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Abstract

ŽIdeally one would like to analyse the properties of inhomogeneous fluidsrIsing-like magnets e.g., wetting of
. w xa fluid phase at a wall or confinement in thin film geometries using a microscopic Hamiltonian H m , with

Ž . Ž .m r the local order-parameter number densityrmagnetization . For many problems, however, this is too
Ž .difficult and traditionally one has to introduce effective interfacial models based on a collective coordinate l y

measuring the position of the fluid interface. We review progress made in unifying these approaches using
Ž .multi-field effective Hamiltonian theory which is a powerful new investigative tool. We emphasize: i a

Ž . Ž .systematic method for recovering order-parameter correlations G r ,r from collective coordinate theory, ii1 2
Ž .the role of coupled fluctuations at three dimensional wetting transitions leading to a an observable increment

Ž .to the value of the wetting parameter at complete wetting and b an inflation of the mean field regime for local
Ž .surface response functions at critical wetting, iii the derivation of new identities relating moments of G at

Ž .different positions in the fluid, and iv the development of a linear response theory of fluid adsorption at a
non-planar wall which predicts roughness-induced first-order wetting transitions. The relevance of these
predictions for long-standing controversies surrounding Ising model simulation studies is discussed. q 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

A suitable microscopic starting point for modelling fluid adsorption in systems with short-range
Ž . Ž .forces at a planar wall situated at zs0 is the Landau–Ginzburg–Wilson LGW Hamiltonian,

` 1 c2 2H m s d y d z =m qf m q m ym h 1Ž . Ž . Ž .H HLGW 1 1 1½ 52 20

Ž . Ž .based on a local magnetization order parameter msm y, z with m y the value at the zs01
Ž .surface. Here h )0 and c are the surface field and enhancement, respectively, while f m is a1
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suitable double-well energy density yielding coexistence between bulk magnetizations m )0 anda

m -0 for sub-critical temperatures T-T and zero bulk field hs0. In the context of wettingb c

theory, however, a direct analysis of this model is not possible except in mean-field MF approxima-
w xtion which ignores fluctuation effects 1 . To include long-wavelength interfacial fluctuations most

w xauthors consider effective Hamiltonians of the form 2,3

1 2
H l s d y S qD S l =l qW l 2Ž . Ž . Ž . Ž .Ž .H ab½ 52

Ž .based on a collective coordinate l y describing the position of the ab interface. The binding
potential is usually specified as

yk l y2 k lW l shlq2k m t e qbe , 3Ž . Ž .a

where

h ycm1 a
ts ; hs m ym h; b)0 4Ž . Ž .b acqk

and k is the inverse correlation length of the bulk a phase adsorbed at the wall–b interface. We
Ž . Ž .distinguish between a complete and b critical wetting transitions corresponding to the divergence

y² : Ž . Ž .of the adsorption l and transverse correlation length j for a h™0 for t)0 and b t™0 for5

hs0, respectively. We shall focus on the behavior at the upper critical dimension ds3 where
including fluctuation effects does not alter the MF critical wetting phase boundary ts0 for all

Ž .pertinent situations. Minimization of W l recovers the MF adsorption and free energy. Note that we
Ž .have included a possible weak position-dependent correction term D S l to the free stiffness

w x w xcoefficient S following the work of Parry 3 and Fisher and Jin 4 who initiated recentab

reassessments of effective Hamiltonian theory.
In this article we describe the central theorems, results and predictions of multi-field effective

Hamiltonian theory which form a synthesis between MF and generalized collective coordinate
approaches. Our main motivation here is the resolution of three problems of wetting theory.

Problem 1. Ising model simulation studies of the critical wetting transition at the marginal
w xdimension ds3 5 show only a MF-like divergence for the surface susceptibility in sharp contrast to

w x w xpredictions of strong non-classical and non-universal criticality 6 or weakly first-order behavior 4
Ž Ž ..based on the interfacial model Eq. 2 .

w xProblem 2. Ising model simulation studies of the complete wetting transition 7 also in ds3 show
that the value of the adsorption critical amplitude u appearing in the growth law,

y1² : < <k l fu ln h 5Ž .
w xis larger than the prediction 8

v
us1q 6Ž .

2

Ž . Ž .based on Eq. 2 . Here v is the usual wetting parameter see below , the temperature dependence of
w xwhich is accurately known for the Ising model 9 .
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w x Ž .Problem 3. MF studies of the pair correlation function at wetting 10 based on Eq. 1 show
intriguing features for particle positions near the wall that cannot be understood using the standard

Ž Ž ..effective Hamiltonian Eq. 2 .
After addressing these concerns we shall show the utility of the new techniques by applying them

to a number of other problems of interest in the theory of inhomogeneous fluids.

