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Stochastic simulation algorithm with continuous and dis-

continuous time-dependent reaction rates

We use a time-dependent Gillespie algorithm that allows continuous and discontinuous changes
in reaction rates to simulate extrinsic and intrinsic fluctuations. If the propensity of a re-
action is a time-dependent a(t), then the probability of the reaction occurring at a time τ
is1, 2, 3

P (τ) = a(τ) exp
(
−
∫ τ

0
a(t)dt

)
. (3)

During a simulation we need to sample τ from P (τ). Typically, such a sample is generated
from r, a sample of a random number uniformly distributed between 0 and 1, by solving4

∫ τ

0
P (t)dt = r (4)

for τ . Inserting Eq. 3 into Eq. 4 gives∫ τ

0
dt a(t) exp

(
−
∫ t

0
a(t′)dt′

)
= r (5)

which can be integrated directly

1− exp
(
−
∫ τ

0
a(t)dt

)
= r. (6)

If r is uniformly sampled from the interval between 0 and 1, so is 1− r, and we can write∫ τ

0
a(t)dt = log(1/r) (7)

which is Eq. 1 in the main paper.
Eq. 7 is valid for any a(t) including one that is stochastic. To evaluate the integral of Eq.

7 for a stochastic a(t), we approximate one realization of a(t) with a series of step functions
or a piece-wise linear function. We therefore need to consider discontinuous changes in a(t).

Let a(t) satisfy

a(t) =

{
a<(t) for t < t0
a>(t) for t > t0

(8)
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then Eq. 7 implies that if r, our uniform random sample, is large, having a value r1 say, we
need to solve ∫ τ

0
dt a<(t) = log(1/r1) (9)

for a τ < t0. If r is small, r2 say, we must solve∫ t0

0
dt a<(t) +

∫ τ−t0

0
dt a>(t) = log(1/r2) (10)

for a τ > t0. We can define a constant c such that∫ t0

0
dt a<(t) = log(1/c) (11)

where Eq. 9 implies c ≥ r2. Re-writing Eq. 10 then gives∫ τ−t0

0
dt a>(t) = log(1/r3) (12)

with r3 = r2/c. The new variable r3 is a uniformly distributed random variable. We know
that r2 ≤ c and so r3 has a minimum of 0 and a maximum of 1: it is uniformly distributed
between 0 and 1. Eq. 12 is then the scheme used in Gillespie’s first reaction method5: it is
Eq. 7 with the new functional form of the propensity.

To simulate a discontinuous change in a(t), Eq. 12 implies that we should only implement
the change once the sum of the current simulation time and the next putative reaction time
pass t0. We then change a(t) from a<(t) to a>(t), set the simulation time to t0, and use Eq.
12 to sample from a(t).

An alternative argument is to consider the discontinuous rate changes as implicit deter-
ministic reactions. These reactions, however, affect rates, not numbers of molecules. The
next time a reaction rate undergoes a discontinuous change should therefore be included
when comparing putative reaction times.

Consequently, our algorithm is

1. Initialize the numbers of all species. Set time t = 0.

2. Calculate the propensity for each chemical reaction.

3. For each reaction i generate a putative next reaction time, τi.

4. Let µ be the reaction with minimum τi.

5. Let t0 be the time for the next discontinuous change in a reaction rate. Let j be the
reaction whose rate changes.

6. If t + τµ < t0, then change the numbers of species appropriately for the occurrence of
reaction µ. Change t to t + τµ. If t + τµ > t0, then change the reaction rate of reaction
j. Set t = t0.

7. Go to step 2
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Figure 6: Comparison of the step-wise and piece-wise linear approximations for a time-dependent
reaction rate. We simulate a birth-and-death, or Poisson, process for gene expression. Proteins
degrade with a constant first-order rate and have a sinusoidally varying production rate. We plot
the square of the difference of the mean protein number from the exact, analytical result (the
solution of the deterministic mass action equation). This error is proportional to ∆t for the step-
wise method and to ∆t2 for the piece-wise linear approximation. Averages are over 104 simulation
runs, but more would be needed to see the ∆t2 dependence of the error for the piece-wise linear
approximation for small ∆t.

