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The stochastic nature of biochemical networks
Vahid Shahrezaei and Peter S Swain
Cell behaviour and the cellular environment are stochastic.

Phenotypes vary across isogenic populations and in individual

cells over time. Here we will argue that to understand the

abilities of cells we need to understand their stochastic nature.

New experimental techniques allow gene expression to be

followed in single cells over time and reveal stochastic bursts of

both mRNA and protein synthesis in many different types of

organisms. Stochasticity has been shown to be exploited by

bacteria and viruses to decide between different behaviours. In

fluctuating environments, cells that respond stochastically can

out-compete those that sense environmental changes, and

stochasticity may even have contributed to chromosomal gene

order. We will focus on advances in modelling stochasticity, in

understanding its effects on evolution and cellular design, and

on means by which it may be exploited in biotechnology and

medicine.
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Introduction
Stochasticity pervades cellular behaviour. Even in an

isogenic population, every cell is unique, whether in their

responses or in the shape of their organelles or in the

expression of their genes. We define stochasticity as

randomness: any phenotype measured from a population

of cells or from a single cell at different times will not have

a unique value, but a collection of values. Such collections

will often, but not always, be distributed around a single

most probable value, and systems with high stochasticity

will have broader distributions than those with low sto-

chasticity.

Ultimately, stochasticity arises because random intermo-

lecular collisions make any biochemical reaction stochas-

tic. Stochasticity can be negligible in some biochemical
www.sciencedirect.com
networks and substantial in others. For any system, it has

two sources [1,2]. Intrinsic stochasticity is generated by

the dynamics of the system from the random timing of

individual reactions. It is enhanced by low numbers of

molecules because low numbers make individual reaction

events, which change molecular numbers by one or two,

more significant. Extrinsic stochasticity is generated by

the system interacting with other stochastic systems in

the cell or its environment.

Both forms of stochasticity can be measured by creating a

copy of the system of interest in the same cellular environ-

ment as the original system [2]. Stochasticity in gene

expression has been most studied. Defining ‘noise’ to be

an empirical measure of stochasticity, the total noise can be

quantified by inserting a fluorescent protein downstream of

the promoter of interest and then measuring the coefficient

of variation of fluorescence (the standard deviation divided

by the mean) across a population of cells. Using two copies

of the promoter each upstream of a different allele of green

fluorescent protein (GFP) allows the extrinsic noise to be

measured by the correlation between the fluorescence

from the two alleles across the cell population [2]. The

intrinsic noise is a measure of the difference between the

fluorescence from the two alleles (Figure 1), and the square

of the intrinsic noise and the square of the extrinsic noise

sum to give the square of the total noise [1].

Using synthetic promoters, total noise and both types of

stochasticity have been quantified for gene expression in

prokaryotes and eukaryotes [2–5]. These studies showed

that intrinsic noise increased as numbers of molecules

decreased and that extrinsic noise was usually greater

than intrinsic noise. By demonstrating that stochastic

effects are not negligible in vivo, they set the stage for

more in-depth experimental and modelling studies.

It has now been demonstrated, conclusively in our

opinion, that stochasticity is significant in endogenous

biochemical networks. High-throughput studies have

been carried out in yeast [6,7]; three-colour experiments

have been used to quantify different contributions to

extrinsic fluctuations [8]; stochasticity has been measured

in mammalian cells, both in gene expression [9�,10�] and

in the p53 network [11,12], in slime moulds [13], in HIV

transactivation [14,15��], in bacterial chemotaxis [16], and

in the timing of mitosis [17,18], meiosis [19], and lysis by

phage lambda [20]. Typically, protein fluorescent repor-

ters are used to detect fluctuations in protein concen-

trations, but mRNA levels can also be followed in live

cells using fluorescently tagged mRNA-binding proteins

[13,21].
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Figure 1

Intrinsic and extrinsic fluctuations in stochastic gene expression. (a) A model of gene expression that includes active and inactive states of the

promoter, transcription and translation. As an example, we show the TATA-box-binding protein driving activation of the promoter with probability

