fast timescales, to move the molecules between different initial
conditions or between different final conditions is usually negligible. If n molecules are present,
the probability of creating a molecule is Ωw+(n) for a system of volume Ω and the probability of
degrading a molecule is Ωw−(n), then the steady-state probability of the concentration x = n/Ω
is approximately [42]

P (s)(x) ∼ e−Ωφ(x) (11)

for large Ω and where φ(x) is an effective potential:

φ(x) = −
∫ x

0
dx′ log

w+(x′)

w−(x′)
. (12)

To calculate the average time to fluctuate between steady-states, typically the average time,
ta→b, to fluctuate from x = a to b, where b is the deterministically unstable steady-state, is
calculated because this time is much longer than the time to fluctuate from b to c, which is
determined by the fast timescales. Then κa→c = 1

2
t−1
a→b because at x = b a fluctuation to either

a or c is equally likely. For large Ω, the rates are [42]

κa→c '
1

2π
w+(a)

√
φ′′(a)|φ′′(b)| e−Ω[φ(b)−φ(a)] (13)

and

κc→a '
1

2π
w+(c)

√
φ′′(c)|φ′′(b)| e−Ω[φ(b)−φ(c)] (14)

and depend exponentially on the difference in the effective potential at the unstable and a stable
steady-state. They are exponentially small in the size of the system, Ω, and therefore vanish as
expected in the deterministic limit. In this deterministic limit, the dynamics of x obey

ẋ = w+(x)− w−(x) (15)

and the potential of motion, −
∫
dx′[w+(x′)− w−(x′)], is not the same as the effective potential

of Eq. 12 [42]. The rates are exponentially sensitive to changes in the parameters of the system
because the parameters determine the effective potential. Such exponential sensitivity implies a
large variation in fluctuation-driven switching rates between cells, perhaps suggesting that other,
more robust switching mechanisms also exist [43].

To estimate transition rates between steady-states for systems that cannot be reduced to one
variable, numerical methods are most often used, although some analytical progress is possible
[44]. Perhaps the most efficient numerical algorithm developed to estimate transition rates is
forward flux sampling [45]. The two steady-states, a and c, are defined through a parameter λ,
which may be a function of all the chemical species in the system. The system is at steady-state
a if λ ≤ λa for some λa and at steady-state c if λ ≥ λc for some λc. A series of interfaces
is then defined between λa and λc. If a trajectory starts from steady-state a and reaches one
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of the interfaces, then we can consider the probability that this trajectory will reach the next
interface closest to λc on its first crossing of the current interface. The transition rate κa→c is
approximated by a suitably normalized product of these probabilities for all interfaces between
λa and λc [45]. The probabilities can be estimated sequentially using the Gillespie algorithm.
Initially simulations are started from a to estimate the first probability and generate a collection
of initial conditions for the estimation of the second probability. These initial conditions are
given by the state of the system each time the simulation trajectory comes from a and crosses
the first interface. Further simulation from these initial conditions then allows estimation of the
second probability and generation of the initial conditions for estimation of the next probability,
and so on. The efficiency of the method is determined by the choice of the parameter λ and the
accuracy by the number of interfaces between λa and λc and the number of initial conditions
used to estimate each probability. In general, forward flux sampling can be highly efficient [45].

Examples

The lac operon in E. coli

The lac operon of E. coli was first studied by Jacob and Monod (see [31] for an early summary of
some of their and others’ work), and indeed was the first system for which the basic mechanism
of transcriptional regulation was understood (see Wilson et al. [46] and references therein). The
operon includes genes important in the intake and metabolism of lactose: lacZ and lacY (Fig.
5A). In particular, LacZ is an enzyme that breaks lactose down into glucose and galactose, and
LacY encodes a permease that transports lactose into the cell. Expression of the lac operon
is repressed by the transcription factor LacI, appropriately called the lac repressor. LacI binds
to the promoter of the lac operon, where it blocks transcription. If intracellular allolactose, a
metabolite of lactose, binds to LacI, however, then LacI loses its ability to bind to the promoter,
and the lac operon becomes de-repressed. These qualitative influences are summarized in Figure
5A, with some abridgement in intracellular lactose metabolism [46].