This implementation is exact. We calculate putative reaction times using Eq. 7 and follow
the more accurate piece-wise linear approximation (Fig. 6).

Extrinsic fluctuations in parameter values should be positive. In our simulations, we
generate an Ornstein-Uhlenbeck time series using6

dε

dt
= − ε

τ
+

ξ0

τ
(13)

where ξ0 is a white noise source

〈ξ0(t1)ξ0(t2)〉 = 2τη2
ε δ(t1 − t2) (14)

The variable ε is normally distributed and has an exponentially decaying stationary autocor-
relation function1, 6

Cε(t) = η2
ε e
−t/τ (15)

where we have taken an additional average over the initial values of ε, which are normally
distributed with mean zero and variance η2

ε . To model extrinsic fluctuations in a parameter
k, we replace k by keε/〈eε〉. Exponentiating ε ensures k is positive and the stationary dis-
tribution of k is then log-normal. Log-normal rather than normal distributions have been
measured for gene expression rates7. We normalize k by 〈eε〉 = eη2

ε /2 so that its mean is
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unchanged by fluctuations. The autocorrelation function of k then obeys

Ceε(t) = k2
(
eη2

ε e−t/τ − 1
)

= k2
∞∑

r=1

η2r
ε

r!
e−rt/τ (16)

which is dominated at long times by the timescale τ . The fluctuations of k are colored and
with an approximate autocorrelation time τ . The long time behaviors of Eqs. 15 and 16 are
similar and would be difficult to distinguish experimentally.

Alternatively, to simulate colored extrinsic fluctuations that have a Poisson distribution,
an extrinsic variable generated by a simple birth-and-death process can be added, in the
usual manner, to the Gillespie algorithm. Any chemical rate multiplied by this extrinsic
variable will undergo extrinsic fluctuations and the lifetime of these fluctuations will be
determined by the death rate of the extrinsic variable8, 9. Using this technique, it is only
possible to generate extrinsic fluctuations with distributions that we know how to describe
with chemical reactions. It is also not possible to generate different simulation trajectories
with the same extrinsic variation.

Intrinsic and extrinsic noise

Definitions

We wish to define and measure the stochasticity in an intrinsic variable, I, which is typically
the copy number of a particular protein. We consider two copies of the system of interest
in the same cellular environment. Let I1 be the intrinsic variable for the first copy of the
system, I2 be the equivalent intrinsic variable for the second copy, and let the fluctuation in
a variable I be

Ĩ(t) = I(t)− 〈I(t)〉 (17)

where the angled brackets denoted an average over all intrinsic and extrinsic variables. Then
Ĩ(t) measures the deviation of I(t) from its deterministic dynamics, i.e. the dynamics of the
system in the limit of large numbers of molecules. The intrinsic noise is defined as

η2
int =

〈
(Ĩ1 − Ĩ2)

2
〉

2〈I〉2
(18)

where we have used that 〈I1〉 = 〈I2〉 = 〈I〉 because each system is an identical copy of the
other. The extrinsic noise is the cross-correlation of Ĩ1 and Ĩ2,

η2
ext =

〈Ĩ1Ĩ2〉
〈I〉2

. (19)

The squares of the intrinsic noise and the extrinsic noise sum to give the total noise, or the
total variation in the intrinsic variable I:

η2
int + η2

ext = η2
tot (20)
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where the total noise is the coefficient of variation of I,

η2
tot =

〈Ĩ2〉
〈I〉2

=
1

2

(
〈Ĩ2

1 〉
〈I〉2

+
〈Ĩ2

2 〉
〈I〉2

)
. (21)

It is experimentally estimated as the average of the coefficients of variation of I1 and I2.
The state of the cell with its two copies of the system of interest can be represented at time

t as the probability P (I1, I2,E, t), which is the probability that I1, the set of intrinsic variables
for the first copy of the system, I2, the set for the second copy, and E, the set of extrinsic
variables, have particular values at time t. For clarity, we will integrate out of this probability
all except the measured intrinsic variables, which we will write as I1 and I2. Similarly, we
replace E by E through integrating out all but one of the extrinsic variables. Rather than
P (I1, I2, E, t), though, we consider the probability of the fluctuations, P (Ĩ1, Ĩ2, Ẽ, t), because
the fluctuations determine stochasticity.

