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Abstract. We consider an effective Hamiltonian description of critical wetting transitions in systems with
short-range forces at a corrugated (periodic) wall. We are able to recover the results obtained previously
from a “microscopic” density-functional approach in which the system wets in a discontinuous manner
when the amplitude of the corrugations reaches a critical size A∗. Using the functional renormalization
group, we find that A∗ becomes dependent on the wetting parameter ω in such a way as to decrease the
extent of the first- order regime. Nevertheless, we still expect wetting in the three-dimensional Ising model
to proceed in a discontinuous manner for small deviations of the wall from the plane.

PACS. 64.60.Fr Equilibrium properties near critical points, critical exponents – 68.10.-m Fluid surfaces
and fluid-fluid interfaces – 68.45.Gd Wetting

1 Introduction

In a recent article [1] we have studied wetting transitions
at a periodic non-planar substrate (i.e. a corrugated wall)
within a Landau-like mean-field (MF) square gradient the-
ory, which is appropriate for modeling adsorption in fluid
and simple magnetic systems with short-range forces [2].
The surprising conclusion of this analysis was that second-
order (critical) wetting transitions occurring in the pla-
nar system are generically corrugation-induced first-order
when the root mean square amplitude A of the corruga-
tions exceeds a tricritical value A∗, whose numerical value
is less than a bulk correlation length. The analysis of the
Landau model is based on a perturbative expansion of the
free energy about the equilibrium value of the planar sys-
tem. It transpires that the free energy correction due to
corrugation can be expressed in terms of (planar) correla-
tion functions, and is amenable to a graphical interpreta-
tion which generalizes the well-known Cahn construction
[3] for the planar system. Despite the convenience of a geo-
metrical description and the simplicity of the final results,
the calculation is rather involved and perhaps obscures
the underlying mechanism for the shift in the order of
the transition. In this paper, we seek to elucidate the sim-
plest possible effective Hamiltonian theory consistent with
the previously derived results for the shifted MF phase
boundary and proceed to discuss the influence of thermal
fluctuation effects beyond MF level on these predictions.
As we shall see this is a surprisingly subtle problem and
complete answers cannot be given for the renormalized
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phase boundary. Indeed, even at MF level problems arise
since a simple effective Hamiltonian approach does not
quite recover all the quantitative results of the Landau
theory. In discussing these issues we also seek to explain
why a previous effective Hamiltonian study [4] did not find
any evidence for a corrugation-induced first-order wetting
transition in the non-planar geometry.

In the last ten years or so one of the main thrusts
in theoretical wetting research has been the study of ad-
sorption in such non-planar geometries. The conformation
of thin liquid films on rough surfaces has been described
quite extensively [5] while the influence of disordered (self-
affine) substrates on three-dimensional wetting transitions
has also been investigated, using both replica and renor-
malization group methods [6]. New critical behaviour is
indicated when the roughness of the substrate exceeds the
thermal roughness (as measured by the roughness expo-
nent [7]) of the wetting layer. However, the transition re-
mains second-order in character. In two dimensions, this
no longer need be true and even richer behaviour occurs
[8]. Work has also be carried out for systems with van
der Waal’s interactions for both the wedge [9] and groove
[10] geometries and quite general conditions for roughness-
induced wetting have been found [11].

To begin we recall our basic “microscopic” model of
fluid adsorption at a corrugated wall (appropriate to sys-
tems with short-range forces) and discuss the results and
interpretation of our earlier work. This is of some impor-
tance, as we shall show that the simplest available phe-
nomenological approach does not quite agree with all our
previous predictions.
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2 Perturbative analysis of a Landau theory

Writing zW (y), with y = (y1, y2), for the local height
of the wall above the z = 0 plane we consider a Landau-
Ginzburg-Wilson (LGW) Hamiltonian of the order param-
eter (magnetization) m(r),

HLGW [m] =

∫
dy

{∫ ∞
zW

dz

[
1

2
(∇⊥m)2+

1

2

(
∂m

∂z

)2

+φ(m)

]

+

[
1 +

1

2
(∇⊥zW )2

]
φ1(m1)

}
(2.1)

where m1 denotes the surface magnetization at vector po-
sition y along the z = 0 plane, i.e. m1(y) = m(y, zW (y)),
while φ(m) and φ1(m) = 1

2cm
2 − h1m are appropriate

bulk and surface potentials. Here c and h1 are the sur-
face enhancement and field, respectively. The final multi-
plicative term in (2.1) represents the local increase in area
due to the corrugations of the wall expanded to second-

order in zW . Note, we have written ∇ =

(
∇⊥,

∂

∂z

)
with

∇⊥ =

(
∂

∂y1
,
∂

∂y2

)
. We suppose that the bulk exhibits

two-phase coexistence in zero bulk field (h = 0) between
phases with magnetization mα (> 0) and mβ (< 0) for
T < TC . Furthermore, we set h1 < 0 and focus on wetting
of the wall-α interface by the β phase.

