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A challenge to both understanding and modeling biochemical net-
works is integrating the effects of diffusion and stochasticity. Here,
we use the theory of branching processes to give exact analytical
expressions for the mean and variance of protein numbers as a
function of time and position in a spatial version of an established
model of gene expression. We show that both the mean and the
magnitude of fluctuations are determined by the protein’s Kuramo-
to length—the typical distance a protein diffuses over its lifetime—
and find that the covariance between local concentrations of
proteins often increases if there are substantial bursts of synthesis
during translation. Using high-throughput data, we estimate that
the Kuramoto length of cytoplasmic proteins in budding yeast to
be an order of magnitude larger than the cell diameter, implying
that many such proteins should have an approximately uniform
concentration. For constitutively expressed proteins that live sub-
stantially longer than their mRNA, we give an exact expression for
the deviation of their local fluctuations from Poisson fluctuations.
If the Kuramoto length of mRNA is sufficiently small, we predict
that such local fluctuations become approximately Poisson in bac-
teria in much of the cell, unless translational bursting is exception-
ally strong. Our results therefore demonstrate that diffusion can
act to both increase and decrease the complexity of fluctuations
in biochemical networks.

A challenge in systems biology is to understand how the spatial
structure of cells influences signal transduction and informa-

tion processing (1). Diffusion is not only fundamental to many
developmental processes (2), but also to responses in differen-
tiated cells: it is, for example, necessary for nanoclusters of sig-
naling proteins to form temporarily at the cell membrane (3) and
to allow some cells to polarize (4). Yet, most modelers assume
that a cell is “well stirred”—that the effects of diffusion are neg-
ligible and that any location in the cell is identical to any other.
Modeling space and diffusion in biochemical networks is particu-
larly challenging because these networks are now recognized to
often be substantially stochastic (5–7). Consequently, the stan-
dard approach is to use numerical simulation (8), but many simu-
lations are required to build intuition on a system of interest.
Further, multiple different methodologies for such simulations
exist because of the difficulties of the underlying theory of sto-
chastic reaction-diffusion systems (9).

Here, we present analytical solutions to a reaction-diffusion
version of a well-known model of gene expression (10). We give
expressions for the spatial correlations in the system and determine
the limits under which the well-stirred approximation holds and
when diffusion dominates, generating fluctuations that, unlike the
well-stirred case, are locally approximately Poissonian. As well as
building intuition, our analytical results should provide useful tests
to validate algorithms for stochastic spatial simulations.

The key to our approach is to consider gene expression as a
stochastic branching process. When solving stochastic systems,
the master equation is usually mapped to a partial differential
equation describing the evolution of the generating function of
the system. With space and diffusion, however, this equation be-
comes a partial differential equation for a functional (11), which
is difficult to solve. In our approach, spatial diffusion generates a

system of partial differential equations for the evolution of a set
of generating functions. These equations are considerably more
tractable.

To begin, we illustrate our method by first considering gene
expression without diffusion.

Gene Expression Without Diffusion
We consider a model of constitutive gene expression: Transcrip-
tion of the gene can always occur. Fig. 1A shows the processes
involved. The probability of having N2 mRNAs and N3 proteins
obeys a master equation:

∂PN2;N3

∂t
¼ v2ðPN2−1;N3

− PN2;N3
Þ þ v3N2ðPN2;N3−1 − PN2;N3

Þ

þ d2½ðN2 þ 1ÞPN2þ1;N3
−N2PN2;N3

&

þ d3½ðN3 þ 1ÞPN2;N3þ1 −N3PN2;N3
&: [1]

This model of gene expression is a branching process because
each molecule behaves independently and does not interact with
any other molecules: there are no binary reactions. This indepen-
dence means that a system with initially N molecules either of
one or of several different species is statistically identical to the
sum of N independent systems, each of which has a single initial
molecule. We can consequently describe the evolution of the sys-
tem by three different generating functions, all having one initial
molecule, which can be either a DNA, an mRNA, or a protein.