We can verify the definitions of intrinsic, extrinsic, and total noise by confirming that
the intrinsic noise is measured to be zero when the dynamics of the intrinsic variables are
deterministic and that the extrinsic noise is measured to be zero when the dynamics of the
extrinsic variables are deterministic. We know that the distribution P (Ĩ1, Ĩ2, Ẽ, t) can be
written as

P (Ĩ1, Ĩ2, Ẽ, t) = P (Ĩ1|Ĩ2, Ẽ, t)P (Ĩ2|Ẽ, t)P (Ẽ, t). (22)

and that ∫
dĨ1dĨ2dẼ Ĩ1P (Ĩ1, Ĩ2, Ẽ, t) = 0 (23)

from the definition, Eq. 17.
If the intrinsic dynamics are deterministic, then the intrinsic variables will still fluctuate

because of fluctuations in the extrinsic variables, but they will always fluctuate identically:

P (Ĩ1|Ĩ2, Ẽ) = δ(Ĩ1 − Ĩ2) (24)

where δ(x) is the delta function. Consequently, the intrinsic noise satisfies

η2
int ∼

∫
dĨ1dĨ2dẼ (Ĩ1 − Ĩ2)

2P (Ĩ1, Ĩ2, Ẽ, t)

=
∫

dĨ1dĨ2dẼ (Ĩ1 − Ĩ2)
2δ(Ĩ1 − Ĩ2)P (Ĩ2|Ẽ, t)P (Ẽ, t) (25)

and is zero.
If the extrinsic dynamics are deterministic, then

P (Ẽ, t) = δ(Ẽ) (26)

and the extrinsic variables will always be at their mean (deterministic) values. If there are
no extrinsic fluctuations, then fluctuations in I1 are independent of fluctuations in I2:

P (Ĩ1|Ĩ2, Ẽ, t) = P (Ĩ1|Ẽ, t). (27)

Therefore, Eq. 23 becomes ∫
dĨ1 Ĩ1P (Ĩ1|Ẽ = 0) = 0. (28)
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The extrinsic noise obeys

η2
ext ∼

∫
dĨ1dĨ2dẼ Ĩ1Ĩ2P (Ĩ1, Ĩ2, Ẽ, t)

=
∫

dĨ1dĨ2dẼ Ĩ1Ĩ2P (Ĩ1|Ẽ, t)P (Ĩ2|Ẽ, t)δ(Ẽ)

=
∫

dĨ1 Ĩ1P (Ĩ1|Ẽ = 0)
∫

dĨ2 Ĩ2P (Ĩ2|Ẽ = 0) (29)

which is zero from Eq. 28.

Slow or fast extrinsic fluctuations

In general, P (Ĩ1|Ĩ2, Ẽ) 6= P (Ĩ1|Ẽ) because the current value of Ĩ2 carries information on
the history of Ẽ, over the timescale associated with variation in Ĩ2. We must then consider
P (Ĩ1, Ĩ2, Ẽ, t) as the distribution being interrogated by a two-color experiment. If, however,
the extrinsic timescale is much faster than the intrinsic timescales of the system, then Ẽ will
appear uncorrelated in time to the intrinsic variables. Then, P (Ĩ1|Ĩ2, Ẽ) ' P (Ĩ1|Ẽ), and
we need only consider P (Ĩ , Ẽ, t) as the experimentally relevant distribution10. Similarly, if
there is an initial distribution of extrinsic variables so that each cell has initially a different
sample from this distribution, but the extrinsic variables themselves do not change with
time, then P (Ĩ1|Ĩ2, Ẽ) = P (Ĩ1|Ẽ). In both cases, there is no finite timescale associated
with extrinsic fluctuations. If extrinsic fluctuations have a significant lifetime, then we must
consider P (Ĩ1, Ĩ2, Ẽ, t).

