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The recognition that gene expression can be substantially

stochastic poses the question of how cells respond to dynamic

environments using biochemistry that itself fluctuates. The

study of cellular decision-making aims to solve this puzzle by

focusing on quantitative understanding of the variation seen

across isogenic populations in response to extracellular

change. This behaviour is complex, and a theoretical

framework within which to embed experimental results is

needed. Here we review current approaches, with an emphasis

on information theory, sequential data processing, and

optimality arguments. We conclude by highlighting some

limitations of these techniques and the importance of

connecting both theory and experiment to measures of fitness.
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Introduction
Life for single cells is stochastic [1]. Cells sense fluctuating
signals with biochemical networks that are themselves
stochastic and history-dependent [2], and yet living
organisms are able to flourish in nearly all environments.
Understanding how cells prosper despite stochasticity and
environmental variability is the focus of a relatively new
area of systems biology, that of cellular decision-making
[3,4]. By a cellular decision we mean the process by which a
cell makes a ‘choice’ of phenotype from a range of possible
phenotypes in response to or in anticipation of extracellular
change. Such choices could include new gene expression,
changes in cell morphology, intracellular re-arrangements,
movement, or the option not to change phenotype at all.

In addition to the stochasticity of signal transduction, cells
locally sense signals that fluctuate both in time and across

space, whereas often it is the successful identification of
broader environmental changes that is important in
enabling an effective response [5]. Even bacteria appear
to be able to solve this kind of inference problem, using
local signals to identify, for example, that they are in the
human gut and thereby anticipate likely future events
[6,7].

Here we review the theoretical approaches developed so
far to understand cellular decision-making. Motivated by
the surge of interest in biochemical stochasticity generated
by the theoretical work of McAdams and Arkin in 1997 [8],
we ask if theory is now poised to have a similar effect on the
experimental study of decision-making in single cells.

Dose–response and information theory
Most theorists have focused on applying ideas from infor-
mation theory, often inspired by neuroscience [9]. In
systems biology, the experimental confirmation that gene
expression is stochastic [10,11] and the related discovery
that genetically identical cells can vary significantly in their
response to the same stimulus [12–14] implies that dose–
response, or ‘input–output’, relationships are also often
substantially stochastic. Information theory, through
mutual information, provides an objective means to
quantify the influence of this stochasticity [15].

Mutual information is perhaps the most principled
measure of statistical dependence between two stochastic
variables, such as the signal and response of a biochemical
network [16–19]. We discuss its interpretation as a
measure of information in Boxes 1 and 2. Mutual infor-
mation can be related to the quality of the optimal
prediction, or inference, of the signal from the response
(Box 1 and Figure 1), does not require knowledge of
transduction mechanisms, and is invariant to nonlinear,
one-to-one transformations of either the signal or response.
It does, however, require measurement of the probability
distribution of the signal and the response. Collecting
sufficient data to accurately estimate probability distri-
butions and mutual information can be difficult, and for
most organisms we know little about the distribution of
signals experienced in the wild. An approach often taken in
an attempt to circumvent this lack of knowledge is to
calculate the information capacity (Box 2), which is the
maximum value of the mutual information over all
possible, plausible signal distributions.

Recently, the development of fluorescent reporters and
microfluidics have enabled unprecedented characterization
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of the responses of individual cells [21–23], and experimen-
tal measurements of mutual information and information
capacity for biochemical signalling systems are now appear-
ing [24,25!!,26!!,27,28!]. A particularly close connection
between mutual information and the ‘function’ of a signal-
ling system is made by Bialek and colleagues in their study
of development in the fruit fly [24,26!!,29]. Considering the
gap gene network early in development, they showed that
the positional information, the mutual information between
gap gene expression and the position of a nucleus, is close to
the amount needed for each nucleus to identify its physical
position along the anterior–posterior axis of the embryo
[26!!]. This system has the advantage that a uniform prior or
‘input’distribution for thepositionof thenucleus isanatural
choice. Three recent studies of signal transduction in
mammalian cells report values of the mutual information
of approximately 1 bit or less for a single cell under con-
ditions of constant stimulation and using simultaneous
measurement of a single stimulus and output (the studies,
though, use different inputs) [25!!,27,28!]. Does this value
necessarily mean that the cell can therefore discriminate

without error two states of the signal but not more, which
would suggest the prevalence of binary decisions by cells?
We believe not, for the reasons explained in the first point of
Box 2. Cellular inferences of a signal must often be imper-
fect, and a mutual information of 1 bit is in general a
quantification of the ability to infer the signal, albeit with
uncertainty, from the output.