At mean-field level, corresponding to Landau or square
gradient theory, the Hamiltonian needs to be minimized to
obtain the equilibrium magnetization. This is a straight-
forward task for the planar system zW = 0. Denoting
κ =

√
φ′′(mβ), the inverse bulk correlation length of the β

phase, we recall that for c greater (less) than κ the wetting
transition is second (first)-order [3]. For the non-planar
system, however, even the MF calculation is non-trivial
due to the loss of translational invariance along the wall.
Previously [1], we have developed a perturbative approach
to the problem in which the equilibrium free energy of the
wall-α interface is written

F = φ(mα)Vπ + σwαAπ +
1

2(2π)(d−1)

×

∫
dq q2∆π(q)|ẑW (q)|2 + · · · (2.2)

Here the first two contributions represent the bulk and
surface free energy (tension) of the appropriate planar sys-
tem while the final term is the non-planar correction writ-
ten perturbatively in terms of the Fourier amplitudes of
the wall function zW (y). The quantity to be determined
∆π(q) has the dimensions of a surface tension and by con-
struction satisfies the long wavelength identity

∆π(0) = σwα (2.3)

required from infinitesimal rotational invariance. More
generally, ∆π(q) can be related to the surface magneti-

zation mπ1 and correlation functions of the planar system

q2∆π(q) = φ1(mπ1) +m
′2
π1

(
1

Ĝ(0, 0; q)
−

1

Ĝ(0, 0; 0)

)
·

(2.4)

Here Ĝ(z1, z2; q) = Ĝ(z1, z2; q) is the transverse Fourier
transform of the connected two-point correlation function,
G(r1, r2) = 〈m(r1)m(r2)〉 − 〈m(r1)〉〈m(r2)〉, for positions
distances z1 and z2 from the wall, i.e. it is surface cor-
relations which determine the free energy correction. In
this way one may derive an elegant relation for ∆π(q)
(= ∆π(q) from (2.4)) which complements the well-known
expression for the surface tension [3]

σwα = φ1(mπ1) +

∫ mb

mπ1

dmQ0(m) (2.5)

where mb = mπ(∞) is the bulk magnetization and

Q0(m) =
√

2(φ(m)− φ(mb)) is the usual function appear-
ing in the Cahn construction for planar square gradient
theories. The final expression for ∆π(q) is

∆π(q) = φ1(mπ1) +

∫ mb

mπ1

dmQ(m; q) (2.6)

where Q(m; q) is a modified Cahn function satisfying the
differential equation

d

dm

[
Q3

0

d

dm

(
Q

Q0

)]
= q2Q. (2.7)

Clearly, when q = 0 we haveQ(m; 0) = Q0 and∆π reduces
to σwα as quoted earlier.

Application of this perturbation theory to the case of
adsorption at a corrugated sinusoidal wall,

zW (y) =
√

2A sin(py1) (2.8)

withA the root mean square width of the corrugations and
2π/p their period, yields results best expressed in terms of
the contact angle θπ = θπ(T, c, h1) of the planar system.
Thus, for the case of strongly first-order wetting transi-
tions in the planar system occurring at temperature Tπ,
say (for which θπ ∝ (Tπ − T )1/2), it was found that the
corrugated wall-α interface was completely wet by the β
phase at a lower temperature satisfying

θπ = pA for c < κ (2.9)

(valid for p� κ) with the transition remaining first-order.
Indeed, the possibility of corrugation-induced second-
order wetting transitions is ruled out completely from the
expansion (2.2) with (2.4).

On the other hand, for planar second-order wetting
transitions (for which θπ ∝ (Tπ−T )) the corrugated geom-
etry showed a first-order phase transition for sufficiently
large A > A∗ at a reduced temperature satisfying

θπ ≈ p
[
A2 −A∗2

] 1
2 for c > κ. (2.10)
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Fig. 1. Schematic wetting phase diagram for fluid adsorption
in a system with a corrugated wall and c > κ. The lines C1 and
C2 are loci of first and second-order wetting phase transitions,
respectively, which meet at the tricritical point corresponding
to A = A∗. The vertical axis is a linear measure of the tem-
perature scale Tπ − T for small θπ, where Tπ is the wetting
temperature in the planar system.

For A < A∗ the transition remained second-order and oc-
curred at the same planar wetting temperature Tπ. Sur-
prisingly, the threshold or tricritical amplitude A∗ is com-
paratively small and is explicitly determined as

κA∗ =

√
c− κ

c+ κ
for c > κ (2.11)

which is less than a bulk correlation length. Thus, even
minor deviations from the plane can lead to a corrugation-
induced first-order wetting transition.