Mathematical modeling

Langevin theory

We use Langevin theory to model both intrinsic and extrinsic fluctuations. To include in-
trinsic fluctuations, we add white noise terms to the deterministic equations describing Fig.
1a. If D is the number of promoters in the active state, M the number of mRNAs, and A
the number of proteins, we have

dD

dt
= k0 − (k0 + k1)D + ξ1

dM

dt
= v0D − d0M + ξ2

dA

dt
= v1M − d1A + ξ3 (30)

where the ξi are stochastic variables that satisfy11

〈ξ1(t1)ξ1(t2)〉 = 2k1Dsδ(t1 − t2)

〈ξ2(t1)ξ2(t2)〉 = 2d0Msδ(t1 − t2)

〈ξ3(t1)ξ3(t2)〉 = 2d1Asδ(t1 − t2) (31)
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with all the cross-correlations 〈ξi(t1)ξj(t2)〉 = 0 when i is not equal to j. Non-zero cross-
correlations only arise from second-order reactions. Ds, Ms, and As are steady-state concen-
trations.

To include extrinsic fluctuations, we add the stochastic variable ε whose dynamics satisfy
the Ornstein-Uhlenbeck process of Eq. 13. The white noise ξ0 is uncorrelated with any
other ξi. We use ε to add extrinsic fluctuations to any parameter in the model of Fig.
1a. For example, we let v0 → v0e

ε/〈eε〉 to include extrinsic fluctuations in transcription.
Nevertheless, we need to linearize this expression to make the calculations tractable and use
v0 → v0(1 + ε). Our approach is therefore only valid when extrinsic fluctuations are small.
With this definition, v0 has a coefficient of variation of η2

ε and has an autocorrelation time of
τ (Eq. 15).

Mathematically, colored extrinsic fluctuations in one parameter adds another variable, ε,
to Eqs. 30. Multiple correlated extrinsic fluctuations acting on different parameters of the
system correspond to the same ε changing the relevant parameters. Multiple uncorrelated
extrinsic fluctuations require an εi for each uncorrelated fluctuation. The solution of the
system with intrinsic and extrinsic fluctuations is therefore given by the general solution
already found for any linear system with intrinsic fluctuations11. We use this solution to
calculate the coefficient of variation of protein numbers.

The intrinsic noise satisfies12

η2
int =

1

As

+
d1

d0 + d1

[
1

Ms

+
d0(d0 + d1 + k0 + k1)

(d0 + k0 + k1)(d1 + k0 + k1)
η2

D

]
(32)

and has contributions from translation, transcription, and the stochastic transitioning of the
promoter between active and inactive states (η2

D = 1−Ds

Ds
). With v1 or d1 in Fig. 1a fluctuating,

we find that

η2
ext =

d1τ

1 + d1τ
η2

ε , (33)

while if v0 or d0 fluctuates, ηext obeys

η2
ext =

d1

d0 + d1

· d0τ [1 + (d0 + d1)τ ]

(1 + d0τ)(1 + d1τ)
η2

ε . (34)

Similar, although more complex, expressions result with k0 or k1 fluctuating. The extrinsic
noise in proteins numbers is determined both by the coefficient of variation of the fluctuating
parameter, ηε, and its autocorrelation time, τ .

We can do similar calculations if two parameters in Fig. 1a fluctuate. If these extrinsic
fluctuations are uncorrelated, we find

(η
(i,j)
ext )2 = (η

(i)
ext)

2 + (η
(j)
ext)

2 (35)

where η
(i,j)
ext is the extrinsic noise of protein numbers when parameters labeled by i and j

fluctuate and η
(i)
ext is the extrinsic noise when only the parameter labeled with i fluctuates.

With correlated extrinsic fluctuations, we find that (η
(i,j)
ext )2 � (η

(i)
ext)

2 + (η
(j)
ext)

2 if the two
fluctuating parameters have opposing effects on protein numbers. For example, if we have
correlated fluctuations in d0 and v1,

η2
ext =

d1

d0 + d1

· d1τ

(1 + d1τ)(1 + d0τ)
η2

ε (36)
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which vanishes as τ increases, unlike Eq. 33. If the two parameters affect protein numbers
similarly, (η

(i,j)
ext )2 � (η

(i)
ext)

2 + (η
(j)
ext)

2. For example, if we have correlated fluctuations in v0

and v1,

η2
ext =

d1

d0 + d1

· d1τ + 4d0τ [1 + τ(d0 + d1)]

(1 + d1τ)(1 + d0τ)
η2

ε (37)

which tends to four times the noise generated by fluctuations in v1 alone as τ increases.
We repeated this analysis for a negatively auto-regulated network. As before, if both

parameters have similar effects on mean protein numbers, correlated extrinsic fluctuations
combine constructively. While if both parameters have opposing effects on mean protein
numbers, they combine destructively.