We will first consider the standard generating function and its
evolution (12). Letting Ni be the number of molecules of species
i, where i ¼ 1 for DNA, i ¼ 2 for mRNA, and i ¼ 3 for protein,
then the generating function, defined as∑ns

nPn for a one dimen-
sional system, can be written as

gðt; s1; s2; s3Þ ¼ E
!Y3

i¼1

sNiðtÞ
i

"
; [2]

where the si are auxiliary variables with 0 ≤ si ≤ 1. We do not
explicitly write the dependence on the initial condition. The ex-
pectation is taken over PN1;N2;N3

ðtÞ and is shown as a time depen-
dence in the exponent of Eq. 2. Rescaling time by the degradation
rate of protein, d3, so that τ ¼ d3t and substituting Eq. 2 into
Eq. 1 gives

∂g
∂τ

¼
!
aðs2 − 1Þ þ γðbs2ðs3 − 1Þ − ðs2 − 1ÞÞ ∂

∂s2
− ðs3 − 1Þ ∂

∂s3

"
g;

[3]
where a ¼ v2∕d3 is the number of mRNAs transcribed during a
typical lifetime of a protein and b ¼ v3∕d2 is the burst size or the
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typical number of proteins synthesized from a single mRNA
during the mRNA’s lifetime (13). The parameter γ is the ratio
of the lifetime of the protein to the mRNA—γ ¼ d2∕d3—and is
typically larger than one (5). Eq. 3 has the initial condition
gð0; s1; s2; s3Þ ¼

Q
3
i¼1 s

Nið0Þ
i when there is initiallyNið0Þmolecules

of species i. It can be solved approximately for γ ≫ 1 giving a ne-
gative binomial distribution for protein numbers at steady state (5).

We consider an alternative description of this system using
techniques from the theory of branching processes (14, 15).
The number of molecules of species i at time t is a sum of the
number of species of type i generated by each of the initial mo-
lecules. Writing N ðkÞ

ijj ðtÞ to be the number of molecules of species
i at time t that are generated from the kth initial molecule of
species j, then the number of molecules of species i is NiðtÞ ¼
∑3

j¼1 ∑
Njð0Þ
k¼1 N ðkÞ

ijj ðtÞ. The N ðkÞ
ijj for k ¼ 1;…; Njð0Þ are identically

distributed and independent. From Eq. 2, we can then write the
generating function as

g ¼ E
!Y3

i¼1

Y3

j¼1

YNjð0Þ

k¼1

s
N ðkÞ

ijj ðtÞ
i

"
¼

Y3

j¼1

YNjð0Þ

k¼1

E
!Y3

i¼1

s
N ðkÞ

ijj ðtÞ
i

"
; [4]

but, again from Eq. 2, this last expectation is the generating func-
tion for a gene expression process that starts with a single mole-
cule of species j. We will define uj to be such a generating
function:

ujðt; s1; s2; s3Þ ¼ gðt; s1; s2; s3j1molecule of species jÞ: [5]

Hence,

g ¼
Y3

j¼1

YNjð0Þ

k¼1

uj ¼
Y3

j¼1

uNjð0Þ
j ; [6]

and so the three uj collectively contain the same information as
the generating function g.

From the chemical reactions occurring during gene expression,
we can derive how the uj evolve over time. For example, consider
the generating function corresponding to a single initial DNA
molecule, u1, at time tþ dt for a small time interval dt. From
Eq. 2, this generating function obeys

u1ðtþ dtÞ ¼ E
!Y3

i¼1

sNiðtþdtÞ
i

####Nð0Þ ¼ ð1; 0; 0Þ
"

[7]

by definition. If we consider the time interval dt to be at the start
of the dynamics of the system when only a single DNAmolecule is
present and to be small enough that only one reaction can pos-
sibly have occurred then this reaction can only be the synthesis of
an mRNA. Consequently, remembering that v2 is the probability
of synthesis of an mRNA per unit time, we can write

u1ðtþ dtÞ

¼ v2dtE
!Y3

i¼1

sNiðtþdtÞ
i

####NðdtÞ ¼ ð1; 1; 0Þ
"

þ ð1 − v2dtÞE
!Y3

i¼1

sNiðtþdtÞ
i

####NðdtÞ ¼ ð1; 0; 0Þ
"

¼ v2dtu1u2 þ ð1 − v2dtÞu1; [8]

and so that
∂
∂t
u1 ¼ v2u1ðu2 − 1Þ: [9]

Similarly, and if we rescale time to τ ¼ d3t, the three generating
functions satisfy

∂
∂τ

u1

u2

u3

2

4

3

5 ¼
au1ðu2 − 1Þ

γðbu2ðu3 − 1Þ − ðu2 − 1ÞÞ
−ðu3 − 1Þ

2

4

3

5; [10]

with the initial condition ujð0; s1; s2; s3Þ ¼ sj because at t ¼ 0
only one molecule is present.