k0 ¼ 2:0� 10�4 s�1. The probability of inactivation is k1 ¼ 6:0� 10�4 s�1. The probability of transcription is v0 ¼ 0:0067 s�1 and of translation is

v1 ¼ 0:02 s�1. Both mRNA and protein degrade: mRNA with a probability d0 ¼ 10�3 s�1 and protein with a probability d1 ¼ 2� 10�4 s�1. We model all

reactions as first-order processes. (b) Simulation results with only intrinsic fluctuations. The probability of transcription per unit time, v0, is a function

of the concentration of RNA polymerase and so will fluctuate because this concentration fluctuates. If we ignore such extrinsic fluctuations, v0 is

constant over time (top panel). We show fluctuations for two identical proteins, following a ‘two-colour’ experiment [2] (middle panel). Each protein is

regulated in the same way, and genes for both proteins are in the same intracellular environment. Protein fluctuations are intrinsic and independent:

htot ¼ hint ¼ 0:30. Both the distributions of the numbers of mRNA and protein for any one of the genes are asymmetric (lower panel). The mRNA

distribution has two peaks reflecting the active and inactive states of the promoter. These peaks are averaged away by the longer living protein. (c)

Simulation results with both intrinsic and extrinsic fluctuations [37�]. The probability of transcription, v0, is now stochastic with a log-normal

distribution with a coefficient of variation of 0.5 and fluctuations of lifetime 104s (upper panel). The mean value of v0 is unchanged. Both reporter

genes experience the same extrinsic fluctuations in v0 and their fluctuations become correlated (middle panel); hint ¼ 0:32; hext ¼ 0:40; htot ¼ 0:51.

The mRNA and protein distribution broaden with the additional extrinsic fluctuations and become more asymmetric. The mode of the protein

distribution decreases from 520 to 375 molecules.
We believe that the important research questions are first,

what should be included to quantitatively model stochas-

ticity; second, how has stochasticity affected evolution
Current Opinion in Biotechnology 2008, 19:369–374
and cellular design and third, can we exploit stochasticity

for medicine and biotechnology. We shall consider work

on each in turn.
www.sciencedirect.com
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Modelling stochasticity
Models should include both intrinsic and extrinsic fluctu-

ations. If diffusion can be ignored, intrinsic fluctuations

are well understood, at least at steady-state. We believe

that a future focus will be extrinsic fluctuations and

including diffusion.

Perhaps the largest change in models of intrinsic fluctu-

ations in gene expression is the now general acceptance

that gene expression often occurs in bursts. Innovative

experiments have quantified bursting both in mRNA

[10�,13,21] and in protein synthesis [22�,23�]. Bursting

in protein synthesis was first predicted 10 years ago [24]

and is implicit in models which include transcription and

translation as first-order processes (Shahrezaei et al.,
unpublished data). Although such effects may in reality

be more complicated [25], comparisons with experiments

show that bursts in mRNA synthesis can be effectively

modelled by the promoter transitioning between active

and inactive states (Figure 1a) [4,5,21,10�], in agreement

with earlier work [26,27]. Bursts of mRNA synthesis could

be from changes in chromatin structure or from binding

and unbinding of proteins involved in transcription

[4,5,21] or from pausing by RNA polymerase [28]. For

mammalian cells, stochasticity seems dominated by these

transitions [10�]. In addition, we now know the mean and

standard deviation of protein levels for arbitrary complex

promoters [29] and the probability distributions for both

protein and mRNA numbers for constitutive expression

[10�,25,30�]. All of these results are at steady-state

though, and only a few time-dependent predictions exist

[1,31,32].

Extrinsic fluctuations have lifetimes comparable to the

cell cycle [33]. They are non-specific, affecting many

components in a network [34], and dominate stochasti-

city, at least in single cell studies [2,5]. Extrinsic fluctu-

ations cause fluctuations in the parameters of models

because these parameters are often functions of protein

concentrations [35,36]. Consequently, extrinsic fluctu-

ations add non-linearities to a biochemical system

because parameters usually multiply a fluctuating intrin-

sic variable. These non-linearities can cause the protein

mean, mode, and the intrinsic noise to vary with both the

magnitude of the extrinsic fluctuations and their lifetime

(Figure 1) [37�,38] — so-called deviant effects [39]. We

have proposed a modification of the Gillespie algorithm

for simulating intrinsic fluctuations [40] that includes

extrinsic fluctuations with arbitrary properties [37�].