Before trying to rederive these results using an effective
Hamiltonian approach it is worth mentioning a few points
concerning their interpretation. Firstly, the first-order re-
sult (2.9) is precisely the expression obtained from a naive
application of Wenzel’s empirical law [12] to wetting tran-
sitions. Recall that Wenzel observed that the contact angle
θρ of a droplet on a rough surface (of area Aρ) appeared
to satisfy the relation

cos θρ
cos θπ

=
Aρ

Aπ
· (2.12)

For a corrugated wall
Aρ

Aπ
= 1+

1

2
p2A2 (to quadratic order

in pA) and setting θρ = 0 recovers (2.9) for small θπ. How-
ever, the macroscopic Wenzel law (2.12) is certainly not
universally valid and is restricted to adsorption problems
in which the transverse correlation length characterizing
the capillary wave-like fluctuations of the αβ interface is
not much larger than the bulk correlation length. This
condition is met for strongly first-order phase transitions
since the thickness of the wetting β layer does not exceed
a few bulk correlation lengths before the transition to in-
finite adsorption occurs.

Secondly, for c > κ (i.e. planar second-order wetting
transitions) the amplitude A∗ vanishes smoothly as the
planar tricritical point c = κ is approached. We empha-
size here that this is required in order that the global

A

π

0

Complete Wetting

Partial Wetting

θ

Fig. 2. For a system with c < κ only first-order transitions
take place. The wetting temperature is reduced below Tπ by
an amount proportional to the wall amplitude squared (at least
for small A).

surface phase diagram shows a smooth cross-over to the
Wenzel-like result (2.9) appropriate for the planar first-
order regime. Given that we can discount the possibility of
corrugation-induced second-order behaviour in the c < κ
sector, a non-vanishing value of A∗ as c→ κ+ would some-
what surprisingly result in a discontinuous surface phase
diagram. Consequently, the prediction (2.11) imbues the
surface phase diagram with a natural topology facilitat-
ing a smooth cross-over near planar tricriticality. Sections
through this diagram are sketched in Figures 1 and 2.

Finally, we note that deep in the planar second-order
sector c� κ the result for A∗ exhibits universal-like prop-
erties

κA∗ ≈ 1 for c� κ. (2.13)

This prediction is appropriate for planar critical wetting
transitions close to the bulk critical temperature and suf-
ficiently far from the planar tricritical point. As we shall
see, the right hand side of this equality is associated with
the numerical value of a hyperscaling amplitude.

3 Effective Hamiltonian theory

3.1 Predictions of a simple model

The simplest continuum interfacial Hamiltonian model of
fluid adsorption at a non-planar wall is

H[`, zW ] ≈

∫
dy

{
1

2
Σαβ(∇⊥`)

2 +W (`− zW )

}
(3.1)

where Σαβ is the stiffness coefficient of the unbound αβ
interface, W (`) is the binding potential for adsorption at
a planar wall and `(y) is a suitable measure the local
thickness of the wetting film. This is certainly a plausible
starting point for investigations and has been employed
by numerous authors [13] to understand interfacial fluc-
tuation effects at rough and self-affine walls. Therefore,
it is surprising to note that the model does not recover
all the Landau MF results quoted earlier. Nevertheless,
it does manage to capture the correct physics away from
the planar tricritical point and provides a simple means of
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understanding the origin of the corrugation-induced first-
order behaviour for c � κ. Before discussing the effect
of wall corrugation on planar first- and second-order wet-
ting transitions we make a few general remarks. Firstly,
at MF level the problem reduces to finding the global
minimum of H[`, zW ]. A wetting phase transition occurs
when the global minimum approaches zero from below so
that the free energy is identical to that of an unbound
interface H[∞, zW ] = 0 which always represents a min-
imum. This comparison of free energies appears not to
have been adopted by Rejmer and Napiórkowski [4] (RN)
in their effective Hamiltonian study and as a consequence
they concentrate solely on second-order behaviour (note
these authors actually consider a more complicated effec-
tive Hamiltonian model systematically derived from the
LGW functional). Secondly, following standard theory, the
MF equilibrium values of the planar film thickness `π, cor-

relation length ξ‖ and singular free energy f
(π)
sing are iden-

tified through

W ′(`π) = 0 ; ξ2
‖ =

Σαβ

W ′′(`π)
; f

(π)
sing = W (`π). (3.2)

The latter quantity is conveniently related to the planar
contact angle by Young’s equation [2]

f
(π)
sing = σαβ(cos θπ − 1)

≈
1

2
σαβθ

2
π (3.3)

where σαβ is the surface tension of the αβ interface. De-
noting `ρ(y) the collective coordinate field that minimizes
H[`, zW ] we have

Σαβ∇
2
⊥`ρ = W ′(`ρ − zW ) (3.4)

which has to be solved perturbatively. Assuming that
|zW (y)| and δ`ρ = `ρ− `π are small, we find to first order