Gene Expression with Diffusion
We now include diffusion within Γ, a region of Rd (16, 17)
(Fig. 1 B and C). Γ may either be all of Rd or a subregion with
a boundary reflecting diffusing molecules. Let mRNA molecules
have a diffusion coefficient of D2 and protein molecules have a
diffusion coefficient ofD3. We will consider DNA molecules that
neither diffuse nor decay but are fixed at a point ξ0 in Γ. If space
has d dimensions then ξ0 is a d-dimensional vector. We will let xðkÞi
be the spatial location of the k’th molecule of species i. The gen-
erating function now depends on si that are functions of space,
si ¼ siðξÞ, with ξ in Γ, but has a similar form to Eq. 2:

gðt; s1; s2; s3Þ ¼ E
!Y3

i¼1

YNiðtÞ

k¼1

siðx
ðkÞ
i ðtÞÞ

"
: [11]
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Fig. 1. (A) A model of constitutive gene expression (10). DNA is transcribed into mRNA with a probability per unit time of v2; mRNA is translated into protein
with a probability per unit time of v3. Both mRNA and protein are degraded: mRNA with a probability per unit time of d2 and protein with a probability per
unit time of d3. (B) Protein usually diffuses further from the DNA than mRNA because mRNA has both a lower diffusion coefficient and degrades faster. A
snapshot of simulation results for an elliptical cell. Red crosses denote protein, blue asterisks denote mRNA, and the black circle at the origin denotes the DNA.
We set d2 ¼ 0.006 s−1 (a half-life of 2 min), d3 ¼ 0.0002 s−1 (a half-life of 1 h), v2 ¼ 0.01 s−1, and v3 ¼ 0.12 s−1 (10). Consequently, a ≃ 52, b ¼ 20, and γ ¼ 30.
The diffusion coefficients are D2 ¼ 0.5 μm2 s−1 and D3 ¼ 5 μm2 s−1 giving Kuramoto lengths of κ2 ¼ 9.3 μmand κ3 ¼ 160 μm. Axis labels are in micrometers. (C)
A corresponding heat map of the steady-state number density of molecules of protein.
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The moments of the distribution for the number of molecules are
derived analogously to the well-stirred model but now by func-
tional differentiation of gðt; s1; s2; s3Þ by the variables siðξÞ and
then evaluating at si ¼ 1. As before, we define generating func-
tions for systems that initially have only one molecule of species j
at location ξ0

ujðt; s1; s2; s3jξ0Þ ¼ gðt; s1; s2; s3j1molecule of species j at ξ0Þ;
[12]

and then the generating function can be expressed in terms of
these new uj

gðt; s1; s2; s3Þ ¼
Y3

j¼1

YNjð0Þ

k¼1

ujðt; s1; s2; s3jx
ðkÞ
j ð0ÞÞ: [13]

The evolution equations for the ui are also similar although
they contain the Laplacian operator

$
∂
∂τ

− D∇2
ξ0

% u1

u2

u3

2

4

3

5 ¼
au1ðu2 − 1Þ

γðbu2ðu3 − 1Þ − ðu2 − 1ÞÞ
−ðu3 − 1Þ

2

4

3

5; [14]

with the initial conditions uið0; s1; s2; s3jξ0Þ ¼ siðξ0Þ and where
the matrix D is the diffusion matrix: D ¼ d−1

3 diagð0; D2; D3Þ.
Eq. 14 holds for all ξ0 in Γ, with the normal derivatives of the
ui being zero on the boundary of Γ, if applicable. By using branch-
ing processes, we have a Laplacian evaluated at the coordinates
of the initial condition. Consequently, the evolution equations
for the moments of the process are simpler than those derived
directly from g.

Eq. 10 can be recovered from Eq. 14 if the initial conditions are
constant in space: uið0; s1; s2; s3jξ0Þ ¼ constant because then the
term ∇2

ξ0
u vanishes.

First- and Second-Order Statistics
Including space, we must now consider fields for the molecular
species rather than numbers of molecules. Let the field for
species i be Xiðt; ξÞ. It is defined as a distribution determined
by the locations of the molecules of species i: Xiðt; ξÞ ¼
∑NiðtÞ

k¼1 δðxðkÞi ðtÞ − ξÞ. The field for DNA is, however, deterministic
and constant with respect to time because we have one DNA mo-
lecule fixed at ξ0.

