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Abstract. We study the problem of fluid adsorption at a non-planar wall with a view to
understanding the influence of surface roughness on the wetting transition. Starting from an
appropriate Landau-type free-energy functional we develop a linear response theory relating the
free energy of the non-planar system to the correlation functions in its planar counterpart. Using
this approach we are able to generalize the well known graphical construction method used to
study the planar surface phase diagram and derive analytical expressions for the shift in the
phase boundary for first- and second-order wetting transitions. The results of the calculation are
compared and contrasted with simple phenomenological and scaling arguments. Of particular
interest is the influence of surface roughness on a second-order wetting transition which is driven
first order, even for small deviations from the plane.

While the statistical mechanical theory of fluid adsorption at planar walls and in other
idealized geometries (such as capillary slits and cylindrical pores) is much studied [1, 2],
the microscopic theory of fluid adsorption at non-planar (rough) walls is far less developed.
Nevertheless this problem is certainly of practical interest as well as posing something
of a theoretical challenge due to the loss of translational invariance. For adsorption at
a single wall perhaps the most important issue is whether the roughness influences the
order and location (phase boundary) of any wetting transition [3]. Here we address this
question using a generalized Landau density-functional model which may be viewed as the
simplest available microscopic approach [4]. Recall that in application to theories of the
planar liquid–vapour interface as well as wetting transitions and finite-size effects the same
approach has played a pivotal role [5] leading to more sophisticated methods. It is therefore a
natural starting point for the systematic investigation of non-planar fluid interfaces. A major
part of our work is to show that within perturbation theory (valid for small deviations from
the plane) it is possible to derive an analytical expression for the change in free energy
due to roughness that may be studied using a generalization of a graphical construction
method familiar from the planar problem [6]. In this way we avoid having to use effective-
Hamiltonian methods [7]. Our analysis borrows results and methods recently developed for
the calculation of pair correlation functions at planar wall–fluid interfaces [8] and is, we
believe, of pedagogical interest beyond its application reported here. Using this approach
we are able to derive analytical expressions for a shift of the phase boundary at first- and
second-order wetting transitions in three-dimensional systems. While our analysis is mean-
field-like we are confident that the topology of the surface phase diagram is unaffected by
the inclusion of fluctuation effects.

To begin we make some preliminary remarks concerning the possibility of a roughness-
induced wetting temperature shift. It was observed by Wenzel [9] some sixty years ago that
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the contact angleθ4 of a drop of liquid (phaseβ say) on a rough substrate (wall–α-phase
interface) appeared to satisfy the empirical relation

cosθ4 = r cosθπ (1)

wherer ≡ A4/Aπ is the ratio of non-planar to planar surface area andθπ is the contact
angle for the planar system(r = 1). Of course this is not an exact result but has nevertheless
been proved (rigorously) valid for an Ising model with a non-planar boundary at sufficiently
low-temperatures [10]. Unfortunately the low-temperature restriction precludes a study of
the influence of roughness on any wetting transition. However, it is clear that if Wenzel’s
law was valid∀ θ4 > 0 then the wetting temperature would be necessarily reduced. This
is conveniently expressed as follows: the non-planar wall–α interface is completely wet
(i.e. θ4 = 0) by a fluidβ-phase for roughness parameterr > rW where

rW = secθπ (2)

and we recall thatθπ is the contact angle(> 0) of the β-droplet at the planar wall–α
interface (at two-phase bulk coexistence). If we assume that the wall has a corrugated
shape described by the graphzW (r‖) = √

2a sinqx wherer‖ = (x, y) is the displacement
vector parallel to thez = 0 plane (corresponding to the mean position of the wall) then we
can rewrite the equation for the phase boundary as

θπ = qa (3)

assuming thatθπ is small. Here we have included a factor
√

2 so thata measures the
root mean square width of the wall. We shall refer to equations (2), (3) as Wenzel’s result
although of course Wenzel was unaware of the possibility of a wetting phase transition.
Thus it appears to be possible to induce wetting by increasing the roughness of the substrate
although this becomes increasingly more difficult for planar contact angles close toπ/2.
However one should be suspicious of this prediction given that this approach makes no
mention of the order of the wetting transition occurring in the planar system (at temperature
Tπ say). In particular, experience with the well developed finite-size scaling theory of
bulk critical phenomena suggests that a more reliable expression forrW would contain
information about the (transverse) correlation length, which we recall diverges at a second-
order wetting transition. Similarly at this simple level we are not able to offer any prediction
of whether the order of the wetting transition in the non-planar system is different to that
occurring for planar geometry. In fact, as we shall see the Wenzel result is inaccurate as
regards the influence of roughness on second-order wetting transitions which turns out to be
much more interesting than (3) suggests. However, we are able to provide a microscopic
derivation of (2) and (3) for first-order wetting.