The unified colored noise approximation

Our Langevin approach is linear and is unable to reproduce the changes in the protein mean
or in intrinsic noise that are caused by extrinsic fluctuations. Such effects are non-linear. We
are not aware of a general analytical method to study the complete, non-linear model, but
the unified colored noise approximation has been proposed to describe multiplicative colored
noise in a system with only one dynamical variable13. This theory is exact for both τ = 0
and τ = ∞.

We consider a reduced model of Fig. 1a that ignores the dynamics of mRNA and the
promoter, but incorporates colored extrinsic fluctuations in the protein degradation rate, d1:

dA

dt
= k − d1(1 + ε)A + ξ (38)

where k = v1Ms and is assumed not to fluctuate. Both ξ and ε are stochastic variables.
Intrinsic fluctuations are described by ξ, which is a white noise term, and extrinsic fluctuations
by ε, which obeys Eq. 13 as before. If we ignore intrinsic fluctuations by setting ξ = 0, the
steady-state distribution of proteins obeys

P (A = a) ∼ kτ + a

d1

· a−2− 1

d1τη2
ε · e

−k[kτ+2a(1−d1τ)]

2d2
1

τa2η2
ε (39)

which has a complex mixing of the intrinsic (d1) and extrinsic (τ) timescales. The mean
of this distribution depends on the timescale (τ) and strength (η2

ε ) of the extrinsic fluctu-
ations (Fig. 2c and Fig. 2d). Nevertheless, its width is less than that seen in simulations
because we have ignored intrinsic fluctuations. Using an extension to the unified colored
noise approximation14, we can include intrinsic fluctuations and can explicitly show the in-
terdependence of intrinsic and extrinsic fluctuations (results not shown).

Simulation specifications

We used the Facile compiler and EasyStoch 15 to run our reactions. Both are freely available
at www.cnd.mcgill.ca/~swain. We include the input files for Figs. 1–5. In each file, the
EQN section describes the network, giving each chemical reaction followed by its forward
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and backward rates. These rates are in s−1 for first order reactions and in M−1s−1 for second-
order reactions. The INIT section provides the initial values in numbers of molecules for all
chemical species that are not initially zero.

Fig. 1, Fig. 2, and Fig. 3

The model of Fig. 1a. Degradation is denoted by the null state and D off represents the
number of promoter molecules in the inactive state. For Fig. 3 a random set of parameters
is used as explained in Materials and methods. Comments are preceded with a hash sign.

EQN

D <-> D_off; k0 = 0.03; k1 = 0.005

# expression of protein A

D -> D + M; v0 = 0.07

M -> null; d0 = 0.005

M -> M + A; v1 = 0.2

A -> null; d1 = 0.0004

INIT

D = 1

Fig. 4

A negatively auto-regulation network based on the model of Fig. 1a. We also specify the cell
volume in liters to simulate second-order reactions.

EQN

# negative autoregulation

D <-> D_off; k0 = 0.03; k1 = 0.005

D_off + A <-> DA; l1 = 3.2e5; l0 = 0.02

# expression of protein A

D -> D + M; v0 = 0.07

M -> null; d0 = 0.005

M -> M + A; v1 = 0.2

A -> null; d1 = 0.0004

INIT

D = 1

CONFIG

compartment_volume = 1.66e-15

Fig. 5c

A coherent type 1 feedforward loop.
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EQN

# gene Y is activated by protein X

D_Y + X <-> D_Y_X; l0 = 1e5; l1 = 0.5

# expression of gene Y

D_Y_X -> D_Y_X + M_Y; v0 = 0.07

M_Y -> null; d0 = 0.005

M_Y -> M_Y + Y; v1 = 0.2

Y -> null; d1 = 4e-4

# gene Z is activated by proteins X and Y together

D_Z + X <-> D_Z_X; l2 = 1e5; l3 = 0.15

D_Z + Y <-> D_Z_Y; l2; l3

D_Z_X + Y <-> D_Z_X_Y; l2; l3

D_Z_Y + X <-> D_Z_X_Y; l2; l3

# expression of gene Z

D_Z_X_Y -> D_Z_X_Y + M_Z; v0

M_Z -> null d0

M_Z -> M_Z + Z; v1

Z -> null; d1

INIT

X = 1000

D_Y = 1

D_Z = 1

CONFIG

compartment_volume = 1.66e-15

Fig. 5d

Incoherent type 1 feedforward loop.