Diffusion is important in cell signalling [41] and contrib-

utes to extrinsic fluctuations, though its effects have been

little studied. An increase in the stochasticity of ligands

binding to receptors caused by the diffusion of ligands to

the receptors has been calculated using the fluctuation–
dissipation theorem [42] and the diffusion of repressors to

their operator sites is predicted to increase fluctuations in
www.sciencedirect.com
gene expression [43]. Biological phenomena should be

robust to local fluctuations, and testing the robustness of a

model’s predictions in a stochastic reaction–diffusion

simulation can be an effective means to distinguish

between competing models [44].

Consequences of stochasticity
Considering the effects of stochasticity on evolution and

the design and function of biochemical networks is per-

haps most interesting. Although this area has attracted

modellers, there has been relatively little experimental

work. To test if stochasticity influences the function of a

network, experimenters need to control its magnitude.

Fluctuations can be reduced by including multiple copies

of the gene of interest [10�,36] or modified by varying

levels of a relevant transcription factor or other regulatory

input. With such an approach, however, the concentration

of the protein product also changes, and changes in both

noise and concentration can affect the function of bio-

chemical networks.

New innovations allow stochasticity to be altered while

concentrations remain unchanged. Suel et al. used a

mutant of B. subtilis that undergoes gene replication

and cell growth, but not cell division. They were thus

able to show that stochasticity determines the fraction of

cells in a population that become competent to uptake

extracellular DNA [45��]. Studying the same system,

Maamar et al. drew similar conclusions by decreasing

intrinsic fluctuations through a mutant with a high rate

of transcription, but with an initiation codon of poor

translational efficiency [46��]. They thus increased

mRNA levels and so decreased intrinsic fluctuations

[1,35,47], while maintaining protein concentrations.

Another approach, similar to that of Suel et al., is to

introduce multiple copies of the whole genome which

in yeast increases proportionally both protein copy num-

bers and cell volume and so again keeps concentrations

fixed while decreasing stochasticity [18].

Stochasticity is controlled and exploited by cells. Most

work has focused on network designs that may have

evolved to reduce fluctuations, such as negative feedback,

both transcriptional [31,37�,48–50] and translational [47],

dimerisation [51], co-expression [47,52,53], and feed-for-

ward loops [37�,54,55]. Fluctuations also corrupt the

information received by cells, and biochemical networks

may have evolved to infer the most probable state of the

cellular environment from the chemical signals they

receive using a biochemical implementation of Bayes’s

rule [56] or of a Kalman filter [57].

Maintaining stochasticity is predicted to have an

advantage in fluctuating extracellular environments

[58–60]. If the environment changes suitably quickly,

bacteria that switch stochastically between states, where

each state of the bacterium is optimum for a particular
Current Opinion in Biotechnology 2008, 19:369–374
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environment, were predicted to have an evolutionary

advantage over bacteria that pay the metabolic costs of

sensing the environment, even though these bacteria can

always match their state to the environmental state [60].

These predictions were confirmed experimentally in

yeast using a mutant that randomly transitions between

two phenotypes with different abilities to metabolise

galactose [61]. Stochasticity also allows an isogenic cell

population to transiently explore different phenotypes.

Such variation has been shown to help yeast survive a

sudden environmental stress, providing that stress is

severe [62��]. High stochasticity both creates larger num-

bers of cells able to respond to high stress and larger

numbers of cells unable to respond to weak stress.

Stochasticity has been thought to enhance the robustness

of the behaviour of a network in response to changes in

the network parameters. From the fluctuation–dissipation

theorem, we might expect that a network whose beha-

viour is robust to stochastic fluctuations also should be

robust to parameter changes. This expectation has been

confirmed by simulation where both types of robustness

co-evolved [63,64].