Before we discuss the microscopic Landau theory we note that it is straightforward to
develop a scaling theory for the roughness-induced phase shift which improves on (3). Let
us suppose that in the planar system the wall–α interface undergoes a continuous (second-
order) wetting transition ast = (Tπ − T )/Tπ → 0. By definition the contact angleθπ

vanishes asθπ ∼ t (2−αS)/2 whereαS is the specific heat exponent characterizing the singular
part of the excess free energyfsing ∼ t2−αS . Assuming that the wall has the corrugated shape
mentioned above it is natural to expect that the length scalesa andq enter the singular part
of the non-planar free energy through scaled variablesatβS andqt−ν‖ whereβS andν‖ are
the adsorption and transverse-correlation-length critical exponents respectively [3]. In this
way we deduce that the phase boundary in the non-planar geometry (implicitly incorporating
the wetting temperature shift) satisfies the scaling relation

θπ(t, . . .) ∼ q(d−1)/2S(aq(3−d)/2) (4)
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where we have used the hyperscaling relations 2− αS = (d − 1)ν‖ andβS = [(3 − d)/2]ν‖
valid below (and at) the upper critical dimensiond∗ (which we recall is equal to three for
systems with short-range forces [3]). HereS(w) is an unknown scaling function which
must satisfyS(0) = 0 in order to reproduce the trivial planar phase boundaryθπ = 0.
Interestingly Wenzel’s result (3) does meet the scaling requirement (4) although as we shall
see the correct mean-field scaling functionS(w) is more complicated and shows non-analytic
behaviour. With these preliminaries in mind we now turn to the analysis of a microscopic
density-functional model.

Consider a one-component system with order parameterm(r) which shows bulk two-
phase coexistence at sub-critical temperatures(T < TC) in zero bulk fieldh = 0 between
phases with order parametersmα(T ) (> 0) andmβ(T ) (< 0) respectively. If the system is
bounded by a fixed wall whose position is specified by a height variablezW (r‖) we suppose
that the free-energy functionalF [m(r)] accounting for bulk and wall interactions is

F [m(r)] =
∫

dr

{
1

2
(∇m)2 + φ(m) + δ(z − zW (r‖))

[
1 + 1

2
(∇zW )2

]
φ1(m)

}
(5)

which naturally generalizes the standard free-energy model of the planar semi-infinite system
[5]. As usual the bulk free-energy termφ(m) has a double-well form forT < TC but will
not be specified further. The surface interaction termφ1(m) [5] is taken to have the standard
expressionφ1(m) = cm2/2−h1m wherec is the surface enhancement andh1 is the surface
field. Note that the surface term contains an extra factor 1+ 1

2(∇zW )2 which accounts for
the increase in surface area due to deviations in the position of the wall from the plane
[7]. We will always assume that these deviations are small and also of long wavelength
compared to some appropriate microscopic scale (see later).

It is natural to anticipate that for small deviations from the plane the minimum of
F [m(r)] may be written as a perturbation about the planar value:

F4 = φ(mb)V + σAπ + 1

2(2π)d−1

∫
dq q21π(q)|ẑW(q)|2 + · · · (6)

where the ellipsis denotes higher-order products of the Fourier amplitudesẑW(q) which can
be safely ignored for small deviations. The first two terms represent the free energy of
the planar system, soφ(mb) andσ correspond to the bulk free-energy density and surface
tension respectively. The latter quantity is given by the well known expression [1, 3, 5, 6]

σ = φ1(m1) ±
∫ mb

m1

dm Q0(m) (7)

wheremb andm1 are bulk and surface magnetizations respectively, and

Q0(m) =
√

2[φ(m) − φ(mb)]. (8)

The sign in (7) is chosen so that the contribution from the integral is positive. This
expression is amenable to a well known graphical interpretation which is extremely useful
in determining the (planar) surface phase diagram [6].

The quantity1π(q) to be determined represents the free-energy correction due to
roughness and has the same dimensions as the surface tensionσ . Note that if 1π(q)

were wave-vector independent then the free-energy increment would be simply proportional
to the increase in surface areaA4 − Aπ .

