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SI Text

Analytical results: Mean and Covariance. Here, we explain how to
derive and solve the equations for the moments of the particle
fields. The generating functions for the gene expression system
in the main text satisfy

P (lbl](uz—])
(——DAgo)u: Hbus (s — 1) — (s — 1))

ot

—(uz = 1)
0 a 0
=0 -y by|(u-1)
[0 0 —1}
A
a(uy = 1)(uy = 1)
+ | by(uy = 1)(us = 1) |, [S1]
0

where D = d5'diag(0, D,, D3) and 1= (1,1,1)7.

We can obtain equations for the first and second moments
by taking functional derivatives of Eq. S1 with respect to s;(£),i =
1,2, 3 and evaluating at s;(&) = 1,i = 1,2, 3, £ € R% Using the
notation described in the main text, we introduce the matrix

of means, [M]; = Mj;;, and the matrix of second moments

62ui , éu,-
[©]jx = Ojui = (W +oud(6 - ¢ )6sj(c§)) =1

o [s2]
@ = @2 .
0;

After differentiating and evaluating Eq. S1 as mentioned above,
we obtain

(i - DAfo)M =AM, [S3]
oJt

F

9 1

(E—(D@)I)A&))@: AQI)O + (F2> [54]
0

where A is defined in Eq. S1, ® is the matrix tensor product, F, =
F(z, & &'|&) is given in the main text, and

F, =F(z.£,E'|&)
0 M, M;, My M,
= | MM, MopM;, + My My, Mop My, +Mo My,

Msp My, MypMy, + My M,

2|1 2 M3\2M' +M3\1M3/

\ 31

\ 2

[S5]

The moments satisfy the initial conditions M ;(0, £|&y) = 6;;6(¢ —
&) and ©p;(0. &, &'[&) = 8,0, 0(& — &0)d(&" — &o)-

Analytical solution of these equations is accomplished by split-
ting A = A, + A, into diagonal and strictly upper diagonal parts,
introducing an integrating factor to absorb the term involving A,
and solving the remaining equations iteratively using standard
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Green'’s function or transform methods for the inhomogeneous
heat equation. The solutions for the M are given in the main text.
The second moments are

My 0 0

0,(, & ¢'6) =8(6-¢")| 0 My 0 |(z¢l&)
0 0 My,
+a /TFI (T],é, §,|§0)dfl =+ ab}’/T /TI 3_7(11_72)
0 o Jo
x [ f3yn =) s (2. 6.£ 100G, (6]
0 0 0
Oy (1, E,&ME) =6(E=E)|0 Map 0 | (7,¢l&)
0 0 My,
N by\/orefy(r—‘n) /W;df(,(%}/(f — 1-1)’ C 50)
x Fy(zy, &, &'|¢)dldr, [S7]
0 0 0
05(7, ¢, ¢'[¢) =5(€—§/){0 0 0 }(ﬁﬂfo)- [S8]
0 0 My,

We are primarily interested in obtaining expressions for the cov-
ariance

Ci(t.&.&&) = Oy =ML (1. &[E)M,. (1. E']&). [S9]

It turns out that the second term in the solution for ©, is exactly

Eo)M,. (1, &'[&)

My (2. 8l&) 0 0
-8(&E-¢') 0 0 0f,
0 0 0

so it cancels with the matrix of the products of means and part
of the first term. The first and third terms remain and yield the
expressions listed in the main text. From these solutions of the
moment equations, we can derive expressions for other statistical
quantities such as variance densities and radial distribution
functions.

RATFl(Tlvaflwo)dTl =M/ (t¢

The Steady-State Limit: Means. We compute the 7 — oo limit of the
means and radial correlation functions in a number of ways in
order to verify our results. Recall that the Laplace transform
of a function g = g(r) is given by

e=7g(r)dr. [S11]

()= [

The Laplace transform is particularly useful for calculating large
time limits (1) via the identity
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[S12]

Using this identity, the long-term mRNA density can be calcu-
lated:

Tim Moy, (7, ¢160) = ﬂlsif{)lg[e_”f(Kzz}'ﬁ £1€0)1(s)

= alimZ[f(3r. £))(s +7)

_a s+r
7’< 71111013’[]‘( )}( 27’)
1
:K%Ld(—z, §—§0|>» [S13]
27 K3

where L, is given by Eq. S78. Using the identity from Eq. S80, we
can verify that [p.M) (c0, £|€y) = a/y = vo/dy = m,. Employ-
ing the same technique and a judicious change of variables, we
can compute the 7 — oo limit of M3, when K, # x3:

b 1
= (Ld<7’|§_§0|>
3 Kz K.