We can obtain the moments of the process at a single point in
time by differentiating the ui with respect to siðξÞ. The first-order
statistics are mean density fields; the second-order statistics are
distributions on Rd × Rd. LetMijj be the mean density of species
i given one initial molecule of species j at ξ0. Then

Mijjðτ; ξjξ0Þ ¼ E½Xiðτ; ξÞjXkð0; ξÞ ¼ δjkδðξ − ξ0Þ& ¼
δuj
δsiðξÞ

####
s¼1

:

[15]

For example, with this definition, the mean protein field is

δuj

δs3ðξÞ

####
s¼1

¼ E
!

δ
δs3ðξÞ

Y3

i¼1

YNiðtÞ

k¼1

siðx
ðkÞ
i ðtÞÞ

"####
s¼1

¼ E
!

∑

NiðtÞ

k¼1

δðξ − xðkÞ3 ðtÞÞ
"
¼ E½X3ðt; ξÞ&; [16]

where we have not explicitly written the dependence on one in-
itial molecule of species j at ξ0. Integrating Eq. 15 over a volume
gives the expected number of molecules of species j in the vo-
lume. Similarly, let Cii 0 jj denote the covariance densities between
molecules of species i in one spatial location and molecules of

species i 0 at another, given one initial molecule of species j at
ξ0, then

Cii 0 jjðτ; ξ; ξ 0jξ0Þ ¼ E½Xiðτ; ξÞXi 0ðτ; ξ 0Þ&

−Mijjðτ; ξjξ0ÞMi 0 jjðτ; ξ 0jξ0Þ

¼
δ2uj

δsiðξÞδsi 0ðξ 0Þ

####
s¼1

þMijjðτ; ξjξ0Þδii 0δðξ − ξ 0Þ

−Mijjðτ; ξjξ0ÞMi 0 jjðτ; ξ 0jξ0Þ; [17]

where again we have not written explicitly the dependence of the
expectation on one initial molecule of species j at ξ0. Integrating
Eq. 17 with respect to ξ over one volume and with respect to ξ 0

over another volume gives the expected covariance between the
number of molecules of species i in the first volume with the num-
ber of molecules of species i 0 in the second volume.

Analytical Results
Reaction-diffusion systems are often characterized by the Kura-
moto length (18): the distance a molecule typically diffuses over
its lifetime. We will define a Kuramoto length for both mRNA
and protein:

κ2 ¼

ffiffiffiffiffiffi
D2

d2

s

; κ3 ¼

ffiffiffiffiffiffi
D3

d3

s

: [18]

We will consider either a d-dimensional space or specialize to
three dimensions.

In principle, our main results hold for arbitrary geometries
and are presented in terms of a general probability density de-
scribing diffusion of single molecules. Usually, and for simplicity,
we will give results for free space, assuming that gene expression
occurs sufficiently far from a confining membrane. Then the dif-
fusion density, f ðt; ξjξ0Þ, is a Gaussian function: f ðt; ξjξ0Þ ¼
ð4πtÞ−d

2 exp½− jξ−ξ0j2
4t &. Alternatively, for Brownian diffusion in a re-

gion Γ with molecules reflecting off the boundary, we must solve
the diffusion equation for f ðt; ξjξ0Þ with the boundary condition
that the spatial derivative of f normal to the boundary is zero. For
general domains Γ, this system does not have a closed-form solu-
tion, but a series solution exists in terms of the eigenvalues and
eigenmodes of the Laplacian operator on the region (19).

Mean and Covariance. To begin, we calculate the first and second
moments of the distribution as integrals over the diffusion den-
sity. We functionally differentiate Eq. 14 with respect to siðξÞ and
evaluate at si ¼ 1 to obtain a system of inhomogeneous linear
reaction-diffusion equations. These equations can be solved using
Green’s function techniques (SI Text).

The mean density of mRNA is then

M2j1ðτ; ξjξ0Þ ¼ a
Z

τ

0
e−γτ1 f ðκ22γτ1; ξjξ0Þdτ1; [19]

and the mean density of protein is

M3j1ðτ; ξjξ0Þ ¼ abγ
Z

τ

0

Z
τ1

0
e−γðτ1−τ2Þ−τ2

× f ðκ22γðτ1 − τ2Þ þ κ23τ2; ξjξ0Þdτ2dτ1: [20]

The single-time covariance matrix, Cj1, has componentsCii 0 j1 and
obeys
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Cj1 ¼ δðξ − ξ 0Þ
0 0 0
0 M2j1 0
0 0 M3j1