Σαβ∇
2
⊥δ`ρ = W ′′(`π)

(
δ`ρ − zW

)
(3.5)

which is trivially solved on introducing the Fourier trans-
forms

δ ˆ̀
ρ(q) =

∫
dyeiq·yδ`ρ(y) (3.6)

ẑW (q) =

∫
dyeiq·yzW (y). (3.7)

We find

δ ˆ̀
ρ(q) =

ˆzW (q)

1 + q2ξ2
‖

(3.8)

and see that the “healing length”, in the terminology of [5],
is equal to the transverse correlation length of the planar
system. Short wavelength surface undulations, such that
qξ‖ � 1, are completely damped by the interfacial stiff-
ness. The interface is flat and the effects of surface rough-
ness are negligible. We also point out that it is possible

to go beyond the simple form of the effective Hamiltonian
given in (3.1) and to include a non-local interaction be-
tween the wall and the αβ interface. Equation (3.8) is then
modified by the appearance of a kernel function which is
simply unity for our case (see [5] for more details).

Thus to quadratic order in ẑW (q) (equivalent to the
free energy expansion (2.2) of the Landau theory), the
singular contribution to the surface free energy for a bound
(non-wet) phase at a corrugated wall is

Fnon−wet = H[`ρ, zW ]

= AπW (`π) +
1

2(2π)2

∫
dq

Σαβq
2

1 + q2ξ2
‖

|ẑW (q)|2

(3.9)

which must be compared with

Fwet = H[∞, zW ]

= 0. (3.10)

If we specialize to the case of a corrugated wall (2.8), the
integral can be evaluated and the wetting phase boundary
is then given by the solution of

|W (`π)| =
ΣαβA

2p2

2(1 + p2ξ2
‖)

(3.11)

3.1.1 First-order planar wetting transitions

At a first-order transition the singular free energy fsing
vanishes linearly as T → T−π and the correlation length ξ‖
remains finite at the transition. Thus, provided the wave-
length p−1 of the corrugations is much larger than the
transverse correlation length of the (planar) thin film, we
find a shifted first-order wetting transition occurring at a
lower temperature

θπ ≈

√
Σαβ

σαβ
Ap for pξ‖ � 1 (3.12)

identical to (2.9) for isotropic fluid interfaces (and recall
θπ ∼ (Tπ − T )1/2). Close to the planar tricritical point
c = κ, where ξ‖ is large for the thin film phase, this pre-
diction is no longer accurate and (3.11) suggests that the
expression for the shifted phase boundary shows cross-over
to θπ ∝ A/ξ‖ for fixed p. However, we will not dwell on
this since, as we shall show below, the simple interfacial
model is somewhat unreliable close to planar tricriticality
(c ≈ κ).

3.1.2 Second-order planar wetting transitions

The simple Wenzel-like result (3.12) is clearly inapplica-
ble for describing the effect of corrugation on a planar
second-order wetting transition due to the divergence of
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the correlation length ξ‖ as T → T−π . Instead, directly
from (3.11), we have

σαβ

Σαβ
θ2
π = A2p2 + 2

f
(π)
singξ

2
‖

Σαβ
p2 (3.13)

for the shifted phase boundary corresponding to a corru-
gation-induced first-order transition. In fact, the absence
of real solutions (for θπ) in (3.13) indicates that the tran-
sition remains second-order. This expression further sim-
plifies because the hyperscaling amplitude ratio

R =
lim

T→Tπ

− f
(π)
singξ

2
‖

(Σαβ/κ2)

 (3.14)

is a pure number in MF theory (see below). Accepting this
for the moment, we conclude that the interfacial model
predicts a shifted wetting phase boundary of the form

θπ =

 p
[
Σαβ
σαβ

(A2 −A∗2)
]1/2

for A > A∗

0 for A < A∗
(3.15)

and recall θπ ∼ (Tπ − T ). Moreover, the tricritical ampli-
tude A∗ is simply determined by the value of the ampli-
tude ratio R,

κA∗ =
√

2R. (3.16)

At this stage the results of the interfacial model appear
very similar to those of the Landau theory calculation for
which we can identify σαβ = Σαβ . However, the prediction
for A∗ does not quite agree as seen by calculating the
value of R. If we adopt the standard form for the binding
potential in zero field (h = 0)

W (`) =

{
−ae−κ` + be−κ` for ` > 0

∞ for ` < 0
(3.17)

with a ∼ Tπ − T and b > 0, a simple calculation yields
R = 1/2 so that

κA∗ = 1 (3.18)

instead of the result (2.11). Unlike the direct analysis of
the Landau theory functional, the simple interfacial model
predicts that the amplitude A∗ is independent of the sur-
face enhancement c and does not vanish as the planar
tricritical point (c = κ) is approached. Nevertheless, this
approach does agree with the results of our earlier the-
ory for strongly first- and second-order (planar) wetting
transitions corresponding to c � κ and c � κ, respec-
tively. In particular, the “universal” result (2.13) can be
traced to the numerical value of the appropriate ratio R
of hyperscaling amplitudes.