}LIgMS\l( &l&o) =

The case k, = k3 is given by the limit
ab 1
lim lim My (7, £|&) = 4—4Ld—2 —.1E=&l |- [S15]
Ky —=K3 T—00 K3 K3

Typically k3 > k,, so for regions a moderate distance |&| > k,
from the DNA source, we have
) ‘) .

ab 1
L=,
(s

With the aid of the identity in Eq. S80, we can integrate
M3 (o0, €|&) over RY to see that the mean total number of par-
ticles agrees with the nonspatial result:

M3 (00, &l&y) =

[S16]

\/Rd M3|1 (OO, §|§0)d§ = ab = Von/(dodl) = msy. [Sl7]

The Steady-State Limit: Radial Correlation Functions. Due to the sym-
metry of the covariance densities and the Gaussian structure of
the diffusion mechanism, it is possible to compute tractable ana-
lytical expressions for I7;;. In the main text, we define the radial
correlation functions using Dirac delta functions. A more rigor-

ous definition is given by
a=— [ [ HE-i=¢)

/ d lr
0
X Cij (7, ¢, ¢")dgd¢,

where H is the Heaviside function H(r) =0,r <0, H(r) = 1,r >
0 and A, is the surface area of the d-dimensional sphere. For-
mally, we can think of Eq. S18 as

[S18]
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P (e, F) = A—dAd Ad 5:(1C - )Gy (z. €. ¢ 7)dgde?
= /(C’g,) c r2d Cijn(r.£.¢")ddd”, [S19]

E=¢'| =7

where §;(x) = 6(x — 7). Note that we are using an “unnormalized”
version of the delta function in the sense that,
Jo(1¢—¢'| —F)dede’ = A4#4". Also note that if the integrand
Cyjii possesses integrable singularities [in (¢, ()], the definition
in the main text should be used rather than the formal delta func-
tion definition.

In both the mRNA-Pr (i=2,j=3) and the Pr-Pr
(i =3,j = 3) cases, the expressions involve terms of the form

//5<|c—c'|—f)/f(n,n)f(n,c:—n)f(n,a'—n)dndcdc'.
[S20]

We can change the order of integration in Eq. S20 and make a
change of variables { = (= ¢’ +1n,{’ = (' + 7 to simplify:

Bq.820— [ F(Tsn)dy [ a(el=7) [ F(T.00(T1.6-0ctae
— [ oia-PA(T + o000
:Ad/mrd"&(r—?)f(Tl + Ty, r)dr
:Ad?;" F(T) +Ts.7), [s21]

recalling that f(z, {) depends only on 7 and |¢]. 5(|¢ —¢'| —F) is
the Dirac delta distribution on the sphere |¢| = 7 in R¢. With this
identity we can obtain tractable analytic expressions for the radial
correlation function T.

To facilitate comparison of these analytical expression to
Monte Carlo estimates, we introduce the radial distribution func-
tions (rdfs) p;;(r) and p;;(r). The rdfs are defined by

— | [e-i=¢

F
pz]TZ
0

X E(X1(¢)X1(¢))dedg” [S22]
and
/) pUTZ AdAdAd F=1c=¢"
X M (7, )M (2, £ ")dS'dL. [S23]

If the spatial dimension d = 3, the background term p;; = p;;—
[;; can also be computed analytically. The computation of this
integral serves two purposes. Firstly, it allows us to analytically
compute the effective radial distribution function p;; = I';+
pij- Secondly, since it is costly to estimate p;; by straightforward
Monte Carlo methods, having an analytic expression for p;; is
essential for comparing the theory to simulation. Fig. S1 shows
p computed from analytics and simulation. The subfigures with
error bars give the relative differences plus/minus one standard
deviation of the sample estimates.