2. Coupling hypothesis and the CFRS

w xThe starting point for the new effective Hamiltonian theory is the following physical hypothesis 3 :

The problems of wetting theory described above relate to the inability of the standard interfacial
model to account for the coupling between order parameter fluctuations near the wall and ab

interface.

Ž .We begin by addressing problem 3 and describe the correlation function reconstruction scheme
Ž . ŽCFRS which allows one to precisely recover the MF order parameter correlation function at

.specific positions using a theory based on collective coordinates. We will take the most general
w xsituation 11 and specialize to specific examples later as necessity dictates.

Our first task is to define the collective coordinates upon which our effective theory is based. In
Ž .general, there may be any number of them e.g., N say which prescribe different types of constraint

on the underlying magnetization field. In fact, no more need be said at this stage and we can proceed
Ž .to the next step of performing a constrained functional integral or partial trace over magnetization

� Ž .4configurations which respect the distribution of the collective coordinates denoted X y . Followingm

w xFisher and Jin 4 we suppose that our choice of collective coordinates are sensible so that a
saddle-point identification is possible:

� 4H X s min H m 7Ž .i LGW
C

where C denotes the particular set of constraints employed. Restricting our attention to long
wavelength fluctuations in the fields, the general form of the Hamiltonian is

1
� 4 � 4 � 4H X s d y S X =X P=X qW X 8Ž .Ž . Ž .Hi mn i m n i½ 52

Ž� 4. Ž� 4.where W X is the generalised binding potential and the S X constitute the elements of thei mn i
� 4stiffness matrix. Specific expressions for these functions of the X are easily derived in terms of thei

ŽN .Ž � 4. w xplanar constrained profiles m z; X which satisfy a standard Euler–Lagrange equation 11 .p i

Using any one of the effective Hamiltonians we could proceed to study fluctuation effects using, for
Ž .example, renormalization group RG techniques to trace over the remaining degrees of freedom of

� 4the fields X . Now, in general, different choices of the collective coordinates will lead to differenti

results and physical assumptions are needed to justify a particular approach. For example, if we
follow the usual line of reasoning and assume that the only fluctuations that matter are those in the

Ž Ž ..position of the ab interface, then we can recover the standard Hamiltonian Eq. 2 on adopting a
Ž . X Ž .crossing criterion definition for the field X s l y as the surface of fixed magnetization m s0 say1
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w x4 . For the moment, however, let us keep our theory as general as possible and quote the central
w xresult of the CFRS 11 .

� 4For arbitrary choices of the collective coordinates X , the multi-field Hamiltonian can recover thei

MF expression for the transverse Fourier transform of the pair correlation function at the positions
� 4 � 4z of the fields X according to the invariant relation,i i

E m E mp p� 4 � 4G z , z ;q s z ; X z ; X S q 9Ž . Ž . Ž .Ž . Ž .i j i j mnE X E Xm n

where S is the matrix of structure factors,mn

iqPŽ y2yy1. ² : ² :² :S q s d ye X y X y y X X . 10Ž . Ž . Ž . Ž .Ž .Hmn m 1 n 2 m n

w xThis may be calculated using the stiffness matrix expression 12

E 2 E 2 PPP11 12

2 2y1 2E E � 4S q s W X qq S , 11Ž . Ž .Ž .12 22
.� 0..

2 2 Ž .where E 'E r EX EX and is evaluated at MF equilibrium. We emphasise that this procedure ismn m n

w xvalid for different collective coordinates and that the identifications 9 correspond to the precise
Ž Ž . . w xsolution to the MF Ornstein–Zernike equation with m z the MF profile 10 ,˜

yE 2 qf
Y m z qq2 G z , zX ;q sd zyzX 12Ž Ž . . Ž . Ž . Ž .Ž .˜z

X � 4at the specific points z, z g z . This theorem provides the necessary mathematical framework fori
Ž .the solution to problem 3 and it only remains for us to choose suitable coordinates to describe the

correlation function structure at a given transition.