2

4

3

5þ abγ
Z

τ

0

Z
τ1

0
e−γðτ1−τ2Þ

×
Z

Rd
f ðκ22γðτ1 − τ2Þ; ζjξ0ÞFðτ2; ξ; ξ 0jζÞdζdτ2dτ1;

[21]

where the matrix F is

Fðτ; ξ; ξ 0jξ0Þ ¼
0 0 0
0 0 M2j2M 0

3j3
0 M3j3M 0

2j2 M3j3M 0
3j2 þM3j2M 0

3j3

2

4

3

5: [22]

We use a prime to denote evaluation at ξ 0 so that M 0
jji ¼

Mjjiðτ; ξ 0jξ0Þ and Mjji ¼ Mjjiðτ; ξjξ0Þ. The mean densities with
different initial conditions are

M2j2ðτ; ξjξ0Þ ¼ e−γτf ðκ22γτ; ξjξ0Þ

M3j2ðτ; ξjξ0Þ ¼ bγ
Z

τ

0
e−γðτ−τ1Þ−τ1

× f ðκ22γðτ − τ1Þ þ κ23τ1; ξjξ0Þdτ1
M3j3ðτ; ξjξ0Þ ¼ e−τf ðκ23τ; ξjξ0Þ:

[23]

We will use these statistics to find radial correlation functions,
which can be calculated explicitly.

Specializing to free space, our results when integrated over all
space agree, as expected, with the nonspatial case. Setting ξ0 ¼ 0
and letting the overline denote integration over all spatial vari-
ables, the average total number of mRNAs in all of Rd is

M2j1ðτÞ ¼
Z

Rd
M2j1ðτ; ξj0Þdξ

¼ a
Z

τ

0
e−γτ1

Z

Rd
f ðκ22γτ1; ξj0Þdξdτ1 ¼

a
γ
ð1 − e−γτÞ; [24]

agreeing with earlier work (5). Similarly, the average total num-
ber of protein molecules is

M3j1ðτÞ ¼ ab
$
1 − γ

γ − 1
e−τ þ e−γτ

%
; [25]

as expected (5, 10).
For the covariance functions, we need to integrate over ξ

and ξ 0 to compare with the nonspatial system. We find that
the protein-protein covariance in the limit of τ → ∞ is

C33j1ðτÞ !
τ→∞

ab
$
1þ bγ

1þ γ

%
; [26]

again as expected (5, 10). For small τ, we find C33j1ðτÞ ¼
abð1þ 1

3 bγ
2τ3Þ þ oðτ4Þ, a behavior similar to Poisson fluc-

tuations.

The Steady-State Limit: Means. We use Laplace transforms to cal-
culate the steady-state limits (SI Text). Assuming free space and
that the DNA is fixed at the origin (ξ0 ¼ 0), the mean mRNA and
protein densities at steady-state are

M2j1ðξÞ ¼
a
γ
e−jξj∕κ2

4πjξjκ22
; M3j1ðξÞ ¼ ab

e−jξj∕κ3 − e−jξj∕κ2

4πjξjðκ23 − κ22 Þ
: [27]

We can derive the steady-state mean squared distance of
mRNA and protein from the origin from these equations, by in-

tegrating the product of jξj2 and either M2j1 or M3j1 over all
space:

hjξ2j2i ¼
6aκ22
γ

; hjξ3j2i ¼ 6abðκ22 þ κ23 Þ;

and we see that the mean squared distance of protein is given by
the sum of the squares of the Kuramoto lengths of mRNA and
protein because protein is synthesized from a diffusing source
(of mRNA).

The Steady-State Limit: Radial Correlation Functions. Even assuming
free space, the covariance densities do not appear to yield simple
analytic forms in the limit as τ → ∞. Instead, we can calculate
explicit expression for the radial correlation functions where the
radius r is the distance between the two fields whose covariation
we are studying. For species i and j with fields Xi and Xj at time
τ, we define Γijðτ; rÞ to be the radial correlation function. It
satisfies

rd−1AdΓijðτ; rÞ ¼
Z

Rd

Z

Rd
δðr − jξ 0jÞCijj1ðτ; ξ; ξþ ξ 0Þdξdξ 0;