The following three subsections detail the calculation of the
rcf T and the background term p for the mRNA-Protein and
Protein-Protein fields.
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mRNA-protein (I',;). The unconvolved form of the mRNA-protein
covariance is

Co31 (7.4, (") = s, [S24]
where II); =
aby [ [ eroestrn -z
X f(k3y72, & = n)f (K372, &' — n)dydrydry. [S25]

Applying the above manipulations,
AT = // 8(I8 = &' = F)Mp3(z, £, )dCde”

—aby [[ae-¢1=n) [ [ e

x [ Frtn - e (Bresn=¢)
X f (k315,17 — {)dndzydr dgdl’

= aby A 4! /T /1] e f((k2y + k2) 1, F)drodr .
o Jo

[S26]

In the limit as 7 — oo, we can exchange the order of integration to
obtain

o3 (7) :abi’/m/T1 e_”‘_fzf((K227+’<32)T27F)dedfl
0 0
—aby [ [T ernp(r 4 e dnde,
0 (2
1 )
— abyt / (k27 + K22, F)dry

—ab [T

where &2 = k37 + «3. In the 7 — oo limit, we can obtain an expli-

cit expression for I'y;:
ab 14+7y .
=1L NAR
&2 d( P2 >

Protein-protein (I';;). The unconvolved form of the protein-protein
covariance is

Ca31(7. £, {'N8o0) = 8(8 = &) M3 (7, £[&o) + a3,

~(40)% (47R27,) 42T /WR2 ) dr,  [S27]

[3(00,7)

[S28]

[S29]

where

T 7,
II3; = flb}’/ / e77ln—m) /f(Kzz}’(Tl —-17),1)

x F33(15. ¢, ¢'|n)dndr,dr,

b]/ / / / e —r(z1-72) —7 7)=73)=1y~73

x / F2r(m =) )

X [f(k3y(t2 — 73) + K373. L = m)f (K372, &' = 1p)
+f(&37(2 — 73) + k373, &' = n)f (K375, & — )]dndryde,dey.
[S30]
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Plugging C33); into the definition of I we see that the first term is
L, [ 1= 2ot - e e

_ A My (.0)d¢ = ab [S31]

for all 7 > 0. This means that I'55 is a distribution that can for-
mally be written as
Ad;d_lr33 (T, ;) = 5(;)ab + “1133 term”. [S32]

The second term, after some manipulation as discussed above,
gives

“Tlyterm” — / / 5(F — |¢ = ¢')Lysdgde”

= 2a(by)? A 4! /T/T1 /Tl ®dr;dr,dr;, [S33]
o Jo Jo

where

® = e remlmnnf ey (ry — 1) + K (23 + 1), ).

[S34]

We take the limit as ¢ — oo and rearrange the order of integra-

tion. Letting «2 = (yx3 +«2)/(y + 1) and changing variables
gives

O = e 1S~/ =S/ f (S F), [S35]

where S = (k2y +&2)(12 — 73) + 2373, Sy = (1 +7)(72 — 73),
S; = (71 — 7). In the limit 7 > oo, the integral in Eq. S33 be-

comes
b 2 5 ) S|/Kz o
__a(by) 2Adrd—l/ / / dS3dS,dS,.
(1473 o Jo 0

[S36]

“II33 term”

Performing the integrals for S; and S, and simplifying gives

2 o0
“II5; term” = 2ab 5 Agrt! / [
K3 — K5 0
— e~ (/K =1/)81)e=S1 /5 £ (S, F)dS,. [S37]
An explicit form can be obtained using Eq. S77:
Ad;d_lr33 (00, ;) = 5(?)ab
b? 1
Agat 2 Ly(—=,7
+Agr K‘32—K22< d(K32 r)
1+y .
-Lyl———, . S38
(vg?) o

The term . As mentioned above, the background term p (Eq. S23)
relating the rdf p and the rcf I' is a useful quantity that is slightly
more difficult to estimate directly using Monte Carlo techniques
than p in that it requires the generation of independent samples
of the fields. We can calculate this quantity either analytically or
by using quadrature.