2.1. Example: correlation structure at complete wetting

For this transition the inhomogeneity in the magnetization at the wall is large and following Parry
w x Ž . Ž . Ž . Ž .and Boulter 13 , we can define interfacial-like variables X y s l y and X y s l y corre-1 1 2 2

sponding to surfaces of fixed magnetization that remain bound and unbound from the wall,
respectively, as h™0. The Hamiltonian for this coordinate system is

1 1
2H l ,l s d y S l ,l =l P=l q r ll qW l , 13Ž . Ž . Ž .H1 2 mn 1 2 m n 211½ 52 2

Ž . Ž . Ž Ž ..with W l 'W l y l similar to the standard result Eq. 3 . The stiffness matrix reads21 2 1

S 011 0 12 yk l21Ss q2m k t l e q PPP 14Ž .a 21 ž /0 Sž / 1 0ab
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and shows that the leading-order position dependence is carried by the off-diagonal elements. The S11
w xterm can be explicitly related to the surface tension of the wall–a interface 13 . For the present

w xinterfacial coordinates the fundamental CFRS equation simplifies to 12

G z , z ;q smX z mX z S q . 15Ž . Ž . Ž . Ž . Ž .˜ ˜i j i j i j

² :For positions z , z s l rangle, close to the ab interface, this reproduces the well knowni j 2

Ornstein–Zernike-like simple Lorentzian form of the pair correlation function. Near the wall,
however, the solution is of the required non-Lorentzian form,

mX2˜ 1
G 0,0;q s 16Ž . Ž .

S q2 S22 122rqq S q11 2 21qq j 5

w xseen in the MF studies 10 . By construction this is fully consistent with the explicit solution to the
Ž Ž ..MF Ornstein–Zernike equation Eq. 12 which had caused so much trouble within the standard

interfacial Hamiltonian theory. One of the elegant features of this approach is the stiffness-matrix free
energy relation,

f f2 S , 17Ž .sing 12

which ensures that the formalism is consistent with an exact sum-rule requirement. Note that the
position dependence of the r.h.s. correctly identifies the singular contribution to the surface free
energy.

3. Fluctuation effects; optimized coupled theory

To consider fluctuation effects beyond MF, we must carefully choose our collective coordinates.
With our starting point, the coupling hypothesis, we seek to derive a two-field Hamiltonian which
describes the interactions of the large fluctuations in the position of the ab interface described by an
interfacial-like variable X s l with the relatively small fluctuations of the magnetization near the2

wall. The choice of collective coordinate X for the lower field is not as obvious, and it is best to1
w xconsider a space of Hamiltonians 11,14 ,

HHs H s,l ;d 18� 4 Ž .

Ž .characterized by a proper collective coordinate s and coupling angle d see Fig. 1 . The proper
collective coordinate has spin-like and interfacial-like components as can be seen in the fundamental

w xconstraint equation 14 ,

m s cos d sm 0;l qk m s sin d , 19Ž . Ž . Ž .FJ a

Ž . w xwhere m z;l denotes the Fisher–Jin profile which does not account for coupling effects 3,4 . TheFJ
w xsimple geometric meaning of the coupling angle d is shown in figure 4.2 taken from Ref. 14 .
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Ž .Fig. 1. Detail of the planar magnetization profiles near the wall in scaled units. The broken curve shows m z which
Ž .incorporates a local enhancement and translation of the FJ profile corresponding to the solid line . The proper coordinate s

and angle d are shown.

We then ask which choice of Hamiltonian in HH is best for modelling the small order parameter
fluctuations near the wall? Using the CFRS described above, it is straightforward to establish that the

w xoptimal choice corresponds to a coupling angle 14 ,

E mFJ

tE z zs0tan d )sy f , 20Ž .
k m ma a

w xsince this has the largest local binding potential curvature and stiffness coefficient S 11 . Thus,11

deep in the complete wetting regime, d )spr2 and the proper collective coordinate is interfacial-like
Ž Ž ..similar to the model Eq. 13 . However, as the temperature is reduced to the critical wetting

Ž .boundary ts0 , the coupling angle rotates and eventually vanishes. Thus, near the critical wetting
w xtransition, the proper field s has no interfacial component and is a spin-like variable 11,14 . In

Žgeneral, the optimal coupled Hamiltonian has the form ignoring the position dependence of the
. w xstiffness coefficients 14 ,

1 1 12 2W 2 2H s,l s d y S sec d ) =s q S =l q rs qW lys sin d ) 21Ž . Ž . Ž . Ž .H 11 ab½ 52 2 2

w x Wand is amenable to RG analysis 15 . Here S is independent of t and is explicitly determined. In11

many respects the predictions for fluctuation effects are similar to those of the simpler one-field
Ž .model s but there are notable differences. Firstly, for the complete wetting transition, the value of the

Ž Ž .. w xadsorption critical amplitude u Eq. 6 is renormalized due to coupling effects 14,15 ,
2

trmŽ .a 4
vsvqV qO trm , 22Ž . Ž .ž /ay21q LjŽ .wa
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Ž Ž ..which should be compared with the standard result Eq. 6 which does not have the final term. In
this expression j denotes the correlation at the wall–a interface and L is a suitable momentumwa

Ž . Ž .cut-off of order of an inverse bulk correlation length or lattice spacing . Eq. 22 shows the role
played by two wetting parameters

k Tk 2 k Tk 2
B B

vs ; Vs 23Ž .W4pS 4pSab 11

w xin contrast to the standard theory equivalent to Vs0. In fact, we estimate 11 that V approaches a
universal value V f0.92 in the bulk critical region complementing the expected universality of vc
w x9 .