More experimentally and analytically accessible altern-
atives to mutual information have also been proposed,
including local, variance-based measures [31] and a lower
bound for information capacity based on the linear cor-
relation coefficient [32]. The ‘fidelity’ is the proportion of
the variance in the response that is generated by the
signal rather than by, for example, biochemical stochas-
ticity, and provides a lower bound on information capacity
that accounts for non-linearity in the response [33!].
Using this approach, a study of osmosensing in yeast
showed that the majority of variation in expression of a
gene induced by a stress-activated kinase (up to 80%) can
be due to variation in the osmotic environment [33!].
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Box 1 Interpreting mutual information

Mutual information can be interpreted in several different ways.

Mutual information is the difference between the entropy of the input and the entropy of the input given the output. For discrete systems, the
entropy of a random variable is a measure of uncertainty, and mutual information therefore quantifies the reduction in uncertainty about the input
gained from measuring the output. For example, if the entropy of the input is, say, 3 bits, a signalling output with a mutual information of 2 bits
implies less impeded ‘information flow’ than an output with a mutual information of 1 bit. For continuous systems, entropy as a measure of
uncertainty is more problematic. We would expect the extent of our uncertainty about a random variable not to change if the variable is transformed
by a one-to-one mapping, but the entropy of a continuous variable generally does change under such transformations [20].

An alternative interpretation of mutual information, applicable to both discrete and continuous systems, comes from decision theory (summarized
in Box 3). Suppose a cell must infer the state of a signal, S, from the output, Z, of a signal transduction mechanism. In general, the inference made
about the signal takes the form of a probability distribution (over the possible signal values) with density function, say, q. To measure the quality of
this inference, we need a means of evaluating or scoring q. If z is the measured value of the output and the inference about the signal is q(s0, z), a
function of the possible signal states s0, one possible scoring function is log q(s0 = s, z), where s is the true state of the signal. This scoring function
rewards inferences q that attach higher values to s0 = s. Let the true distribution of the signal be p(s0) (the signal s is a sample from p) and let this
distribution also be the prior distribution for any inference. Then the increase in the score that results from the inference q, when the true state of the
signal happens to be s, is measured by

log qðs0 ¼ s; zÞ % log pðs0 ¼ sÞ:
When z is measured, the expected value of this increase (averaging over all signal states) is

E½scorejz' ¼
Z

pðsjzÞlog qðs; zÞds %
Z

pðsjzÞlog pðsÞds;

and averaging further over all possible values of the output, z, we have

E½score' ¼
Z

pðzÞ pðsjzÞlog qðs; zÞdsdz %
Z

pðsÞlog pðsÞds:

Following decision theory (Box 3), we then ask which inference function q maximizes this expectation.

The inference that maximizes the expected score is posterior Bayesian inference, q(s, z) = p(sjz) = p(z, s)/p(z) [20]. The expected score then
becomes

E½score'Bayes ¼
Z

pðzÞ
Z

pðsjzÞlog pðsjzÞdsdz %
Z

pðsÞlog pðsÞds ¼ IðS; ZÞ

which, by definition, is the mutual information. The mutual information therefore quantifies the ability, on average, to infer a given signal, S, from the
output, Z, of a signal transduction mechanism, if we can assume that the prior distribution for the inference equals the actual distribution of the signal
(Figure 1). For a given signal distribution, one transduction mechanism allows better inference than another if and only if it has higher mutual
information. We note that different scoring functions can also result in Bayesian inference being optimal, but give an expected score that is not the
mutual information. If additional requirements such as smoothness and locality are, however, imposed on the scoring function then the logarithmic
function is the only possible one [20].
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Fidelity can be used to study signal representation in
dynamic environments [34], but, unlike mutual infor-
mation, does not in general capture all aspects of infor-
mation transfer.