EQN

# gene Y is activated by protein X

D_Y + X <-> D_Y_X; l0 = 1e5; l1 = 0.5

# expression of gene Y

D_Y_X -> D_Y_X + M_Y; v0 = 0.07

M_Y -> null; d0 = 0.005

M_Y -> M_Y + Y; v1 = 0.2

Y -> null; d1 = 4e-4

# gene Z is activated by protein X

D_Z + X <-> D_Z_X; l2 = 1e5; l3 = 0.5

# gene Z is repressed by protein Y

D_Z + Y <-> D_Z_Y; l2; l4 = 0.1

D_Z_X + Y <-> D_Z_X_Y; l2; l4

D_Z_Y + X <-> D_Z_X_Y; l2; l3

# basal constitutive expression of gene Z
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D_Z -> D_Z + M_Z; v0_b = 0.01

# expression of gene Z

D_Z_X -> D_Z_X + M_Z; v0

M_Z -> null; d0

M_Z -> M_Z + Z; v1

Z -> null; d1

INIT

X = 1000

D_Y = 1

D_Z = 1

CONFIG

compartment_volume = 1.66e-15

Acknowledgments

We thank T.J. Perkins for showing us the derivation of Eq. 7.

References

[1] Gillespie, D. T. Markov Processes: An Introduction for Physical Scientists. Academic
Press, San Diego, CA, (1992).

[2] Jansen, A. P. J. Monte Carlo simulations of chemical reactions on a surface with time-
dependent reaction-rate constants. Comput. Phys. Comm. 86, 1–12 (1995).

[3] Gibson, M. A. and Bruck, J. Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A 104, 1876–1889 (2000).

[4] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical recipes
in C++. Cambridge University Press, New York, New York, (2002).

[5] Gillespie, D. T. A general method for numerically simulating the stochastic time evolu-
tion of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).

[6] Fox, R. F., Gatland, I. R., Roy, R., and Vemuri, G. Fast, accurate algorithm for
numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938–
5940 (1988).

[7] Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S., and Elowitz, M. B. Gene regulation
at the single-cell level. Science 307, 1962–1965 (2005).

[8] Austin, D. W., Allen, M. S., McCollum, J. M., Dar, R. D., Wilgus, J. R., Sayler, G. S.,
Samatova, N. F., Cox, C. D., and Simpson, M. L. Gene network shaping of inherent
noise spectra. Nature 439, 608–611 (2006).

11



[9] Tanase-Nicola, S., Warren, P. B., and ten Wolde, P. R. Signal detection, modularity,
and the correlation between extrinsic and intrinsic noise in biochemical networks. Phys.
Rev. Lett. 97, 68102 (2006).

[10] Swain, P. S., Elowitz, M. B., and Siggia, E. D. Intrinsic and extrinsic contributions to
stochasticity in gene expression. Proc. Natl. Acad. Sci. U. S. A. 99, 12795–12800 (2002).

[11] Swain, P. S. Efficient attenuation of stochasticity in gene expression through post-
transcriptional control. J. Mol. Biol. 344, 965–976 (2004).

[12] Raser, J. M. and O’Shea, E. K. Control of stochasticity in eukaryotic gene expression.
Science 304, 1811–1814 (2004).

[13] Jung, P. and Hanggi, P. Dynamical systems: A unified colored-noise approximation.
Phys. Rev. A 35, 4464–4466 (1987).

[14] Cao, L., Wu, D. J., and Luo, X. L. Effects of saturation in the transient process of a dye
laser. III. The case of colored noise with large and small correlation time. Phys. Rev. A.
47, 57–70 (1993).

[15] Siso-Nadal, F., Ollivier, J. F., and Swain, P. S. Facile: a command-line network compiler
for systems biology. BMC Syst. Biol. 1, 36 (2007).

12