Exploiting stochasticity
We are aware of only a few studies that indicate how we

can exploit biochemical stochasticity. The magnitude of

fluctuations is determined by numbers of molecules

independently of how these molecules are measured.

By following and fitting fluctuations in the partitioning

of a fluorescent protein between daughter cells at cell

division, Rosenfeld et al. were able to infer in vivo
numbers of fluorescent proteins [65]. Such techniques

provide measurements in absolute units. They therefore

facilitate comparison between different experiments and

the assimilation of different results into larger models.

Stochasticity also contributes to disease, and inhibiting

stochasticity could provide possible therapies. Stochastic

switching between different cellular states allows bacteria

to survive antibiotics [66]. Stochasticity also controls the

probability of the HIV virus entering either the replicative

or the latent state [15��]. In agreement with more general

predictions [49,67], positive feedback in the genetic net-

work of the virus generates fluctuations in the levels of a

transcription factor with lifetimes long enough for the virus

to enter the replicative state. Weakening the positive

feedback increases the number of latent viruses.

Conclusion
Biological evolution has always been the evolution of

stochastic systems in stochastic environments. Stochasti-

city is a fundamental property of every biochemical net-

work and of the signals and nutrients cells detect.

Stochasticity can explain chromosomal gene order because

essential genes may cluster in regions of open chromatin to

avoid bursts of mRNA synthesis [68�]. It is heritable and as
Current Opinion in Biotechnology 2008, 19:369–374
such may generate genetic predisposition to mutations

[69]. It may even play a role in aging [70]. With such

pervasive effects, we believe that accurate prediction and

control of the behaviours of cells will only be possible

through understanding their stochastic nature.

Acknowledgements
This work was supported by grants from the National Institutes of Health
(GM48807, GM57513 and RR12255). PSS holds a Tier II Canada Research
Chair. VS and PSS are supported by N.S.E.R.C. (Canada).

References and recommended reading
Papers of special interest, published within the period of review, have
been highlighted as:

� of special interest

�� of outstanding interest

1. Swain PS, Elowitz MB, Siggia FD: Intrinsic and extrinsic
contributions to stochasticity in gene expression. Proc Natl
Acad Sci U S A 2002, 99:12795-12800.

2. Elowitz MB, Levine AJ, Siggia ED, Swain PS: Stochastic gene
expression in a single cell. Science 2002, 297:1183-1186.

3. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van
Oudenaarden A: Regulation of noise in the expression of a
single gene. Nat Genet 2002, 31:69-73.

4. Blake WJ, Kaern M, Cantor CR, Collins JJ: Noise in eukaryotic
gene expression. Nature 2003, 422:633-637.

5. Raser JM, O’Shea EK: Control of stochasticity in eukaryotic
gene expression. Science 2004, 304:1811-1814.

6. Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M,
DeRisi JL, Weissman JS: Single-cell proteomic analysis of S.
cerevisiae reveals the architecture of biological noise. Nature
2006, 441:840-846.

7. Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y,
Barkai N: Noise in protein expression scales with natural
protein abundance. Nat Genet 2006, 38:636-643.

8. Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D,
Pesce CG, Brent R: Regulated cell-to-cell variation in a cell-fate
decision system. Nature 2005, 437:699-706.

9.
�

Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y,
Rosenfeld N, Danon T, Perzov N, Alon U: Variability and memory
of protein levels in human cells. Nature 2006, 444:643-646.

The authors gather time-lapse data for the expression of 20 endogenous
proteins tagged with yellow fluorescent protein in single mammalian cells.
They show that protein fluctuations have a substantial lifetime, longer
than a cell generation, that cannot be explained by standard models of
intrinsic stochasticity.

10.
�

Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S: Stochastic
mRNA synthesis in mammalian cells. PLoS Biol 2006, 4:e309.

By quantifying stochasticity in mRNA synthesis in mammalian cells with
fluorescence in situ hybridisation, the authors show that bursts of mRNA
synthesis probably result from changes in chromatin structure and argue
that such changes dominate stochasticity.