In application to the critical wetting transition the optimal model shows the same asymptotic
singularities as the standard model but the size of the critical regime is dramatically reduced.
Calculation of the Ginzburg criterion shows that cross-over to non-classical behavior occurs when the
Ž . w xdiverging transverse correlation length j is close to a value satisfying 145

V

y1 v1qv 2 2Lj fe 1qL j q PPP , 24Ž .Ž .5 wa

w xwhich is about an order of magnitude bigger than the standard interfacial Hamiltonian result 16 .
Ž . Ž .Eqs. 22 and 24 are the main results of the optimal model calculation and offer quantitative

Ž . Ž .explanation of the remaining problems 1 and 2 .

4. Other applications

4.1. Correlation function algebra

Ž Ž ..Using the general CFRS Eq. 9 , it is possible to investigate correlation function structure for
local density functional models of fluid confinement in parallel-plate geometries. Equivalently we
may regard these as pertinent to the correlation functions of the LGW model in MF approximation for
the more general situation where a second surface is present at zsL. For arbitrary positions
0Fz Fz Fz FL let us define the variables,1 2 3

G z , z ;0Ž .m n
S s . 25Ž .X Xmn m z m zŽ . Ž .˜ ˜m n

w xBy considering the properties of general three-field Hamiltonians H l ,l ,l with interfacial-like1 2 3
w xvariables, we can show 17 that the algebraic relations,

S S sS S 26Ž .12 23 22 13

S yS S yS s S yS S yS 27Ž . Ž . Ž . Ž . Ž .11 12 33 23 13 12 13 23

must be obeyed. These conditions constrain the form of the correlation function in parallel-plate
w xgeometries. For example, for the case of confinement between identical walls, we can derive 17

s z , z s 1" 1ys z , z 1" 1ys z , z , 28( (Ž . Ž . Ž . Ž .ž / ž /1 2 1 1 2 2
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where

d2g G z , z ;qŽ .m n
s z , z s4 . 29Ž . Ž .X Xm n 2d L m z m zŽ . Ž .˜ ˜m n

Ž .Here, g L is the finite-size surface free energy and the " signs depend on whether z -Lr2 orm

z )Lr2, respectively. This is an explicit expression for the correlation between two planes in termsm

of the correlations along them. Using this relation we can rederive non-trivial expressions for the
scaling of the free energy associated with confinement near the bulk critical point and in the presence
of strong interfacial fluctuations.

4.2. Wetting at non-planar walls

Finally we note that the stiffness matrix formalism helps us analytically solve the problem of
wetting at a non-planar wall in MF approximation. One can construct a linear response theory which
relates the free energy of the non-planar system to the correlation functions of the planar geometry
w x Ž .18 . Specifically let us consider a LGW Hamiltonian but with the wall located at z y and with anW

extra multiplicative surface term related to the increase in area. For small deviations from the plane it
is natural to write the MF free energy as

1
22 < <Fsf m VqsA q dq q D q z q q PPP , 30Ž . Ž . Ž . Ž .ˆHbulk p p Wdy12 2pŽ .

Ž . Ž .where s is the surface tension and z q are the Fourier components of z y . The quantity to beˆW W
Ž .determined describing the non-planar correction to the free energy is D q and using the CFRS wep

w xcan show 18

1 1
X22 2q D q sq f m qm y , 31Ž . Ž .Ž .˜ ˜p 1 1 1 ž /G 0,0;q G 0,0;0Ž . Ž .

where the correlation function is for the planar geometry. These equations are amenable to an elegant
w xgraphical analysis 18 allowing us to analytically determine the influence of the non-planar boundary

on wetting transitions. For strongly first-order phase transitions the wetting transition temperature is
w xlowered consistent with the predictions of a simple phenomenological argument 18 . For second-order

wetting transitions, however, the effect of the boundary geometry is more subtle and the transition is
generically roughness-induced first-order provided the width of the undulations is larger than a bulk
correlation length. This again illustrates the sensitivity of wetting transitions to ‘fluctuation’ effects at
least above and at the upper critical dimension ds3.
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