We restrict ourselves to the case d = 3 and change to radial
coordinates and use the fact that the mean densities are radially
symmetric. We note also that the integral over the angular coor-
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dinates depends only on the radial lengths r, 7’ and 7. Further-
more, this quantity either vanishes or is equal to the solid angle
of the spherical cap of a cone with angle O(r, r’, 7). The key result
is that

By(r.r',F) = (/02”/0”/02” ./O”H(?— I = ¢/|)dgp'd0’dpde

{877:2(1 —Cosg)(r,r’,?)), F=—r| <r' <r+r

1677, r<ir <F-ro,
0, otherwise
[S39]
where 6 is given by
~ - 1r2+(r’)2—?2
cosf(r,r',F) = R — [S40]
We can then write the integral from Eq. 823 as
) r+F B
(S23] =47T2/ / (7 = (r=r')?)
0 |r=7]
X M (z,r)M (7, r')dr'dr
R 7=
+ 16”4/ /’ rrz(r,)zMi\l(T, r)M (z,r")dr'dr.
o Jo
[S41]

These integrals can be computed in closed form. For example,
in the limit as 7 —» oo, the mean densities happen to be linear
combinations of functions L; (Eq. S78), and Eq. S23 can be writ-
ten in terms of integrals of the form

I(s,s/,;)E/°°/°°33(r,r',;)L3(s,r)L3(s/,r’)drdr’. [S42]
0 0

The quantity in Eq. S42 can be calculated explicitly using sym-
bolic math software such as Maple. The resulting expression is
extremely long, so we omit its presentation here.

We can now write the rdfs (for dimension d = 3) in terms of
the function in Eq. S42. We can then analytically compute
pij(00,7) = Tjj(00, 7) + pyj(c0, 7), though we omit the details here.

Comparison to simulation. We verified Eqs. 23, 29, and 30 in the
main text by comparing integrals of these densities over regions
with exact Monte Carlo simulations. For our simulations, we used
an event-driven algorithm that is a slight modification of the Gil-
lespie algorithm (2): Over a given time interval of length At, each
molecule of type i moves by a random amount in a random direc-
tion so that its displacement is a Gaussian random variable with a
mean of zero and covariance of D;At. Since diffusion is occurring
in free space, there are no boundary conditions to implement.

As an example, to check the validity of our expression for
M;); (0, §/0) in Eq. 23, we use simulations to estimate the mean
number of steady-state mRNAs between two spheres of radius r;
and r; + Ar;. This number should equal the integral of M5, over
the volume:

r=ri+Ar;

ri+Ar; a e—r/Kz a
/ Amr? - sdr=——e/®(1+r/ky) .
T y 4mrks 4 e

[S43]

i

as we show in Fig. S2.
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Limiting Cases. The limit of fast degradation of mRNA compared to
protein. For the following calculation, we assume that we are
in R* with no bounding walls and that the DNA molecule is
at & = 0. Accordingly, we suppress the dependence on &, in
our notation. The limit y — oo with @ and b fixed can be achieved
by fixing v,, d; and letting both d,, v; — 0. Since we also fix D,
and Dj;, we have that k, — 0. From Egs. S13 and S14, we get, for

}/_)m7

e“f‘/’@

YILI{)IOMzh(Oo, §) =0, }i_)r{)loM3|1(oo, &)= ﬂbm- [S44]
In the following, we will use the identity
limy / “e~rig(t)dt = g(0) [S45]
y=o Jo

for z > 0, which can be checked using integration by parts.