Before discussing the possible reasons for the discrep-
ancy between the Landau and interfacial model calcula-
tions close to planar tricriticality we focus on the strongly
second-order sector c � κ and enquire how results
(3.15, 3.16) are modified by thermal fluctuations in three
dimensions.

3.2 Fluctuation effects away from planar tricriticality

Wall corrugation has only a minor influence on wetting
transitions below the upper critical dimension where en-
tropic fluctuation effects dominate the unbinding mecha-
nism [14]. However, at the upper critical dimension d = 3
(restricting our attention to systems with short-range
forces) we can anticipate that many of the qualitative
features seen in the MF calculation retain relevance even
after thermal fluctuations are allowed for. If we simply
assume that the phenomenological model (3.1) is a rea-
sonable description of fluctuation effects (away from the
planar tricritical point) it is straightforward to develop
a linear functional renormalization group (RG) analysis
along the lines formulated by Fisher and Huse (FH) [15]
for the planar problem zW = 0. In fact, assuming that
the renormalized Hamiltonian H(t)[`, zW ] is of the same
functional form as (3.1), then the RG transformations are
unchanged and

H(t)[`, zW ] =

∫
dy

{
1

2
Σαβ(∇⊥`)

2 + e−2tW (t)(`− zW )

}
(3.19)

in d = 3, where b = et is the usual spatial rescaling factor
and

W (t)(`− zW ) =
e2t

√
4πωt

∫ ∞
−∞

d`′W (`′)e−
(`−zW−`

′)2

4ωt .

(3.20)

Here ω is the wetting parameter

ω =
kBTκ

2

4πΣαβ
(3.21)

with kB the Boltzmann constant. Following FH we adopt
a matching procedure and choose t = t∗ such that the
renormalized curvature W (t)′′(`) is about unity (see Ap-
pendix) at its minimum. The structure of the perturbative
analysis of (3.19) is then identical to that described earlier
for MF theory (Eqs. (3.4–3.11)). Consequently, the expres-
sion for the shifted phase boundary and threshold corru-
gation amplitude are identical to those quoted earlier (see
(3.15, 3.16), respectively) although the temperature de-
pendence of θπ and the numerical value of R are now
dependent on ω.

Thus, the planar contact angle vanishes like

θπ ∼ (Tπ − T )ν‖ (3.22)

where [15]

ν‖ =


1

1− ω
for 0 < ω < 1/2

1

(
√

2−
√
ω)2

for 1/2 < ω < 2

∞ for ω > 2

(3.23)

is the standard correlation length critical exponent de-
scribing the divergence of ξ‖ in the planar system as
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T → T−π . Furthermore, one can determine the value of the
amplitude ratio R(t) (see Appendix) so that the renormal-
ized expression for the threshold amplitude A∗ satisfies

κA∗ ≈

{
1 for 0 < ω < 1/2

(2ω)1/4 for ω > 1/2
(3.24)

which we emphasize must be regarded as a “high” tem-
perature prediction valid away from the planar tricritical
point. Thus, the effect of thermal fluctuations is to in-
crease the threshold amplitude A∗ so that it is more dif-
ficult to produce a corrugation-induced first-order transi-
tion. This is supported by the exact results found in d = 2
where the transition is always second order independent of
the size of A [14]. Nevertheless, the numerical value of A∗

remains relatively small for physically relevant estimates
of ω. For example, close to the bulk critical temperature
ω approaches a universal value ωC ≈ 0.77 [16] which im-
plies that κA∗ ≈ 1.1 if Tπ is close to TC . This is hardly
different from the MF prediction and could be checked in
Ising model simulation studies.

Finally, in this subsection we note that in deriving
these results we have taken as our starting point the sim-
plest phenomenological model of fluctuation effects at wet-
ting transitions and have ignored the possibility of includ-
ing a position dependent stiffness coefficient [17] and also
coupling to order parameter fluctuations near the wall
[18–21]. While both these amendments to the standard
model have some important consequences in d = 3 they
do not effect the location of the planar wetting phase
boundary to any great extent. Thus, while the current
theoretical expectation [22] is that the planar wetting
transition (occurring in the Ising model say) is extremely
weakly first-order beyond MF level (even for c > κ) there
is no direct evidence for this in Ising model simulation
studies which certainly appear to show second-order be-
haviour [23]. Consequently, we feel justified in ignoring
the possibility of a fluctuation-induced first-order transi-
tion since it is unlikely to interfere with the mechanism
for corrugation-induced first-order wetting which is our
central concern here.