[28]

where Ad is the area of the unit sphere in d dimensions, and ξ
and ξ 0 are vectors measured from ξ0, the location of the DNA
molecule. The radial correlation function is still a density and
determines how on average the covariance between a molecule
of species i and a molecule of species j depends on the distance
between these two molecules. It is calculated by averaging over all
possible positions of these molecules relative to the DNA mole-
cule. With this definition, we find that the radial correlation func-
tions can be written as integrals (over time), but become explicit
functions when τ → ∞. Considering only d ¼ 3, free space, and
writing κ2 ¼ γκ 2

2þκ 2
3

γþ1 , then

Γ22ðrÞ ¼
δðrÞ
4πr2

a
γ
; Γ23ðrÞ ¼

ab
γκ22 þ κ23

e−r∕κ

4πr
[29]

and

Γ33ðrÞ ¼
δðrÞ
4πr2

abþ ab2

κ23 − κ22

e−r∕κ3 − e−r∕κ

4πr
: [30]

The δðrÞ is interpreted in the right-handed sense: ∫ ϵ
0δðzÞgðzÞdz ¼

gð0Þ for all ϵ > 0. Eqs. 29 and 30 should be integrated over r to be
interpreted as covariances of numbers of molecules. Integrating
Eq. 29 over any region that does not include r ¼ 0 shows that
there is no covariance between spatially separated mRNAs, and
integrating Eq. 30 over all r (multiplying by 4πr2 because we are
using spherical coordinates) recovers Eq. 26.

We further verified Eqs. 27, 29, and 30 by comparing integrals
of these densities with Monte Carlo simulations (SI Text).

Limiting Cases
To more easily interpret the expressions for the mean of the pro-
tein field, Eq. 20, and its covariance, Eq. 17, we consider two
limiting cases: the limit of rapid degradation of mRNA compared
to degradation of protein (γ → ∞) and the limit of fast diffusion
of proteins (κ3 → ∞).

The Limit of Fast Degradation of mRNA Compared to Protein. Many
proteins have substantially longer lifetimes than their corre-
sponding mRNAs (5). In the limit of γ ≫ 1, with a and b remain-
ing finite, mRNA diffuses relatively little over its lifetime
compared to protein, and it appears that all the protein is synthe-
sized at the DNA at the length scale associated with the diffusion
of the protein, κ3. Taking γ → ∞ and ξ0 ¼ 0, we find at steady-
state and in free space that
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M3j1ðξÞ ¼
ab

4πjξjκ23
expð−jξj∕κ3Þ

C33j1ðξ; ξ 0Þ ¼ δðξ − ξ 0ÞM3j1ðξÞ þ
ab2

2π3κ63

K2ð
ffiffiffiffiffi
2θ

p
Þ

θ
; [31]

where θ ¼ ðjξj2 þ jξ 0j2Þ∕κ23 . The function K2 is the order 2
modified Bessel function of the second kind. In this γ ≫ 1 limit,
Eq. 31 implies that the correlation between the protein field at
two different points depends only on the distance of each of the
points to the DNA, and not on the position of the points relative
to each other. These correlations arise because of the “bursti-
ness” of the synthesis of protein at the origin: A single fixed
Poisson source of protein would lead to a protein density field
that is uncorrelated at distinct points.

One application of Eq. 31 is to estimate how far the distribu-
tion of proteins differs from being Poisson. For a reaction-diffu-
sion system at equilibrium, detailed balance holds and the
distribution of numbers of each chemical species is Poisson (11).
Most biological systems are, however, far from equilibrium, but
fluctuations averaged over a small volume should be dominated
by diffusion and can be approximately Poisson (11). For a small
region of volume, we can find the mean and variance of the num-
ber of molecules in that volume by integratingM3j1 andC33j1 over
the region. At steady-state, we would obtain C33j1ðξ; ξ 0Þ ¼ δðξ −
ξ 0ÞM3j1ðξÞ for a Poisson field, and the mean and variance would
be equal. We can therefore measure the deviation from being
Poisson in a small region by computing the Fano factor (the var-
iance divided by the mean). At steady-state, when γ → ∞, and
for a small volume Δξ3 at a distance ξ from the origin, the result
is (SI Text)

Fano factor ¼ 1þ b
$
Δξ
κ3

%
3

Gðξ∕κ3Þ; [32]

where b is the burst size or the typical number of proteins synthe-
sized per mRNA and GðzÞ ¼ K2ð2zÞ expðzÞ∕ð2π2zÞ (SI Text).