To get Cy3; in the limit y — oo, we start with Egs. 21 and 22 in
the main text. We need to find the expressions for M3 and M3,
in the y — oo limit. For the calculation of M3, we use the change
of variables t = 7 — 7; to get

lim M5 (7, &) = limby/Te"("“)"lf(xzzy(r — 1)) +kity, E)dr,
y—o0 0

Y=o

= limby /T e e~ f (i3t + k3 (z — 1), E)dt
0

y—00

— be~f(x2z. &) [S46]
and from Eq. 23
My (2. £l&) = ef (k37 €), [S47]
which does not depend on y.
Using the change of variables
71 =x+Y, T, =Y, dr, = dy, dry =dx, [S48]
we obtain

limC33|1(§,§’) = 5(6—5,)M3“ + lil’l’lab]//‘m/r1 6_7(71_72)
r=e o 0 0
x [ f031(5 = ). OFss(os. €. £ [0 dcdndes

:5(5_5,)M3\1 +ab[)m}!il’£lo}//0wefyx
x [ £ OF 0. .60 dcdsdy
=68(E—&" M5,
b (" 0.0)Fs(y, & &'|0)ded
vab [ [ F0.0F st 0y
=6 —&" M3, +abAOOF33(y,§,§’)dy. [S49]

Recall that

Fy3(.8.&') = M3\3M3/\2 + M3|2M3/\3 = 2be >f(k3y, E)f (k3y. &').
[S50]

The integral of F3; can be evaluated:
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/0 ¥ Fas(0, & &")dy = 2b [S51]

where K, is the order 2 modified Bessel function of the second
kind (3). Defining

0= (lel> +1¢'1) /x5 [S52]
we obtain
J}LTOC33\1(°°, £.&") =0( &' )Mjy)1(00. &)
4 2ab? Ky (v2 |§|22+ €72 /x3)
4K3 (1€ + 1717

, ab? K,(+/20)

=8(& =& )M (00, &) +WZT
[S53]

Now, we consider the deviation of protein distribution from
Poisson. Consider a cubic volume of length A¢ on each side. We
imagine measuring the number of protein molecules contained in
the volume at a given point in time. To determine how far the
distribution of this variable differs from being Poissonian, we
compute the variance divided by the mean which is the Fano
factor. Assuming that A is small, so that Mjp(e0, &) and
Ci3)1 (00, &, &) are effectively constant over the volume, the mean
number of particles is approximately

A§3M3“(oo,§) [S54]
and the variance is approximately
ab? K,(2|&|/x
AE My (00.8) + A8 5 4%. [S55]
So we have
6 _ab? K>(2|¢|/x3) 3@1(2(2\5%)
Fanofactorzl—i—A.f 2 z‘él 3:1+A§ 2w RE :
A§3M3|1 (OO, 5) ab¢ —I¢l/x3
4alElx?
=1+A¢& sz(ﬂﬂ/Kz) exp(|¢]/x3)
<A5)3 K;(2[¢] /%) exp(|€]/x3)
K3 272|E| /s
A&\ 3
=1 +b<K—§) C(|€/x3), [S56]
3
where
K,(2z) exp(z)
G(z) = — 52, S57
@) 272z [557]

Limit of fast protein diffusion. Here, we obtain expressions for M),
in a closed region with reflecting walls, in the limit of y —» oo and
of L /k3 — 0. For the purposes of this calculation, we may assume
that protein molecules originate at a single fixed DNA molecule
at &, at a constant rate. (These assumptions would not give the
correct result for Cs31.) Recall that we have rescaled time so that
the rate of protein decay is 1.

Let our domain be LT, where I' is a reference region with
length 1 and L has units of length. We obtain for the mean density

Cottrell et al. www.pnas.org/cgi/doi/10.1073/pnas.1201103109

of protein at &

M (£l&,) = ab A ® ef, (v ) dy.  [S58]

Here, f; is the diffusion kernel of a particle diffusing at rate 1
within LT with reflecting boundary conditions. A scaling argu-
ment yields that

fr.¢go) = L™f(y/L?. ¢/ LI/ L). [S59]

where f is the corresponding diffusion kernel for L = 1.