3.3 Remarks on improved effective Hamiltonians

To complete our article we return to the discrepancy be-
tween the perturbative Landau theory and simple inter-
facial model predictions for the tricritical amplitude A∗

(Eqs. (2.11, 3.18), respectively). Both results agree for
c� κ and are consistent with independent numerical min-
imization of the Landau free energy functional in this limit
[24]. However, they are qualitatively different for c ≈ κ
since only within the perturbative Landau theory calcula-
tion does A∗ vanish, as it must, as planar tricriticality is
approached. For, as mentioned earlier, a non-vanishing A∗

would imply a discontinuous cross-over to the Wenzel-like
behaviour expected in the first-order sector c < κ.

In principle, it is of course possible to recover all the
Landau theory using an effective Hamiltonian. If we de-
note `(y) as the surface of fixed magnetization mX = 0

then a constrained minimization of the LGW functional
subject to the crossing constraintm(y, `(y)) = 0 (see [17])
defines a Hamiltonian

H[`, zW ] = min
(
HLGW [m]

)
(3.25)

which identically must recover the MF free energy (2.2)
on further minimization with respect to the collective co-
ordinate `(y). However, the constrained minimization in-
volved in (3.25) is, of course, at least as difficult as the
original MF theory of (2.1) unless various approximations
are used [17]. It is these very approximations which lead
to the discrepancy in A∗ described above.

In fact, one should not be surprised at the limited do-
main of validity of (3.1). As is now appreciated even for
a planar substrate, the simple interfacial model does not
provide an accurate description of magnetization correla-
tions near the wall [20,21] but it is these very correlations
that are explicitly incorporated into the free energy cor-
rection kernel ∆π(q). To derive the correct Landau expres-

sion for the wall correlation function Ĝ(0, 0; q) a two-field
Hamiltonian H[X, `] [21] is required, where X(y) is the
collective coordinate most suitable for modeling magneti-
zation fluctuations near the surface. Note, that this need
not be interfacial-like and indeed is not so at the critical
wetting transition [19,21].

This suggests that the effective Hamiltonian for wet-
ting at a non-planar wall should resemble the two-field
models of wetting at a planar surface, provided X(y) is
chosen to be an interfacial-like variable, describing trans-
lations of a contour of fixed magnetization close to the
value at the wall. This is indeed the case and the form
for H[`, zW ] derived by RN is almost identical to the two-
field Hamiltonian of Boulter and Parry [18]. Using the
notation of the latter the generic form for H[`, zW ] in the
long wavelength limit is

H[`, zW ] =

∫
dy

{
1

2
Σ11(`− zW )(∇⊥zW )2

+∆Σ12(`− zW )∇⊥`∇⊥zW (3.26)

+
1

2
Σ22(`− zW )(∇⊥`)

2 +W (`− zW )

}

where the Σµν constitute the elements of a stiffness-matrix
describing the position dependent corrections to the sep-
arate surface tensions

Σ11 = σwα +∆Σ11(`− zW ) (3.27)

Σ22 = σαβ +∆Σ22(`− zW ) (3.28)

All the ∆Σµν(`) vanish as `→∞ and if this position de-
pendence is ignored (3.26) becomes simply (3.1). From the
explicit expressions for the various functions, RN derive
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the following asymptotic expansions (in zero field h = 0)

∆Σ11(`) = u10X + (u20 + u21κ`)X
2 + · · · (3.29)

∆Σ12(`) = w10X + (w20 + w21κ`)X
2 + · · · (3.30)

∆Σ22(`) = (η10 + η11κ`)X + (η20 + η21κ`)X
2 + · · ·

(3.31)

W (`) = v10X + v20X
2 + · · · (3.32)

where X = e−κ` and the ellipses denote terms of cubic
and higher order in X.

Here we point out, for the first time, that the four func-
tions ∆Σνµ(`) and W (`) are not independent but neces-
sarily satisfy a functional stiffness-matrix binding poten-
tial relation

∆Σ11(`) + 2∆Σ12(`) +∆Σ22(`) = W (`)− `W ′(`)
(3.33)

which is the analogue of the identity (2.3) in the Landau
perturbation theory. This relation is valid for arbitrary
choices of the potentials φ(m) and φ1(m), and if H[`, zW ]
is defined via a partial trace [17] rather than just a MF
saddle point identification (as in (3.25) and [4]). The iden-
tity follows from simply requiring the Hamiltonian (3.26)
to be invariant with respect to infinitesimal rotations of
the plane of the wall. For the equilibrium planar MF po-
sition `π satisfying W ′(`π) = 0, the identity reduces to
the (bare) stiffness-matrix free energy relation pertinent
to the two-field theory of wetting [20]. Equation (3.33) is a
more general requirement and significantly constrains the
behaviour of the coefficients in the asymptotic expansions
(3.29–3.32). Specifically, we obtain the following

v10 = 2η11 (3.34)

v10 = w10 + u10 + 2η10 (3.35)

v20 = w20 + u20 + 2η20 (3.36)

2v20 = w21 + u21 + 2η21. (3.37)

All these relations are obeyed by the coefficients explicitly
calculated by RN using the double parabola approxima-
tion [25], but are equally valid for arbitrary φ(m).