11. Lahav G, Rosenfeld N, Sigal A, Geva-Zatorsky N, Levine AJ,
Elowitz MB, Alon U: Dynamics of the p53-Mdm2 feedback loop
in individual cells. Nat Genet 2004, 36:147-150.

12. Geva-Zatorsky N, Rosenfeld N, Itzkovitz S, Milo R, Sigal A,
Dekel E, Yarnitzky T, Liron Y, Polak P, Lahav G, Alon U:
Oscillations and variability in the p53 system. Mol Syst Biol
2006, 2:32.

13. Chubb JR, Trcek T, Shenoy SM, Singer RH: Transcriptional
pulsing of a developmental gene. Curr Biol 2006, 16:1018-1025.

14. Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV:
Stochastic gene expression in a lentiviral positive-feedback
loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell
2005, 122:169-182.
www.sciencedirect.com



The stochastic nature of biochemical networks Shahrezaei and Swain 373
15.
��

Weinberger LS, Dar RD, Simpson ML: Transient-mediated fate
determination in a transcriptional circuit of HIV. Nat Genet
2008, 40:466-470.

By combining theory and experiment, the authors show that positive
feedback can generate switch-like behaviour through increasing the
lifetime of stochastic fluctuations rather than creating bistabilities.

16. Kollmann M, Lovdok L, Bartholome K, Timmer J, Sourjik V: Design
principles of a bacterial signalling network. Nature 2005,
438:504-507.

17. Bean JM, Siggia ED, Cross FR: Coherence and timing of cell
cycle start examined at single-cell resolution. Mol Cell 2006,
21:3-14.

18. DiTalia S, Skotheim JM, Bean JM, Siggia ED, Cross FR: The
effects of molecular noise and size control on variability in the
budding yeast cell cycle. Nature 2007, 448:947-951.

19. Nachman I, Regev A, Ramanathan S: Dissecting timing
variability in yeast meiosis. Cell 2007, 131:544-556.

20. Amir A, Kobiler O, Rokney A, Oppenheim AB, Stavans J: Noise in
timing and precision of gene activities in a genetic cascade.
Mol Syst Biol 2007, 3:71.

21. Golding I, Paulsson J, Zawilski SM, Cox EC: Real-time kinetics of
gene activity in individual bacteria. Cell 2005, 123:1025-1036.

22.
�

Yu J, Xiao J, Ren X, Lao K, Xie XS: Probing gene expression in
live cells, one protein molecule at a time. Science 2006,
311:1600-1603.

The authors follow single proteins expressed in bursts from a ‘leaky’
repressed promoter in E. coli. They show that such bursts are in protein
rather than mRNA synthesis and obey a geometric distribution.

23.
�

Cai L, Friedman N, Xie XS: Stochastic protein expression in
individual cells at the single molecule level. Nature 2006,
440:358-362.

Using a microfluidic-based assay, the authors observe bursts of expres-
sion of beta-galactosidase in E. coli, yeast and mouse cells. They showed
how to predict their size and frequency from measurements of the steady-
state distribution of proteins across a population of cells.

24. McAdams HH, Arkin A: Stochastic mechanisms in
gene expression. Proc Natl Acad Sci U S A 1997, 94:
814-819.

25. Pedraza JM, Paulsson J: Effects of molecular memory and
bursting on fluctuations in gene expression. Science 2008,
319:339-343.

26. Peccoud J, Ycart B: Markovian modeling of gene-product
synthesis. Theor Popul Biol 1995, 48:222-234.

27. Kepler TB, Elston TC: Stochasticity in transcriptional
regulation: origins, consequences, and mathematical
representations. Biophys J 2001, 81:3116-3136.

28. Voliotis M, Cohen N, Molina-Paras C, Liverpool TB: Fluctuations,
pauses, and backtracking in DNA transcription. Biophys J
2008, 94:334-348.

29. Sanchez A, Kondev J: Transcriptional control of noise in
gene expression. Proc Natl Acad Sci U S A 2008, 105:
5081-5086.

30.
�

Friedman N, Cai L, Xie XS: Linking stochastic dynamics to
population distribution: an analytical framework of gene
expression. Phys Rev Lett 2006, 97:16830.