The system has the potential for strong positive feedback. In a low lactose environment,
intracellular lactose, and thus allolactose, is negligible. LacI remains unbound by allolactose,
and acts to repress expression of the lac operon. Conversely, in a high lactose environment, in-
tracellular lactose, and thus allolactose, becomes substantial, and binds up all the free molecules
of LacI. Without LacI binding the promoter, the lac operon becomes expressed and leads to the
synthesis of more LacY permeases. These permeases increase the cell’s potential to import lac-
tose and therefore the potential for greater expression of the lac operon: the system has positive
feedback through the double negative feedback of lactose on LacI and LacI on expression.

Nevertheless, bistable behaviour has only been observed with thio-methylgalactoside (TMG),
a non-metabolizable analogue of lactose [47, 48]. TMG also binds LacI and de-represses the lac
operon. When the amount of TMG in the extracellular environment is at an intermediate level
and if there is only a small number of LacY permeases in the cell membrane, perhaps because the
lac operon has not been expressed for some time, then only a small amount of TMG will enter
the cell – not enough to de-repress the lac operon. On the other hand, if the membrane has many
LacY permeases, perhaps because of recent lac operon expression, then enough TMG can enter
the cell to enhance expression of the operon. The exact “shape” of this bistable behaviour has
been mapped in some detail, along with the influence of other factors (Fig. 5C & D)[49, 47, 50].

How does stochasticity influence the function of the lac regulatory machinery? The early
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Figure 5: Sugar utilization networks in E. coli and S. cerevisiae. A The lac operon of E. coli. The lac
operon comprises three genes, one of which, lacY, encodes a lactose permease. The permease allows
lactose (black circles) to enter the cell. Intracellular allolactose (gray circles), a metabolite of lactose,
binds the transcription factor LacI, preventing it from repressing the operon [46]. B Bistable responses
observed in uninduced E. coli cells upon exposure to 18 µM of TMG, a nonmetabolizable analog of
lactose. Levels of induction in each cell is monitored by a Green Fluorescent Protein (GFP) reporter
controlled by a chromosomally integrated lac promoter. From Ozbudak et al. (2004). C A hysteresis
curve is an unequivocal proof of bistability. Scatterplots of the GFP reporter and another estimating
catabolite repression are shown. In the top panel, cells are initially fully induced; in the lower panels,
cells are initially uninduced. Bistable behaviour occurs in the gray regime, and there are two separate
thresholds of TMG concentration for the “on”-to-“off” and “off”-to-“on” threshold transitions. From
Ozbudak et al. (2004). D The galactose utilization network in S. cerevisiae. Galactose enters the
cell via Gal2p and binds the sensor Gal3p, which then inhibits transcriptional repression of the GAL
genes by the repressor Gal80p. This inhibition of repression increases synthesis of both Gal2p and
Gal3p giving positive feedback and of Gal80p giving negative feedback. Gal4p is here a constitutively
expressed activator.

14



work of Novick and Weiner was remarkably prescient [51]. They were the first to recognize the
bimodal expression of the lac operon at intermediate extracellular TMG concentrations, as well
as the hysteretic nature of its regulation. Moreover, by detailed study of the kinetics of the
induction process, they concluded that a single, random chemical event leads to a “runaway”
positive feedback that fully induces the operon – a hypothesis that is essentially correct. They
hypothesized that this single event was a single lactose permease entering the cell membrane,
whereupon the TMG “floodgate” was opened. This explanation is incorrect, though it took
decades of biochemical research as well as advances in biotechnology to establish the true mech-
anism [52]. A typical uninduced E. coli harbours a handful of lactose permeases, perhaps as
many as ten, in its membrane. These are the result of small bursts of expression from the operon.
Induction at an intermediate level of extracellular TMG occurs when a random much larger burst
of expression produces on the order of hundreds of permeases, which then sustain expression.
The mechanism supporting these large and small bursts is intimately connecting with the DNA
binding behaviour of LacI. There are binding sites on either side of the operon, and, through
DNA looping, a single LacI molecule is able to bind on both sides. Short-lived dissociations from
one side or the other allow small bursts of expression. Complete dissociation from the DNA, a
much rarer event, leads to a much longer period of de-repression and a large burst of expression.
Thus, as Novick and Weiner hypothesized, it is a single, rare, random chemical event – complete
dissociation of LacI from the DNA – which flips the switch from uninduced to induced [52].