The starting point in our analysis is an exact linear response relation for1π(q) in terms
of the (Fourier transformed) planar pair correlation functionG(r1, r2) = 〈m(r1)m(r2)〉 −
〈m(r1)〉〈m(r2)〉 where both particles are exactly at the wall:

G(0, 0; q) =
∫

dr‖ eiq·r‖G(r1, r2) (9)
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with r1 = (0, 0) andr2 = (0, r‖). The result is conveniently written as

q21π(q) = q2φ1(m1) + m′2
1

(
1

G(0, 0; q)
− 1

χ11

)
(10)

wherem′
1 is the derivative of the (planar) wall magnetization with respect toz andχ11 is

the surface susceptibilityχ11 ≡ ∂m1/∂h1. While a derivation of (10) is not appropriate
here [11] some remarks should clarify its origin. The first term is the ‘direct’ potential
contribution due to the increase in surface area. Note also that the term in parentheses
vanishes whenq = 0 (by virtue of a sum rule) reflecting the arbitrariness in the location
of the z = 0 plane. The all-important dependence onG(0, 0; q) follows from remarks
made earlier by one of us [12] concerning the exact relationship betweenG(z, z; q) and
the free-energy cost of a fluctuation in the location of a surface of (appropriately) fixed
magnetizationmX whose average position isz. Fortunately a good deal of information
aboutG(0, 0; q) at wetting transitions is now known, so (10) constitutes a rather useful
relation. In fact it is possible to continue further with the analysis forarbitrary φ(m) (and
φ1(m)) and derive an elegant expression for1π(q) comparable with the surface tension
formula (7). To proceed we substitute into (10) the known, exact expressions [13] for the
momentsG2n(0, 0) appearing in the expansionG(0, 0; q) = ∑∞

n=0 q2nG2n(0, 0). While
these moments are themselves rather cumbersome the corresponding moments12n in the
expansion1π(q) = ∑∞

n=0 q2n12n turn out to be much more compact. In this way we we
arrive at the following equation for1π(q) valid for arbitraryφ(m) andφ1(m):

1π(q) = φ1(m1) ±
∫ mb

m1

dm Q(m; m1, q) (11)

where the sign is the same as that in (7). Here the new functionQ(m; m1, q) satisfies the
integral equation

Q(m; m1, q)

Q0(m)
= 1 − q2

∫ m

m1

dm′ Q−3
0 (m′)

∫ mb

m′
dm′′ Q(m′′; m1, q) (12)

where we have assumed thatmb > m1 so that the sign of the double integral is
positive. The functionQ(m; m1, q) satisfies the boundary conditionsQ(mb; m1, q) = 0
andQ(m1; m1, q) = Q0(m1) which are useful when interpreting the equation graphically.
An important result immediately follows from (7), (11) and (12), namely

1π(0) = σ . (13)

This identity reflects the invariance of the free energy of a planar wall–fluid interface
with respect to rotations and is related to the asymptotic coherence of surface correlations
discussed at length in [8]. We have also found it profitable [11] to consider the differential
version of (12) conveniently expressed in terms of the dimensionless scaling factor
y(m; m1, q) ≡ Q(m; m1, q)/Q0(m) which satisfies the boundary conditionsy(m1; m1, q) =
1 andy(mb; m1, q) = 0:

Q2
0(m)y ′′ + 3Q0(m)Q′

0(m)y ′ − q2y = 0 (14)

where a prime denotes differentiation with respect tom. For the standard ‘φ4’-theory
(in zero bulk field h = 0) it transpires thaty has a scaling structurey(m; m1, q) =
Y (qξb)(m/mb; m1/mb) whereξb ≡ κ−1 is the bulk correlation length. The functionY (α)(t; t1)

satisfies

(1 − t2)Ÿ (α) − 6t Ẏ (α) − 4α2

1 − t2
Y (α) = 0 (15)
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which is an adaptation of Latta’s generalized Mathieu equation [14]. Here the overdot
implies differentiation with respect tot . Equations (10)–(15) constitute the main results of
our perturbation theory which we now apply to the problem of wetting at a non-planar wall.

An important result follows directly from (10). Assuming that the wetting transition
occuring in the planar geometry is second order it follows that the correlation function
G(0, 0; q) and hence the non-planar free energy cannot exhibit singular behaviour away
from Tπ . Consequently the wetting transition is shifted only if the transition is roughness-
induced first order. Similarly a first-order wetting transition in the planar geometry cannot
be roughness-induced second order since this would require an unphysical singularity in
G(0, 0; q). With these preliminary remarks in mind we consider the influence of roughness
on strongly first-order and second-order wetting transitions separately.

Figure 1. An illustration of the generalized graphical construction method for first-order
wetting. The dashed lines represent the non-planarQ-functions while the shaded areas show
the contributions to the free energy from the second term in (11) for wet and partially wet (P)
profiles.

Strongly first-order wetting.In figure 1 we illustrate a useful graphical interpretation of
(12) for1π(q). Intersections of the straight lineX(m) = cm−h1 with Q0(m) determine the
surface magnetizationsmW

1 , mP
1 of the wet and partially wet planar magnetization profiles

respectively. Thus the non-wet profile starts atmP
1 and increases tomα while the wet profile

starts atmW
1 and increases tomβ (with a β/α interface at infinity).