Updating inferences over time
We have argued that higher mutual information be-
tween an input and output implies better inference of
the input from the output. Mutual information has so far
typically been quantified at individual time points or at

steady-state  but cells may well update their inferences
over time as they sense and learn more about their
environment [35]. Sharpening inferences over time in
this fashion is referred to as sequential inference in the
statistics literature. Any posterior distribution given all
the data at once is equivalent to incrementally updating
the posterior distribution by considering the data in
sequence and using the posterior distribution given
the first k data points as the prior distribution for
inference given the next, k + 1, data point.
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Mutual information evaluates the quality of Bayesian inferences. (a) Inference is the procedure used to predict the unknown input using the measured
value of the output. We consider an input that has three possible states (denoted low, medium, and high), which are equally probable. Each input state,
once transduced through a biochemical network, generates a stochastic output whose magnitude is described by the probability distribution shown
(here for the medium input). Mutual information quantifies the statistical dependence between the input and output. In the middle column, we show the
probability distribution of the output generated for each state of the input for three different, hypothetical signal transduction mechanisms ( (b), (c), and
(d)). Each mechanism experiences different levels of biochemical noise, with levels of noise decreasing down the column. The mutual information (MI)
is given in bits and increases as the degree of overlap between the output distributions decreases. In the right column, we show the result of posterior
Bayesian inference of the level of the input given an output measurement of 250 (shown by the dashed line in the middle column) and a uniform prior
distribution. Given this output of 250, the inference becomes less ambiguous moving down the page, and the medium input attracts increasing
posterior probability. As the mutual information increases so, on average, does the ability to infer the input that generated the output (Box 1).
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Several authors have asked whether biochemistry can
implement sequential inference. Andrews and Iglesias
[36] argue that bacterial chemotaxis, the best studied
example of cellular decision-making, is based on a
sequential inference of the ligand concentration that
closely approximates a Kalman filter. The Kalman filter
gives the best linear estimate of the ligand concentration
for a system subject to uncorrelated noise and when the
dynamics of the ligand concentration and the number of
receptors bound by ligands are linearly related to past
values.

In contrast, Kobayashi gave an explicit biochemical
mechanism that implements (Bayesian) sequential infer-
ence given the history of the states of trans-membrane

receptors [37!]. He considered a form of a phosphoryla-
tion–dephosphorylation cycle, where activated receptors
in the membrane promote phosphorylation of the sub-
strate, and showed that the dynamics of the proportion of
phosphorylated substrate approximates the dynamics
of the posterior probability that the environment is in
one of two possible states [37!,38].

If deciding quickly is important, then the means to
process a stream of data to choose between two altern-
atives in the shortest time but with a defined error rate is
known, and is called the sequential probability ratio test
[39]. The ratio test appears often in nature, with examples
ranging from discrimination tasks performed by monkeys
[40] to bees choosing between alternative sites for
hives [41]. Siggia and Vergassola [42!], emphasising that
cells must often decide quickly, have shown that the test
can be implemented biochemically and its dynamics
mathematically related to the dynamics of signal trans-
duction. They focus on models related to the immune
system and, similarly to Kobayashi, on phosphorylation–
dephosphorylation cycles.

Optimality theory
Cells not only make inferences about the state of the
environment but also make decisions [43], such as
whether to differentiate or not, which affect the fitness
of the cell. Mutual information is a generic approach
implying a certain cost or ‘scoring’ for evaluating infer-
ences (Box 1), and therefore does not suggest a cost
function related to a specific cellular decision. Never-
theless it is possible to show (equating fitness with the
expected long term growth rate and under certain
additional assumptions) that the mutual information be-
tween a cue, such as a signalling output, and the envi-
ronment gives an upper bound on the fitness value of the
cue [44,45]. Indeed, a future challenge is to connect more
closely cellular inferences, cellular decision-making and
fitness, which will require understanding how cells access
the information conveyed through signal transduction
[46!].

Optimality theory — where behaviours are argued to
have evolved because they optimize certain cost func-
tions — has a long history in evolutionary biology [47].
For example, maximal mutual information can be used to
make parameter-free comparisons of different network
architectures by choosing rate parameters to achieve each
architecture’s information capacity [48]. Considering cel-
lular responses, the costs and benefits of alternative
decisions (Box 3) can be most easily assigned in microbes
where growth rate is an accepted measure of fitness.
Studying E. coli, Alon and co-workers [49,50] showed
that the level of expression of the lac operon, a collection
of genes to import and metabolize lactose, could be
predicted by choosing the level of expression that maxi-
mized the difference between the benefit (deduced from
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Box 2 Mutual information in systems biology