We use the eigenfunction expansion of f(t, ), dropping the
dependence on (j. Using separation of variables in the diffusion
equation gives

o0

feo =73

j=0

e~y (0). [S60]

where ¢; are constants, 1; are the eigenvalues of the Laplacian on
the domain, and ¢; are the corresponding orthogonal eigenfunc-
tions. We use the normalization [ Fqu(C)de = 1. Now,

5(¢=¢o) = Z ;i (C) [S61]
Integrating both sides against ¢;({) gives
#iteo) = [ 8(C = Co)i(0)dk = ci. [S62]
So,
F(t.¢15) = 2 e ;(80);(£) [S63]
Jj=0
and
fLO.¢lgo) = L=f(v/L? ¢/LIG/L)
=LY e (G0 /L)gi(C/L).  [S64]

j=0

The reflecting boundary conditions tell us that ¢, is constant and
Ao = 0. All the other A; are positive. Since

[toccorac =1, [S65]

we have ¢ (¢|¢o) = vol(I")~1/2 for all ¢.
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Looking at mean protein concentration gives

)dy

M3y, (£|&) = ab /we_

=74 _yze_y“ /chjfﬁj(f/L)dy

b
%Cofﬁo(é/m
1
FZ{WW%%@/M
_ab
= Il
b&L21 o o |
zdz 21 J¢J(§/L)§(¥) (—/Ij)‘l
__a
_Ldvol(r)
Ldvol Z(g) vol(T’ ZCJ¢; (/L) (=4
1= 3 J .
ab ab 12
:Ldvol() Lévol(T Z(K3) (E/L).

[S66]

Here, n;(¢/L) is a dimensionless quantity depending on &, &,
and the geometry of T.

Kuramoto Lengths for Proteins in Budding Yeast. There have been
few direct measurements of the diffusion coefficient of proteins
in budding yeast, and we therefore estimated diffusion coeffi-
cients using the molecular mass of the protein (obtained from
www.uniprot.org) and the measured value of the diffusion coeffi-
cient of the kinase Fus3p (4). For a spherical protein, Stokes’ law
relates the diffusion coefficient, D, to the radius, R, of the protein

5):

kT
~ 6mR’ (5671
where k is Boltzmann’s constant and 7 is temperature. The coef-
ficient of viscosity is denoted 7. Assuming each protein is also
uniformly dense, then the mass, M, of a protein is proportional
to the volume of a sphere or R3. Consequently, the ratio of two
diffusion coefficients obeys

D R (M'\}
F:f:(ﬁ>

for uniformly dense, spherical proteins. We used Eq. S68 to es-
timate diffusion coefficients with D’ being the diffusion coeffi-
cent and M’ being the molecular mass of Fus3p. To find the
Kuramoto lengths, we took the square root of the diffusion coef-
ficient multipled by the lifetime of the protein using the data of
Belle et al. (6). We emphasize that our results are only approx-
imate: They rely on the accuracy of the measurement of the diffu-

[S68]
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sion coefficient of Fus3p and assume that cytoplasmic proteins
are uniformly dense spheres.

Using gene ontologies (www.geneontology.org), we asked if
particular classes of proteins had on average relatively small or
large Kuramoto lengths. Given the large absolute Kuramoto
lengths of all the proteins we investigated, there may, however,
be little selection on exact values, but rather only to maintain
values larger than the cell diameter. Proceeding nevertheless,
we found that proteins involved in responses to chemical stimuli
and stress, in sporulation, transporters, signal transduction, and
in the generation of energy all had relatively low Kuramoto
lengths despite having relatively high diffusion coefficients. These
proteins may then be rapidly degraded to maintain higher local
concentrations, perhaps for both specificity (7) and efficiency.

Regulated Expression of Genes. The model presented in the main
text considers constituitively expressed genes, wherein the DNA
is always active. We can extend our framework to genes that have
regulated expression.

To do this, we consider four species of molecule: Active DNA,
Inactive DNA, mRNA, and protein. Active DNA produces
mRNA exactly as DNA does in the model in the main text. In-
active DNA does not produce mRNA. With rate &, inactive DNA
switches into active DNA, and with rate k; active DNA switches
into inactive DNA. This system also satisfies the criterion for a
branching process: Once a particle is produced, its subsequent
evolution and that of its offspring are independent of all other
particles in the system. As in the main text, we rescale time by
the rate of protein decay d; and use parameters x, = ky/d;,

=k,/ds.