We see from Eq. 32 that for large γ the deviation from being
Poisson becomes small from either the burst size b being small,
the volume of the region measured in units of the protein’s Kur-
amoto length being small, or else the region being far from the
DNA source (Fig. 2). This requirement for γ ≫ 1 (the ratio of
protein to mRNA lifetimes being large) implies short mRNA
lifetimes and so the Kuramoto length of mRNA is negligible.
(The effective lifetime of a protein cannot be increased arbitrarily
because proteins are lost at cell division as well as being de-
graded.) Nevertheless, Eq. 32 confirms the observations of Saun-
ders and Howard (20).

Limit of Fast Protein Diffusion. Spatially extended chemical systems
are often assumed to be spatially homogeneous, obviating the
need for considering the location of molecules. One justification
for this assumption is that if diffusion rates of relevant species
are fast compared to reaction rates, the species behave as if
they are uniformly distributed over the region in question. For
example, Grima and Schnell argue that diffusion effects become
important when the average intermolecular distance and the
Kuramoto length are of the same order (8). In our model, we can
examine the limit of large κ3. In free space, this limit implies that
the steady-state protein density will converge to zero everywhere
because proteins will rapidly leave any neighborhood of the
DNA. To obtain a nontrivial limit, we therefore include diffusion
in confined geometries. Let Γ be a reference region of dimension-
less unit diameter (such as a sphere or a cube). We consider our
system confined to the region LΓ where L has units of length, so
that our region has volume LdVolðΓÞ with d being the dimension
of space, and use a series solution for f ðt; ξjξ0Þ (SI Text).

We find a uniform protein concentration approximately holds
when the diameter of the region of interest is small compared to
the protein’s Kuramoto length. To be well mixed, the mean pro-
tein density needs to be constant over the region. We computed a
series expansion of M3j1 in powers of L∕κ3 at steady-state. To
first-order, we find

M3j1ðξÞ ¼
ab

LdVolðΓÞ

!
1þ

$
L
κ3

%
2

ηðξ∕LÞ þ⋯
"
; [33]

where η is a dimensionless function of position depending on the
geometry of Γ. We see that M3j1 approaches the well-stirred re-
sult of a concentration of ab∕LdVolðΓÞ when L ≪ κ3.

Estimating the Kuramoto Lengths of Cytoplasmic Proteins
Our results show that the Kuramoto length determines both the
size and the nature of local fluctuations, and we therefore esti-
mated the Kuramoto length for cytoplasmic proteins in budding
yeast. Although there are high-throughput measurements of
protein lifetimes (21), there have been almost no measurements
of diffusion coefficients in budding yeast. To estimate diffusion
coefficients, we therefore used the measured diffusion coefficient
for the kinase Fus3p (22) and rescaled this diffusion coefficient
by the cubed root of the ratio of the molecular mass of Fus3p to
the molecular mass of the protein of interest (SI Text). Although
this approach assumes that proteins are uniformly dense spheres
and so our results are only approximate, we believe that they are
still informative.

All of the proteins we considered had Kuramoto lengths
larger than a typical cell diameter (SI Text): Both the mean and
the median Kuramoto lengths are well over 100 μm (160 and
128 μm, respectively), but the diameter of a cell is only approxi-
mately 4 μm (23). We expect this difference to also hold for some
proteins in bacteria. For example, Green Fluorescent Protein
(GFP) has a diffusion coefficient of 7.7 μm2 s−1 in Escherichia coli
(24) and typically decays only through dilution. With a cell-cycle
time of 40 min, GFP then has a Kuramoto length of approximately
160 μm.AnE. coli cell, however, has a length of around 2.5 μm (25).

Our results therefore indicate that cytoplasmic proteins are,
perhaps typically, approximately uniformly distributed in E. coli
and in budding yeast, at least assuming spherical proteins with
constant diffusion coefficients and Brownian diffusion. Although
we have not explicitly included the nucleus in our calculations,
Eq. 33 is valid for the volume between two spheres providing this
volume is not small compared to the volume of the outer sphere.
We have also assumed constitutive expression, and Eq. 33 may