Observing that proteins are synthesised in bursts, the authors are able to
derive some of the first analytical expressions for protein distributions,
both for constitutive expression and for autoregulation.

31. Thattai M, van Oudenaarden A: Intrinsic noise in gene regulatory
networks. Proc Natl Acad Sci U S A 2001, 98:8614-8619.

32. Chabot JR, Pedraza JM, Luitel P, van Oudenaarden A: Stochastic
gene expression out-of-steady-state in the cyanobacterial
circadian clock. Nature 2007, 450:1249-1252.

33. Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB: Gene
regulation at the single-cell level. Science 2005, 307:1962-1965.

34. Pedraza JM, van Oudenaarden A: Noise propagation in gene
networks. Science 2005, 307:1965-1969.
www.sciencedirect.com
35. Paulsson J: Summing up the noise in gene networks. Nature
2004, 427:415-418.

36. Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, Hasty J:
Origins of extrinsic variability in eukaryotic gene expression.
Nature 2006, 439:861-864.

37.
�

Shahrezaei V, Ollivier JF, Swain PS: Colored extrinsic
fluctuations and stochastic gene expression. Mol Syst Biol
2008, 4:196.

The authors show that extrinsic fluctuations have a non-linear effect on
the dynamics of gene expression. They introduce a modification of the
Gillespie algorithm that allows simulations with both intrinsic and extrinsic
fluctuations.

38. Tanase-Nicola S, Warren PB, ten Wolde PR: Signal detection,
modularity, and the correlation between extrinsic and
intrinsic noise in biochemical networks. Phys Rev Lett 2006,
97:68102.

39. Samoilov MS, Arkin AP: Deviant effects in molecular reaction
pathways. Nat Biotechnol 2006, 24:1235-1240.

40. Gillespie DT: Exact stochastic simulation of coupled chemical
reactions. J Phys Chem 1977, 81:2340-2361.

41. Kholodenko BN: Cell-signalling dynamics in time and space.
Nat Rev Mol Cell Biol 2006, 7:165-176.

42. Bialek W, Setayeshgar S: Physical limits to biochemical
signalling. Proc Natl Acad Sci U S A 2005, 102:10040-10045.

43. van Zon JS, Morelli MJ, Tanase-Nicola S, ten Wolde PR: Diffusion
of transcription factors can drastically enhance the noise in
gene expression. Biophys J 2006, 91:4350-4367.

44. Fange D, Elf J: Noise-induced Min phenotypes in E. coli. PLoS
Comput Biol 2006, 2:e80.

45.
��

Suel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB:
Tunability and noise dependence in differentiation dynamics.
Science 2007, 315:1716-1719.

See annotation to Ref. [46��].

46.
��

Maamar H, Raj A, Dubnau D: Noise in gene expression
determines cell fate in Bacillus subtilis. Science 2007,
317:526-529.

Along with Ref. [45��], this paper introduces a novel technique to control
fluctuations while maintaining protein concentrations. The authors show
that stochasticity is exploited to drive a cellular decision: whether or not a
bacterium becomes competent to uptake extracellular DNA.

47. Swain PS: Efficient attenuation of stochasticity in gene
expression through post-transcriptional control. J Mol Biol
2004, 344:965-976.

48. Becskei A, Serrano L: Engineering stability in gene networks by
autoregulation. Nature 2000, 405:590-593.

49. Simpson ML, Cox CD, Sayler GS: Frequency domain analysis of
noise in autoregulated gene circuits. Proc Natl Acad Sci U S A
2003, 100:4551-4556.

50. Dublanche Y, Michalodimitrakis K, Kummerer N, Foglierini M,
Serrano L: Noise in transcription negative feedback loops:
simulation and experimental analysis. Mol Sys Biol 2006,
2:41.

51. Bundschuh R, Hayot F, Jayaprakash C: The role of dimerization
in noise reduction of simple genetic networks. J Theor Biol
2003, 220:261-269.

