
Bioimage informatics

Quantifying the nuclear localization of fluorescently 
tagged proteins
Julien Hurbain1,2 , Pieter Rein ten Wolde1 , Peter S. Swain2,�

1AMOLF, Amsterdam, 1098 XG, The Netherlands 
2School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
�Corresponding author. School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3BF, United Kingdom.  
E-mail: peter.swain@ed.ac.uk.
Associate Editor: Shanfeng Zhu

Abstract
Motivation: Cells are dynamic, continually responding to intra- and extracellular signals. Measuring the response to these signals in individual 
cells is challenging. Signal transduction is fast, but reporters for downstream gene expression are slow: fluorescent proteins must be expressed 
and mature. An alternative is to fluorescently tag and monitor the intracellular locations of transcription factors and other effectors. These pro-
teins enter or exit the nucleus in minutes, after upstream signalling modifies their phosphorylation state. Although such approaches are increas-
ingly popular, there is no consensus on how to quantify nuclear localization.
Results: Using budding yeast, we developed a convolutional neural network that determines nuclear localization from fluorescence and, option-
ally, bright-field images. Focusing on changing extracellular glucose, we generated ground-truth data using strains with a transcription factor 
and a nuclear protein tagged with fluorescent markers. We showed that the neural network–based approach outperformed seven published 
methods, particularly when predicting single-cell time series, which are key to determining how cells respond. Collectively, our results are con-
clusive—using machine learning to automatically determine the appropriate image processing consistently outperforms ad hoc approaches. 
Adopting such methods promises to both improve the accuracy and, with transfer learning, the consistency of single-cell analyses.
Availability and implementation: We performed our analysis in Python; code is available at https://git.ecdf.ed.ac.uk/v1jhurba/neunet- 
nucloc.git.

1 Introduction
Cells continually have to respond and adapt to changes in 
their environment. These changes are typically detected and 
relayed via signal transduction networks, which activate or 
deactivate transcription factors, leading to altered gene ex-
pression (Fig. 1A). In eukaryotes, changes in their activation 
state can cause the transcription factors to either enter or exit 
the nucleus (Vandromme et al. 1996). Examples in mamma-
lian cells include NF-κB (Hoffmann et al. 2002, Tay et al. 
2010) and p53 (Lahav et al. 2004) and at least tens of tran-
scription factors translocate in budding yeast (Conrad 
et al. 2014).

Monitoring these transcription factors as they translocate 
is a versatile method to characterize how cells respond to 
changes in their environment or intracellular state. It can be 
applied to single cells, to time-varying environments, and to 
dynamic cellular responses and has a time resolution of 
minutes, much closer to that of the underlying signal trans-
duction than reporters of gene expression.

For budding yeast, following the nuclear translocation of 
transcription factors and other proteins involved in regulating 
transcription has become a standard way to visualize and 
characterize stress responses over time. For example, the high- 
osmolarity glycerol (HOG) MAP kinase is often monitored to 

investigate hyper-osmotic stress (Hersen et al. 2008, Mettetal 
et al. 2008). Multiple transcription factors translocate in re-
sponse to a fall in extracellular glucose: Msn2, a master regu-
lator of the general stress response (Gasch et al. 2000, 
Causton et al. 2001), enters the nucleus (Jacquet et al. 2003, 
Hao et al. 2013) as does Dot6 (Gasch et al. 2017, Granados 
et al. 2018), a repressor of ribosome biogenesis (Lippman and 
Broach 2009), whereas Mig1 (Bendrioua et al. 2014, Lin et al. 
2015), a repressor of regulons for metabolizing other sugars 
(Conrad et al. 2014), exits (Fig. 1B).

Although all the approaches developed use fluorescent- 
protein tags to identify transcription factors, they differ in 
how they quantify their intracellular localization (Fig. 1C). 
To avoid generating strains with a second fluorophore mark-
ing the nucleus, measuring the spatial homogeneity of the 
transcription factor’s fluorescence signal is often used as a 
proxy for nuclear localization—a transcription factor concen-
trated in the nucleus generates a more focused spot than one 
evenly distributed in the cytoplasm (Fig. 1B). Nevertheless, 
there is no consensus on how to measure spatial inhomogene-
ity, with at least seven different methods proposed for tran-
scription factors in yeast alone (Table 1).