We first deal with the spatially homogeneous case. Let N; be
the number of molecules of species i, where i = 0 for inactive
DNA, i = 1 for active DNA, and i = 2, 3 are for mRNA and pro-
tein, respectively. We define the generating functions as

3
N;
8(t, 8o, 51, 8.83) = [E[l |sl- (t):|
i=0

[S69]

and

= g(t, 59, 81, 53, 531 molecule of species j).
[S70]

Llj(t, S(),SI,SZ,S:;)

Hence,

[S71]

Following a similar derivation as in the main text, we obtain the
following equations for the u;:

Uy Ko (U —ug)
O fup | _ | ki(uo —uy) +au(u; — 1)
07 | Uy rlbus (us = 1) = (up = 1)]
us —(uz —1)

To include the effects of diffusion we allow mRNA and protein
to diffuse through a region I' as in the main text, but fix the posi-
tion of the DNA, regardless of whether it is active or not. The
generating functions depend on functions s; = s;(¢) for £ in '
and i =0, ...,3. We let

=

i(1)

3
8(t. 50,51, 52,53) {H 5 (x }

i=0 1

[S72]

>
I

6 of 8


www.uniprot.org
www.uniprot.org
www.uniprot.org
www.geneontology.org
www.geneontology.org
www.geneontology.org
http://www.pnas.org/cgi/doi/10.1073/pnas.1201103109

and

u;i(t,50.51.52.531&) = g(t. 50,51, 52,531 molecule of speciesjaté),
[S73]

which gives

N,(0)

3 N
k
g(t, 80,81, 82,83) = H u;i(t, So. 51,82, 53 |x]( )(0)). [S74]

7=0 k=

—_

Ko (uy — ug)

Similarly, the equations for the u; are
K1 (g —uy) + auy (uy — 1)
r(bus(us — 1) = (up = 1)) |

(ai - DA&)) u= [S75]
—(u3 - 1)
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for { > 0, where
| £\ 1 ﬁge‘ﬁg, d=1
L0 = o (S) Km0 = { Lkoym. d=2
(27) eV, d=3
[S78]

and K,, is a modified Bessel function of the second kind with
degree n (8). L, satisfies the scaling relations

Ly(s. vag) = a'"%Ly(as. ) [S79]
for d = 1, 2, 3. There are two useful identities involving integrals

of L, over R?. They can be computed using symbolic software
such as Maple:

/ Ly(s.0)d¢ = A, / ® A1 L5 r)dr = L
R4 0 s

2r

o [s80]

/ Lyoa(s. 0)d¢ = A, / " P4 Ly (s r)dr =
R4 0
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where D = d;'diag(0, 0, D,, Ds).
Appendix. Recall that f(z, £|&,) is the Gaussian density given by
le=5l?
f(e.8l80) = f(r. 1€ = &) = (4n7) e [S76]
The Laplace transform of f (in 7) is given by
1
2
3
4
B

1,000

Fig. S1.
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Comparison of Monte Carlo estimates (blue points) and analytic expression (green solid areas) for rdfs p. The subplots show the relative difference of

the MC estimates and theory with error bars corresponding to the standard deviation of the estimates. The parameters used are the same as in the main text,

but with D3 = 50 pm?s'.
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Fig. 52. Comparison of Monte Carlo estimates (blue points) and analytic expression (green solid areas) for means M; = M;; and M3; = M;3. The subplots
show the relative difference of the MC estimates and theory with error bars corresponding to the standard deviation of the estimates. The parameters used are

the same as in the main text, but with D3 = 50 pm?s~'.
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Fig. S3. The Kuramoto length for cytoplasmic proteins in budding yeast is expected to be larger than then the cell diameter (approximately 4 pm). Using a
diffusion coefficient of 4.2 um?2s~" for Fus3p (4), measurements of protein half-lives (6) and molecular masses (www.uniprot.org), we estimated the diffusion

coefficient (/nset) and the Kuramoto length for approximately 1,400 cytoplasmic proteins in budding yeast.
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