The Shannon theory of communications engineering [15,30] is
concerned with transmitting information with infinitesimally small
error using a noisy signalling mechanism, or ‘channel’, and differs in
two important ways from the context relevant to systems biology:
1 In Shannon’s work, mutual information is used to describe

information transfer by typically many uses of a channel, whereas
in systems biology the focus has mostly been on a ‘single use’,
considering systems at steady-state. The steady-state distribution
can be justified by arguing that the mechanism’s response time is
shorter than the time-scale of fluctuations in the input. Shannon
considered the transmission of a message from a collection of
messages and a suitable, one-to-one encoding function that
allows each message to be represented by a sequence of channel
inputs that are then applied to the channel. The channel is thus
used multiple times to transmit a single message. Let the input for
one use have the probability distribution P(S) and the corre-
sponding output of the channel have the probability distribution
P(ZjS). Shannon showed that n repeated uses of a noisy, memory-
less channel allow approximately 2nI(S;Z) input sequences of length
n, and hence 2nI(S;Z) different messages, to be ‘perfectly’
distinguished if n is sufficiently large. It is therefore the rate of
information transmission per use of the channel, i.e. the logarithm
of the number of messages distinguished per channel use, that is
I(S ; Z). Consequently, a mutual information of 1 bit means that,
under n uses of a channel, a message drawn from one of 2n

possibilities can be near perfectly transmitted for sufficiently large
n. It does not in general mean that a message with two possible
states can be near perfectly transmitted on each use. Further,
organisms also experience fluctuating and time-varying signals,
and progress using information theory is still possible [35], though
challenging.

2 In engineering, the distribution of the input can be chosen by the
user of the channel to maximize the mutual information, in order to
maximize the number of distinguishable messages, but, in
systems biology, the distribution of the signal is typically
experienced and not chosen by the cell. Although there may be
exceptions, such as morphogen gradients in embryonic develop-
ment, we expect the signal transduction mechanism usually to
have adapted to the signal distribution, particularly when the signal
is external to the organism. Ideally, the mutual information should
be calculated with the natural distribution for the signal or using a
range of plausible distributions. Without this knowledge, the
information capacity provides an upper bound on the mutual
information of the actual system, although this bound need not be
realised with natural signal distributions (see, however, Dubuis
et al. [26!!]).
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the increase in growth rate caused by expression of the
operon in lactose) and the cost (the reduction in growth
rate caused by expression of the operon without lactose).
A similar approach was taken by Mitchell and Pilpel [51]
to explain anticipatory behaviour in microbes [6,7].
Insights from decision-making in economics and game
theory are also relevant, such as reducing risk by including
the distribution, rather than just mean values, of benefits
and costs for a given behaviour (Box 3). For example,
Celani and Vergassola [52] have proposed that bacterial
chemotaxis implements a maximin strategy so that the
highest minimum uptake of nutrients is achieved for any
concentration profile that bacteria experience.

Conclusions
What insights does the above theory provide for exper-
imental studies? Perhaps the most successful use of
information theory to date has been the investigation
of development in Drosophila. Nearly all the information
needed to describe the patterning of the fly embryo is
established early in development by the gap genes [26!!].
We do not yet know whether this result is fundamental or

if other organisms can reach maturity by establishing
positional information later. In signal transduction, the
measured information capacity of approximately 1 bit was
substantially lower than the maximum possible (the
entropy of the input signal), a perhaps surprising result.
Cells, however, are likely to experience multiple signals
simultaneously and monitor multiple outputs: using one
input and one output at a single point in time is unlikely
to capture all of the information transfer typical in their
dynamic, natural environments. Similarly, finding the
information capacity is unlikely to compensate for not
knowing the statistics of signals in these environments
(Box 2). Further, cells may decide in groups [53], and a
group of just ten cells can substantially increase infor-
mation transfer compared to single cells [25!!].

Despite these caveats, information theory has already
been used with success to give insights into biochemical
mechanisms preventing interference between signalling
pathways [54!], to analyse the flow of information in large
signalling networks [55], to explain ‘tiling’ in gene expres-
sion where one transcription factor activates a collection
of genes each at a different concentration [56], and to
study the effects of basal activity [28!] and negative
feedback [28!,57]. Optimality theory, as applied to cel-
lular decision-making, has been developed close to exper-
iments but requires details of the biochemical network
and values of parameters. Further, costs and benefits can
be subtle [58!], and difficult to measure for systems
without artificial inducers.

With its applications to stem cells and to cancer, the study
of cellular decision-making is important and growing.
Experimental systems have been developed spanning
the kingdoms of life [4], with bacterial chemotaxis being
perhaps the example par excellence. It is only through
fitness that we can determine whether the variation in
response is under selection, and therefore both theory and
experiment directly connecting to measures of fitness is
needed. Finally, second-guessing nature is difficult and,
considering the success of studies of chemotaxis, perhaps
the best way to understand decision-making is to watch
and quantitatively and mathematically characterize cells
as they decide and reproduce, a task that requires both
theory and experiment.
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