Noting their continuous adoption (Bergen et al. 2022, 
Jonas et al. 2023, Hong et al. 2024, Polisetty et al. 2025), we 
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set out to evaluate the different methods, comparing with one 
that we developed here using a convolutional neural network 
(CNN) with an everyday architecture. We included too an 

older standard for measuring spatial inhomogeneities: Hu 
moments (Hu 1962, Nasrudin et al. 2021), which use the 
moments of inertia treating the fluorescence values within a

Figure 1. Detecting and quantifying the nuclear translocation of transcription factors. (A) A schematic showing a transcription factor entering the nucleus, 
regulating gene expression, and so cellular physiology through the proteins synthesized. Signalout and Signal in are the extracellular and intracellular signals 
that generate active transcription factor. (B) The responses of three transcription factors in budding yeast to changes in extracellular glucose. Msn2 is the 
master regulator of the general stress response; Dot6 is a repressor of ribosome biogenesis; and Mig1 represses regulons for metabolizing alternative 
sugars to glucose. Scale bar ¼ 4 µm. (C) Seven methods to quantify the localization of transcription factors. Left and right images show Msn2-GFP in a 
single cell. We indicate the pixels used by each method with colours, those with higher fluorescence in red and those with lower in blue. Areas and 2D 
Gaussians use ensembles of pixels. The first Hu moment, η1, is a function of the pixels intensities at positions x and y. Scale bar ¼ 1 µm. (B and C) 
Images in non-carbon stress are for 2% glucose; those in carbon stress are for 0% glucose.

Table 1. Methods to quantify the nuclear localization of transcription factors from single-cell fluorescence images.

Name Method Reference

Petrenko Mean intensity of the brightest 20% of pixels Petrenko et al. (2013)
Sunnåker Coefficient of variation of the pixel intensities Sunnåker et al. (2013)
Logg Ratio of the mean of the three brightest pixels to the mean of the remaining pixels Logg et al. (2009)
Granados Ratio of the mean of the five brightest pixels to the median of the remaining pixels Granados et al. (2018)
Bodvard Ratio of the median value of a smoothed Gaussian centred on the brightest pixel over the  

median of the remaining pixels
Bodvard et al. (2011)

Cai Hao Difference of the mean of the five brightest pixels and the mean of the remaining pixels Cai et al. (2008)
Hao and O’Shea (2011)

Hu moments First invariant moment η1 Hu (1962)
Nasrudin et al. (2021)

Neural network Prediction by a convolutional neural network This study
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cell as masses. We found that our neural network–based 
method outperformed the others.

The purpose of our paper is therefore to demonstrate that 
a simple neural network—one requiring little training data or 
computational resource and little effort to set up—can out-
perform the established measures of nuclear localization. 
Switching to using this network should be straightforward 
for most microscopy laboratories and give substantial 
increases in accuracy. As we show, the training data can be 
generated locally in a single experiment using strains with nu-
clear markers.

2 Results
2.1 Finding transcription-factor localization from a 
nuclear marker
We generated time-lapse single-cell data with both a fluores-
cent transcription factor, tagged with green fluorescent 

protein (GFP), and a fluorescent nuclear marker, the Nhp6a 
gene tagged with mCherry (Hansen et al. 2015, Granados 
et al. 2018) (Fig. 2A). The Nhp6a protein remodels nucleo-
somes (Ruone et al. 2003). We used the ALCATRAS micro-
fluidic device to grow and trap cells (Crane et al. 2014) and 
the BABY algorithm (Pietsch et al. 2023) to segment and 
track these cells over time from time-lapse, bright- 
field images.