There are, of course, other stochastic aspects to the system. LacI levels fluctuate, as do per-
mease levels. These fluctuations are much smaller than the difference between “off” and “on”
states [47]. Nevertheless, Robert et al. [53] have shown that various measurable properties of
individual cells can be used to predict whether the cells will become induced or not at intermedi-
ate levels of inducer. Moreover, they show that these proclivities can be inherited epigenetically.
Thus, the stochastic flipping of the lac operon switch is driven by both intrinsic and extrinsic
fluctuations, with the latter just beginning to be identified.

The GAL system in budding yeast

The theme of positive feedback via permeases resulting in bistability and hysteresis also occurs in
the arabinose utilization system in E. coli [54], but a better-known example is the galactose uti-
lization network of S. cerevisiae, which we treat here briefly. In this system, the master activator
is the transcription factor Gal4p, which turns on a number of regulatory and metabolism-related
genes, including the galactose permease GAL2 and the galactose sensor GAL3 [4]. In the ab-
sence of intracellular galactose, the repressor Gal80p binds to Gal4p and inhibits its activation
of expression. When galactose binds to Gal3p, however, Gal3p becomes activated and can bind
to Gal80p and so remove its ability to repress Gal4p (Fig. 5B). The system has two positive
feedbacks through expression of both the permease, GAL2, and the sensor, GAL3, once Gal4p
is no longer repressed by Gal80p, and one negative feedback through expression of GAL80.

As with the lac operon, yeast cells in an intermediate extracellular galactose concentration
may be either stably “on” or “off”. However, that stability is relative to the stochasticity
of the biochemistry, so that at sufficiently long time scales any cell may turn on or turn off.
Indeed, Acar et al. and Song et al. observed bimodal and history-dependent distributions for
the galactose response of S. cerevisiae (analogous to those of Fig. 5D) [55, 56]. Acar et al., by
sorting a bimodal population to select only the “off” or “on” cells and subsequently assaying the
population distribution over time, furthermore estimated the duration of memory in the system
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Figure 6: Positive feedback in higher organisms. A Progesterone-induced oocyte maturation in X.
laevis. Through both the activation of a MAP kinase cascade that converts a graded signal into
a switch-like response and positive feedback from MAPK to MAPKKK (blue arrow), progesterone
induces all-or-none, irreversible maturation of oocytes. Inset: the degree of ultrasensitivity in the
response increases down the cascade [57]. B The core genetic network driving pluripotency in human
embryonic stem cell. Blue arrows represent positive transcriptional regulation. Diagram adapted from
Boyer et al. [58].

could be at least on the order of tens if not hundreds of hours, depending on experimental
parameters [55]. Perhaps surprisingly, the GAL2 gene is not necessary for bistability. Upon its
deletion, bistability is still observed, albeit with an “on” state with significantly less expression
than in the wild-type [55]. Galactose is still able to enter the cell via other means, and the positive
feedback loop via GAL3 mediates bistability. Removing the feedbacks to GAL3 or GAL80, by
putting the genes under the control of different promoters, eliminates bistability. When GAL3 is
not activated by Gal4p, but instead by an alternate activator, cell populations show a unimodal
distribution of induction, and one that loses any history dependence. Interestingly, when the gene
encoding the repressor Gal80p is not activated by Gal4p, cell populations can show a bimodal
induction distribution – some cells “off” and some “on” – but one with little history dependence.
That is, individual cells switch comparatively rapidly between the two states, though there is
still some tendency to be in one state or the other, and not in between. Acar et al. dubbed this
phenomenon “destabilized memory” [55].