The functiony(m; m1, q) can be found accordingly for these profiles. It is very nearly
unity (provided thatqξb � 1) for the non-wet profile and also for the wet profile between
mW

1 and mβ while it is zero betweenmβ and mα. The correspondingQ-functions are
also illustrated in figure 1 (in an obvious notation) together with their respective integral
contribution to1π(q) shown as shaded areas. In this way we conclude that the correction
term 1P

π for the partially wet profile is1P
π ' σwα while for the completely wet profile it

is 1W
π ' σwβ . Note that the surface tensions of these profiles are given byσP = σwα and

σW = σwβ + σαβ respectively. Then a simple free-energy balancing argument shows that
the phase boundary is shifted exactly according to Wenzel’s result (2).
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Figure 2. A schematic wetting phase diagram for fluid adsorption in a system with a non-
planar wall. The lines C1 and C2 are loci of first- and second-order wetting phase transitions
respectively which meet at a critical point corresponding to aa = a∗ 6 ξb. The vertical axis is
a linear measure of the temperature scaleTπ − T for θπ & 0.

Second-order wetting.For this case the analysis is more involved due to the presence
of long-wavelength fluctuations in the adsorbed fluid film. Consequently we only quote our
main results [11] which, for simplicity, are restricted to the case where the wall is taken to
be at the positionzW = √

2a sinqx (and we recall thatqξb � 1). For fixedθπ ∼ Tπ − T

the planar second-order transition is roughness-induced first order for roughness parameter
r satisfying

rW ≈ secθπ + (secθπ − 1)q2

(
c − κ

c + κ

)
ξ2
‖ (16)

where ξ‖ is the planar value of the transverse correlation length at this temperature.
Clearly this is a fluctuation-modified version of Wenzel’s result (2). Note that the factor
(c − κ)/(c + κ) > 0 is a measure of the deviation from the planar tricritical point. For
small values ofθπ , i.e. T close toTπ , the result reduces to

rW ' secθπ + R (qξb)
2

(
c − κ

c + κ

)
(17)

where

R = lim
T →Tπ

{
fsingξ

2
‖

σαβξ2
b

}
(18)

is the ratio of two hyperscaling amplitudes and takes the universal valueR = 1
2 in mean-

field theory. Thus the shifted phase boundary (forθπ & 0) is given by the non-analytic
function

θπ =
{

0 for a < a∗

q(a2 − a∗2)1/2 for a > a∗ (19)

where

a∗ =
√

c − κ

c + κ
ξb (20)
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is the tricritical value ofa. The analytical expression is confirmed by numerical minimization
of the mean-field free-energy functional [11]. Thus for fixeda < a∗ the wetting phase
transition remains second order and occurs at the (unshifted) temperatureTπ , while for
a > a∗ the transition is roughness induced first order and occurs at alower temperature.
The phase diagram plotted in terms ofθπ and a is sketched in figure 2. Importantly, the
expression for the shifted phase boundary is precisely of the scaling form (4) provided that
we identify d = 3 corresponding to the upper critical dimension for wetting (for models
with short-ranged forces) as we might anticipate for the present mean-field calculation.
Interestingly, asc is reduced toκ (i.e. as we approach the planar tricritical point) we recover
the simple prediction of Wenzel (3). It is also noteworthy that the tricritical value of the
width parametera∗ given by (20) is independent ofq (for qξb � 1). The fact that a second-
order wetting transition becomes a first-order one for even minor deviations from the plane
is the central conclusion of our study. Moreover, experience with (improved) effective-
Hamiltonian models of wetting in three-dimensional systems is strongly suggestive that this
result is true beyond mean-field theory since there does not appear to be a mechanism
(involving a position-dependent stiffness or stiffness matrix [15]) by which a first-order
wetting transition becomes a fluctuation-induced second-order one. Thus we are confident
that the topology of the surface phase diagram (see figure 2) would be borne out in Ising
model simulation studies.

In summary, we have developed a mean-field linear response theory for fluid adsorption
at a non-planar wall and derived an exact analytical expression for the perturbation of
the planar free energy due to surface roughness. Using this method we have been able
to vindicate a phenomenological result (which may be attributed to Wenzel) regarding
the influence of roughness on first-order wetting transitions. For second-order wetting
transitions, however, Wenzel’s result is inappropriate (due to fluctuation effects), and
calculation shows that the transition is driven first order for deviations from the plane.

We are very grateful for Professor M Napiórkowski for discussions which reawakened
our interest in this problem, and acknowledge financial support from the EPSRC (United
Kingdom).
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