52. Lavdok L, Kollmann M, Sourjik V: Co-expression of signaling
proteins improves robustness of the bacterial chemotaxis
pathway. J Biotechnol 2007, 129:173-180.

53. Iber D: A quantitative study of the benefits of co-regulation
using the spoIIA operon as an example. Mol Syst Biol 2006,
2:43.

54. Ghosh B, Karmakar R, Bose I: Noise characteristics of
feedforward loops. Phys Biol 2005, 2:36-45.

55. Hayot F, Jayaprakash C: A feedforward loop motif in
transcriptional regulation: induction and repression. J Theor
Biol 2005, 234:133-143.
Current Opinion in Biotechnology 2008, 19:369–374



374 Systems biology
56. Libby E, Perkins TJ, Swain PS: Noisy information processing
through transcriptional regulation. Proc Natl Acad Sci U S A
2007, 104:7151-7156.

57. Andrews BW, Yi TM, Iglesias PA: Optimal noise filtering in the
chemotactic response of Escherichia coli. PLoS Comput Biol
2006, 2:e154.

58. Thattai M, van Oudenaarden A: Stochastic gene expression in
fluctuating environments. Genetics 2004, 167:523-530.

59. Wolf DM, Vazirani VV, Arkin AP: Diversity in times of adversity:
probabilistic strategies in microbial survival games. J Theor
Biol 2005, 234:227-253.

60. Kussell E, Leibler S: Phenotypic diversity, population growth,
and information in fluctuating environments. Science 2005,
309:2075-2078.

61. Acar M, Mettetal JT, van Oudenaarden A: Stochastic switching
as a survival strategy in fluctuating environments. Nat Genet
2008, 40:471-475.

62.
��

Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF,
Kuang Y, Cantor CR, Walt DR, Collins JJ: Phenotypic
consequences of promoter-mediated transcriptional noise.
Mol Cell 2006, 24:853-865.

Studying yeast, the authors show that increased stochasticity in gene
expression, engineered by mutations in the sequence of the TATA box,
can be advantageous, enhancing survival after acute environmental
changes.

63. Ciliberti S, Martin OC, Wagner A: Robustness can evolve
gradually in complex regulatory gene networks with varying
topology. PLoS Comput Biol 2007, 3:e15.
Current Opinion in Biotechnology 2008, 19:369–374
64. Kaneko K: Evolution of robustness to noise and mutation in
gene expression dynamics. PLoS ONE 2007, 2:e434.

65. Rosenfeld N, Perkins TJ, Alon U, Elowitz MB, Swain PS: A
fluctuation method to quantify in vivo fluorescence data.
Biophys J 2006, 91:759-766.

66. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S: Bacterial
persistence as a phenotypic switch. Science 2004, 305:1622-
1625.

67. Austin DW, Allen MS, McCollum JM, Dar RD, Wilgus JR,
Sayler GS, Samatova NF, Cox CD, Simpson ML: Gene
network shaping of inherent noise spectra. Nature 2006,
439:608-611.

68.
�

Batada NN, Hurst LD: Evolution of chromosome organization
driven by selection for reduced gene expression noise. Nat
Genet 2007, 39:945-949.

By reducing bursts of mRNA synthesis, the authors argue that regions of
open chromatin are ‘sinks’ for essential genes whose expression should
have low stochasticity. They show that this hypothesis can explain some
of the observed organisation of chromosomes.

69. Ansel J, Bottin H, Rodriguez-Beltran C, Damon C, Nagarajan M,
Fehrmann S, Franois J, Yvert G: Cell-to-cell stochastic variation
in gene expression is a complex genetic trait. PLoS Genet 2008,
4:e1000049.

70. Bahar R, Hartmann CH, Rodrigues KA, Denny AD, Busuttil RA,
Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, Vijg J:
Increased cell-to-cell variation in gene expression in ageing
mouse heart. Nature 2006, 441:1011-1014.
www.sciencedirect.com


	The stochastic nature of biochemical networks
	Introduction
	Modelling stochasticity
	Consequences of stochasticity
	Exploiting stochasticity
	Conclusion
	Acknowledgements
	References and recommended reading