Bistability in higher organisms

Perhaps the most understood example of bistable behaviour in higher organisms is oocyte matu-
ration in the frog Xenopus laevis. After S-phase, immature oocytes carry out several early steps
of meiotic prophase, but only proceed with the first meiotic division in response to the hor-
mone progesterone. The commitment to meiosis is all-or-none and irreversible. It is generated
biochemically by two mechanisms: a mitogen-activated protein (MAP) kinase cascade of three
kinases and a positive feedback loop from the last kinase, MAP kinase, to the first kinase, MAP
kinase kinase kinase (Fig. 6A). The MAP kinase cascade converts the input signal of proges-
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terone into an ultrasensitive or switch-like response with each level of the cascade increasing the
degree of ultrasensitivity [59]. This ultrasensitivity is necessary to generate bistable behaviour,
but not sufficient, and the additional positive feedback is required [30]. When this feedback is
blocked, the cells exhibit intermediate responses that are not irreversible (Fig. 4B) [35].

Such bistability with strong positive feedback might be expected in differentiated cells in a
multicellular organism. Differentiation represents the locking-in of an extremely stable state –
one that lasts until the death of the cell, potentially many years. How then do stem cells fit into
this framework?

Accumulating evidence suggests that stem cells are “poised” for differentiation and must
be actively maintained in their “stem” state [60]. Stem cells in culture must be treated with
various chemical factors to prevent differentiation (e.g., [61, 62]). In this sense, the stem state
is not naturally stable. In vivo, a variety of signals affect stem cell function. For example,
many stem cell systems become less active, and thus less able to repair or maintain tissue, as
an animal ages [63, 64, 65]. However, this loss of activity does not appear to be from changes in
the stem cells themselves. Subjecting the cells to signals present in younger animals re-enlivens
the aged cells [65, 66]. Given that the right signals are provided, are stem cells at a kind of
conditional steady state? Stem cell identity is usually defined by one or a few “master regulator”
genes. For example, human embryonic stem cells require the coordinated expression of three
genes, Sox2, Oct4 and Nanog, which are connected in positive feedback loops (Fig. 6B) [58].
Several works have found bimodal expression distributions for these genes in populations of
cultured cells, suggesting some form of stochastic bistability [67, 68], and various models have
been proposed [69, 70, 71]. Although thinking of the pluripotency properties of stem cells as
driven by stochastic, multistable genetic networks is perhaps the best approach [72], there are
many challenges to link these ideas to mechanisms and quantitative predictions.

Conclusions

Bistability is one mechanism that cells can use to retain memory. If the positive feedback driving
the bistability is sufficiently strong, then once a biochemical network “switches”, it can never
switch back (Fig. 4B). Such permanent memories were once thought to be maintained as long
as the cell has sufficient resources to generate the positive feedback. We now recognize that
stochasticity is pervasive both intra- and extracellularly and that fluctuations can undermine
memory with rare events causing networks that are “permanently” on to switch off.

Stochasticity also challenges our study of bistable systems. We should study single cells
because extrinsic fluctuations can “wash-out” bistable responses when averaged over measure-
ments of populations of cells [30]. We should look for hysteresis because bimodal distributions
can be generated by slow reactions in biochemical networks that have no positive feedback
[23, 22, 36, 37, 38]. Such short-term memory, however, may be sufficient for some systems, and
indeed positive feedback need not generate bistability but simply long-lived transient behaviour
[73]. Single-cell studies, and particularly the time-lapse studies useful for investigating cellular
memory, are challenging. Nevertheless, developments in microfluidic technology are easing the
generation of dynamic changes in the cellular environment and the quantification and tracking
of individual cellular responses over many generations [17, 18]. We expect that such experiments
will reveal new insights into cellular memory and its role in cellular decision-making [74].

By having switches of greater complexity, cells can limit the effects of stochastic fluctuations,
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but cells can also evolve biochemistry that exploits stochasticity. Bet-hedging by populations
of microbes is one example [75], where some cells in the population temporarily and stochasti-
cally switch to a behaviour that is inefficient in the current environment but potentially efficient
if a change in the environment occurs. Perhaps the most intriguing example is, however, in
our own cells. Mammalian embryonic stem cells appear to use stochasticity to become tem-
porarily “primed” for different cell fates and so to become susceptible over time to the different
differentiation signals for all possible choices of cell fate [60].
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