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AUTHOR SUMMARY

Cells respond to change
stochastically because
biochemical mechanisms
are stochastic:
Intermolecular collisions
trigger biochemical events
at seemingly random
times. Yet cells can both
control and exploit such
stochasticity. To
understand how, we must
identify the sources of
stochasticity and
distinguish variation due
to information flow, say
from the extracellular
environment, from that
due to confounding
“noise”. Here, we present
a general scheme for
dynamic, stochastic
systems to decompose
variation into as many
components as there are
potential sources of
stochasticity. Further, we
identify a particular
component that measures
information flow and
describe conditions that
experimental probes, or
“reporters,” should satisfy
to determine this
component and all others.

Intuitively, the effect of
fluctuations in one
stochastic variable on the
variation in a variable of
interest can be determined
by comparing the expected
variation in this variable
when the first,
“explanatory” variable
freely fluctuates to that
when it is somehow
“fixed”. Our general
decomposition of variance
incorporates this idea by mathematically “fixing” the
explanatory variable by conditioning on its history (i.e., its
current value and its values at all previous times) (1). If we
would like to determine how fluctuations of n sources affect
the variation of an “output” variable, Z, then the
decomposition has nþ 1 terms: one term corresponding to
each of the n variables and another term to describe any
additional variation in Z that is generated through other
sources.

For biochemical systems,
we describe conditions that
reporters should satisfy to
measure each of the
components. A reporter,
such as a fluorescently
tagged protein, is needed
to measure the output of
the system. To assess the
effect of fluctuations in a
variable, Y , on the output,
Z, we must construct a
second “conjugate”
reporter so that its level
only correlates with the
level of Z because of
fluctuations in the levels of
Y (the two reporters are
conditionally independent,
given the history of Y).
Then, provided that the
reporters have the same
conditional means and the
same conditional variances,
both the covariance of the
two reporters and their
mean squared difference
describe terms in the
decomposition. Therefore,
for n terms in the
decomposition, n reporters
are needed.

To illustrate our theory,
we define transcriptional
and translational variation
and show how such
variation can be measured
experimentally using
fluorescent proteins
translated from a
bicistronic mRNA
(Fig. P1). For a standard
model of gene expression,
we also provide
mathematical expressions
for these components by

Fig. P1. A simple example: quantifying transcriptional and translational
variation. By conditioning on the history of mRNA levels, MH, and of all
processes extrinsic to gene expression,YH

e , we can decompose the variance in
the level of the protein, Z, into three components. For example, translational
variation is the extra variation generated on average given the joint history of
mRNA and Ye. This decomposition implies that we need a reporter for protein
levels (Z), a reporter conjugate given the history of Ye (Z 0), and a reporter
conjugate given the joint history of M and Ye (Z 0 0). Scatter plots (here using
simulated data) give a visual representation of the magnitude of the variance
components. Each dot represents measurements of two reporters in an
individual cell. For Z versus Z 0, scatter perpendicular to the diagonal Z ¼ Z 0

gives the sum of transcriptional and translational variation and scatter parallel
to the diagonal gives the sum of the variance of Z and extrinsic variation. For Z
versus Z 0 0, perpendicular scatter is given by translational variation and parallel
scatter is given by the variance of Z and both transcriptional and extrinsic
variation. The extrinsic variation is equal to the covariance of Z and Z 0.
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including conjugate reporters in the mathematical model we
analyze. We expect this analysis technique to be widely
applicable for evaluating variance components using stochastic
models of biochemical networks.

Much gene expression is initiated by signaling networks, and
we go on to explore how fluctuations in the environment and
upstream signaling can affect downstream gene expression.
Using a three-component decomposition, we reanalyze
previous measurements of the response of budding yeast to
extracellular pheromones (2) and conclude that, in this
example, variation from signal transduction is less substantial
than variation arising from other processes extrinsic to gene
expression.

Variation in gene expression is also a consequence of
information flowing through signaling networks from the
extracellular environment. We identify a component in our
decomposition whose size relative to the variance of the
output, Z, typically indicates how readily a network can
“decide” the state of the extracellular environment from the
level of Z. For an environmental input, X (for example, the
concentrations of a collection of ligands), we express this
informational fraction of the output variance as
VfE½ZjX $g∕V ½Z$, where E denotes expectation and V
denotes variance. As the informational fraction tends to its
maximum value of one, the distributions of outputs
corresponding to each state of the input become more distinct
from one another. Consequently, it is easier to unambiguously
identify the state of the input: More values of output can be
uniquely identified with an input state because the overlap
between the (conditional) output distributions decreases.

We apply our results to measurements of sensing of osmotic
stress by budding yeast (3) and show that informational
variation can be the dominant source of variation. As much as

80% can be informational if we include variation generated in
response to changes in the environment’s osmolarity. By
finding probability distributions of osmotic stress that
maximize the informational fraction we can, with some
caveats, make predictions about the types of environment
most faithfully detected by budding yeast’s osmosensing
network. These environments have frequent low levels of
osmotic stress and infrequent high levels.

A challenge when investigating variation in any system is
the influence of the wider stochastic environment in which the
system is embedded. Although previous work decomposed
variation into intrinsic and extrinsic components (4, 5), there
was no means to identify the processes generating variation or
to quantify their effects. Our general decomposition and
conditions for conjugate reporters provide just such a means.
They are essential knowledge for experimental design:
Although constructing reporters may sometimes be difficult,
these difficulties may not even be apparent, let alone solved,
without precisely knowing the properties required of the
reporters. Our results hold for any stochastic dynamic system
at any point in time and, taken together, thus provide a
general mathematical foundation for studies of cellular
variation.
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