Recall that a two-field approach seems sensible due to
the appearance of the planar wall correlation function in
(2.4). As pointed out in [20], this correlation function can
be recovered (in MF theory) by using a H[`1, `] Hamil-
tonian, with two interfacial fields modeling fluctuations
at the wall and at the αβ interface, respectively. How-
ever, such a tack is best suited for the complete wet-
ting regime and at critical wetting `1 should no longer
have any interfacial-like component [19,21] and as such a
H[X, `] Hamiltonian is the optimal choice. Unfortunately,
the technique of “freezing” the lower field into the con-
figuration of a rough wall (as used in (3.26)) in order
to describe wetting in a non-planar system is no longer
valid. The field X(y) is not interfacial-like and conse-
quently does not have the dimensions of length. Progress
can be made by introducing two fields at the wall, one

interfacial-like so that it can take up the wall configuration
and the other non-interfacial-like to allow the Hamiltonian
to recover critical wetting wall correlation functions in the
limit of zW going to zero. However, pushing this three-field
Hamiltonian beyond MF theory seems, at the moment, to
be prohibitively difficult.

4 Discussion

In this paper we have rederived recent predictions for
corrugation-induced first-order wetting transitions using
an effective Hamiltonian (with a harmonic approximation
to the binding potential). We have shown that the phase
diagram (Fig. 1) is valid in three dimensions and that
the critical amplitude A∗, for which walls corrugated with
A > A∗ discontinuously wet, depends on the wetting pa-
rameter ω. The value of A∗ is related to a ratio of hyper-
scaling amplitudes – a prediction which is open to investi-
gation by Ising model simulation studies. Consistent with
exact results in d = 2 [14], it can be seen that fluctuations
extend the size of the second-order regime beyond the
MF predictions. This extension is not very significant for
the three-dimensional Ising model at temperatures close
to TC .

Importantly, our results are not quantitatively reliable
near planar tricriticality and we are only confident of the
predicted values of A∗ for wetting transitions away from
the region c ≈ κ.

We discuss the form of an improved effective Hamil-
tonian as considered in [4]. We point out (as do RN) the
similarity with the two-field theory of coupling effects at
planar wetting transitions and indicate that an accurate
description of surface correlations is needed for a global
prediction of A∗. Our analysis is consistent with that of
RN who did not compare the bound state free energy
with that at ` =∞ and so did not explore the first-order
regime. Nevertheless, they did show that any continuous
divergence of the interface thickness necessarily occurs at
the same wetting temperature as in the planar geometry.
This is entirely in keeping with our earlier remark that
for A < A∗ the transition remains second-order. Using a
new stiffness-matrix binding potential relation we are also
able to prove that the coefficients appearing in the Hamil-
tonian, via the asymptotic expansions of ∆Σµν and W (`),
are not independent but obey simple linear relations.

To conclude, we believe that corrugation-induced first-
order wetting is present in three-dimensional systems with
short-range forces but that more work is required to elu-
cidate the behaviour of the threshold amplitude A∗ near
the planar tricritical point.

Appendix: Calculation of the renormalized
amplitude R

As there is no non-trivial fixed point of the renormaliza-
tion group representing the wetting transition, FH adopt
(as mentioned previously) a matching procedure to de-
termine the value of t up to which renormalization takes
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place. This value t = t∗ is chosen to be that at which the
transverse correlation length of the renormalized binding
potential is of the same order as the non-critical bulk cor-
relation length κ−1. One requires

∂W (t∗)(`)

∂`

∣∣∣∣
˘̀

= 0 (A.1)

∂2W (t∗)(`)

∂`2

∣∣∣∣
˘̀

= Σκ2 (A.2)

which defines the equilibrium wetting layer thickness ˘̀

and allows a mean-field type analysis to be appropriate.
By setting κ = 1, equations (3.2, 3.14, 3.19) imply that

R(t) = −
W (t)(˘̀)

W (t)′′(˘̀)
(A.3)

and so, similar to [15], we have to consider three sepa-
rate regimes for the three different possible forms of the
binding potential.

Regime I: ω < 1/2

For this case FH find that

e−2tW (t)(`) = −aeωt−` + be4ωt−2` (A.4)

and so

e−
˘̀

=
a

2b
e−3ωt · (A.5)

From (A.3), calculating R(t) is straight-forward

R(t) =
a2/4b

a2/2b
=

1

2
(A.6)

implying, via (3.16), that A∗ is not shifted from its mean-
field value.