A B

-300 -200 -100 0 100 200 300
-300

-200

-100

0

100

200

300

P
ro

ba
bi

lit
y

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Number of Proteins

Fig. 2. Local fluctuations in protein numbers become approximately Poisson
sufficiently far from the DNA. (A) A snapshot of a simulation of gene expres-
sion with diffusion in free space. Protein is denoted by red crosses and the
DNA by the black circle. In this snapshot, there is by chance no mRNA. Para-
meter values are given in Fig. 1. Axis labels are in micrometers. (B) Histograms
of counts of proteins sampled from the purple and green boxes in A. A total
of 106 samples were taken at 10 s intervals. Each box has Δξ∕κ3 ¼ 0.31. The
colored dots show data collected from the simulation. The filled curves show
the best Poisson fits to the data. For the green box jξj∕κ3 ¼ 0.28 and Eq. 32
predicts a deviation from being Poisson of about 0.8; for the purple box
jξj∕κ3 ¼ 1.55 with a predicted deviation from Poisson of about 0.005.
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change with sufficiently large bursts of transcription. In contrast,
for mRNAs, even neglecting nuclear export, we predict the
Kuramoto length to be an order of magnitude smaller than the
Kuramoto length of a protein and so of similar size to the cell
diameter (assuming diffusion coefficients that are an order of
magnitude less than those of protein and degradation rates that
are an order of magnitude greater).

Discussion
To include spatial effects into models of biochemical networks is
challenging. Cells have complex internal geometries, are intracel-
lularly heterogeneous, and are packed with molecules, potentially
generating substantial volume exclusion (26). Furthermore, com-
bining spatial and stochastic effects even in simple geometries
and homogeneous environments is mathematically challenging
(11). Here, we have shown how techniques from the theory of
branching processes can be used to derive analytical expressions
for both the local mean and variance of proteins in an established
model of gene expression, at least for point molecules and homo-
geneous, Brownian diffusion. Such Brownian diffusion is appro-
priate for proteins, at least when measured in E. coli (27), but
anomalous diffusion (28) and active transport (29) has been re-
ported for mRNA.

Our approach is extensible to other first-order biochemical
networks in arbitrary geometries and with Markovian diffusion.
For example, we need not only consider constitutively expressed
genes but can also include regulated gene expression. Such ex-
pression is often modeled using a promoter with two states:
one “off,” with no expression, and the other “on,” with a constant
probability of expression per unit time (30). This model has been
applied widely from bacteria (31) to human cells (32) and fits
within our framework of branching processes (SI Text). To include
the nucleus in our model, we should use a diffusion density for a
confined region (such as that between two spheres) to describe
the cytoplasm and consider the source of transcription in Fig. 1A
not as a DNA molecule but as a nuclear pore complex stochas-
tically exporting mRNA. Indeed, we can describe the export of
mRNA from multiple nuclear pores diffusing on the outer mem-
brane of the nucleus as a branching process.

Despite the complexity of the intracellular environment, our
results indicate the local fluctuations of some proteins in bacteria

can be well approximated by Poisson fluctuations, at least for
those constitutively expressed and with small Kuramoto lengths
for their mRNA. For example, assuming Δξ in Eq. 32 is 1/8 of the
length of the cell, a conservative estimate of the Kuramoto length
of 10 μm, and that the limit of large γ holds (and so negligible
Kuramoto lengths for mRNA), then to have a correction to Pois-
son behavior of at least 10% in Eq. 32, the burst size must be
greater than 50 if the local volume is a distance of 0.75 μm from
the DNA and greater than 600 if the local volume is at distance
1.75 μm. From measurements of around 1,000 genes in E. coli,
however, over 92% of genes have proteins expressed with a b
value less than 50 and over 99% have a b value of less than
600 (33). Almost all genes, though, even if the Kuramoto length
for their mRNA is sufficiently small, would still have non-Poisso-
nian fluctuations in protein numbers if the local volume is only
0.25 μm away from the DNA.

Our results imply that cytoplasmic proteins are often uniformly
distributed in budding yeast and E. coli providing the levels of
these proteins have had time to reach steady-state and the ap-
proximations we have made, particularly of spherical proteins
and constitutive expression, are valid. Further, we have shown
that diffusion can cause local fluctuations to be close to Poisson
sufficiently far from, but not close to, the DNA. We expect non-
Poisson behavior in cellular compartments that have diameters
smaller than the Kuramoto length of protein, however, because
of the reflecting boundary conditions imposed by the walls of the
compartment (12). We also predict non-Poissonian behavior if
translational bursting is sufficiently strong. Although our results
are most applicable to bacteria because we have not explicitly in-
cluded the nucleus, we expect that the intuition gained holds
more generally (11, 12). With our analytical calculations, we have
thus demonstrated that although space and diffusion are often a
source of increased complexity when studying intracellular dy-
namics as a whole, they have, in contrast, the potential to simplify
local behavior.
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