Regime II: 1/2 < ω < 2

The algebra is now a little more involved. The renormal-
ized potential is approximately

e−2tW (t)(`) = −aeωt−` +
K
√
t
e−

`2

4ωt (A.7)

with K a constant [15]. Imposing (A.1) we find

aeωt−
˘̀

=
˘̀K

2ωt3/2
e−

˘̀2

4ωt (A.8)

while

e−2tW (t)′′(˘̀) ≈ −aeωt−` +
K`2

4ω2t5/2
e−

˘̀2

4ωt · (A.9)

Consequently,

R(t) = −
−aeωt−

˘̀
+ K√

t
e−

˘̀2

4ωt

−aeωt−` + K`2

4ω2t5/2 e
−

˘̀2

4ωt

=
2ωt

˘̀
(A.10)

making use of (A.8). However, FH show that

˘̀=
√

8ω

(
t−

1

8
ln t

)
(A.11)

and so

R(t) =

√
ω

2

1

1− (ln t)/8t

≈

√
ω

2
(A.12)

for large t, i.e. T close to Tπ.

Regime III: ω > 2

For this case we adopt the notation of [15] and write ` =
µt, the binding potential has the form

W (t)(`) =
e2t−

`2

4ωt
√

4πωt
Kt(µ) (A.13)

where

Kt(µ) =
−a

1− µ
2ω

+
b

2− µ
2ω

+
2ωc

µ
+O(1/t). (A.14)

The constant c is introduced as the linear renormalization
group cannot handle correctly a completely hard wall, see
(3.17), and so a “soft” approximation is used, withW (`) =
c for ` < 0. Note that this problem does not arise in certain
non-linear formulations [7].

The matching procedure leads to [15]

˘̀≈
√

8ωt (A.15)

K∞(aC , µ =
√

8ω) = 0 (A.16)

where the latter defines the renormalized wetting temper-
ature. To leading order

W (t)′′(˘̀) =
e2t−

˘̀2

4ωt
√

4πωt

1

t

(
−
µ

2ω

) ∂Kt

∂µ
(A.17)

implying that

R(t) =
2ωt

µ

Kt

K ′t
· (A.18)

Writing τ ∼ a− aC ∼
Tπ−T
Tπ

, FH find

µ̆ ≈
√

8ω + τ +O(1/t). (A.19)
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Equation (A.14) can then be used to show that for µ ≈ µ̆

Kt = O(τ) +O(1/t)

K ′t = constant+O(τ) +O(1/t). (A.20)

Hence, if R(t) is written as

R(t)2 =
2ωt

˘̀

[
tKt

K ′t

]
(A.21)

then the term in square brackets must be almost constant,
let it be C, say, for T near Tπ, that is τ � 1 and t � 1.
Using (A.15),

R(t) ≈ C

√
ω

2
(A.22)

with C an unknown constant. However, by continuity of
R(t) at ω = 2 and comparing with (A.12) we can see that
C = 1.
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9. M. Napiórkowski, W. Koch, S. Dietrich, Phys. Rev. A 45,
5760 (1992).

10. G.A. Darbellay, J.M. Yeomans, J. Phys. A 25, 4275 (1992).
11. R.R. Netz, D. Andelman, Phys. Rev. E 55, 687 (1997).
12. R.N. Wenzel, J. Phys. Colloid Chem. 53, 1466 (1949); Ind.

Eng. Chem. 28, 988 (1936).
13. G. Forgacs, R. Lipowsky, Th.M. Nieuwenhuizen, in Phase

Transitions and Critical Phenomena, edited by C. Domb,
J.L. Lebowitz (Academic Press, London, 1991), Vol. 14.

14. P.S. Swain, A.O. Parry, J. Phys. A 30, 4597 (1997).
15. D.S. Fisher, D.A. Huse, Phys. Rev. B 32, 247 (1985).
16. M.E. Fisher, H. Wen, Phys. Rev. Lett. 68, 3654 (1992).
17. A.J. Jin, M.E. Fisher, Phys. Rev. B 48, 2642 (1993); Phys.

Rev. B 47, 7365 (1993).
18. C.J. Boulter, A.O. Parry, Phys. Rev. Lett. 74, 2403 (1995).
19. P.S. Swain, A.O. Parry, Europhys. Lett. 37, 207 (1997).
20. A.O. Parry, C.J. Boulter, Physica A 218, 77 (1995).
21. A.O. Parry, P.S. Swain, Physica A 250, 167 (1998).
22. C.J. Boulter, Phys. Rev. Lett. 79, 1897 (1997).
23. For reviews, see for example A.O. Parry, J. Phys.: Condens.

Matter 8, 10761 (1996); E.M. Blokhuis, B. Widom, Curr.
Opin. Coll. Int. Sci. 1, 424 (1996).

24. A.O. Parry, P.S. Swain, J.A . Fox (to be published).
25. R. Lipowsky, Z. Phys. 55, 345 (1984).