To identify the nucleus from the mCherry images, we used 
Otsu thresholding (Otsu 1979). Just as there is no consensus 
on the optimal way to measure the localization of transcrip-
tion factors, there is none too on how to determine the nucle-
us’s location (Jacquet et al. 2003, Li et al. 2018, Duveau et al. 
2024). In contrast to transcription factors, however, the fluo-
rescence from a nuclear marker is consistently bright over 
both time and extracellular conditions (Fig. 1C), and we 
found little difference between most methods (Supplementary 
Fig. S1), all of which threshold the image in some way

Figure 2. Estimating the nuclear localization and preparing images for analysis by a neural network. Scale bar ¼ 4 µm. (A) Our pipeline for preparing 
images for analysis. Cells grow stably between two pillars in the ALCATRAS microfluidic device (Crane et al. 2014), which has hundreds of these traps. 
Using the BABY algorithm (Pietsch et al. 2023), we segment single cells from the bright-field images and find the pixels corresponding to these cells in 
the fluorescence images. With Otsu thresholding of the image of the nuclear protein Nhp6a-mCherry, we determine the pixels in the nucleus. For each 
cell, we therefore have a bright-field image, a fluorescence image showing the intracellular fluorescence from a tagged transcription factor, and a binary 
image identifying the nuclear pixels. (B) A schematic showing the definition of nuclear localization [Equation (1)]. (C) The distribution of nuclear localization 
typically has three peaks. We show the distribution for Msn2-GFP, combining images from a time-lapse experiment where we switched extracellular 
glucose from 2% to 0%. The images are from just before and after the switch. (D) The convolutional neural network has three layers and predicts nuclear 
localization using the maximum projection over Z stacks of both fluorescence and bright-field images as inputs.
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(Johannsen and Bille 1982, Kapur et al. 1985, Bernsen 1986, 
Parker 2010). We chose Otsu thresholding because it has no 
parameters; it does though require a bimodal distribution of 
pixel fluorescence intensities (Goh et al. 2018) and so a suffi-
ciently bright nuclear marker. These conditions were satisfied 
in our experiments.

With the nucleus identified, we defined, following (Duveau 
et al. 2024), the degree of nuclear localization as 

‘ ¼
hInuci

hIcelli
(1) 

where Inuc represents the pixel intensities in the nucleus and 
Icell those for the whole cell, including the nucleus (Fig. 2B). 
Often researchers wish to predict the likelihood of down-
stream gene expression for which the most relevant quantity is 
the nuclear concentration hInuci, the total fluorescence in the 
nucleus divided by its area. We can recover this concentration 
from the localization by multiplying Equation (1) by hIcelli, the 
mean cellular fluorescence, which is commonly measured.

Applying our workflow to cells in different carbon sources, 
we typically found a tri-modal distribution of the level of nu-
clear localization (Fig. 2C). The largest mode corresponds to 
cells with a high nuclear concentration of transcription fac-
tor; the middle node to cells with a low nuclear concentra-
tion; and the lowest mode, based on visual inspection of the 
images, either to poorly segmented cells, such as those over-
lapping the edges of an image, or to cells actively dividing 
with consequently an imperfectly identified nucleus. We 
therefore consider cells with predominantly cytoplasmic tran-
scription factors to have 1:15<‘<1:65 and cells with pre-
dominantly nuclear transcription factors to have ‘>1:65.

2.2 A CNN to predict nuclear localization
We developed a CNN (Goodfellow et al. 2016) to predict nuclear 
localization from segmented fluorescence images of tagged tran-
scription factors (Fig. 2D). The network comprises three layers 
and a fully connected layer (Supplementary Fig. S2A) and maps 

microscopy images of a single cell to one continuous value, the 
predicted level of nuclear localization. As inputs, we used the 
maximum projection of fluorescence images taken at five Z sec-
tions and, although not required, the maximum projection of the 
corresponding five bright-field images. Such bright-field images 
are readily available and improved accuracy because the nucleus 
can sometimes be partly seen in bright-field (Adjavon 2022). We 
used the nuclear Nhp6a-mCherry marker only to establish a 
ground-truth data for training; the corresponding images were 
not used as network inputs. After training, using data from the 
transcription factors Msn2, Dot6, and Mig1, the network had an 
accuracy of 95% (Supplementary Fig. S2B). Excluding data from 
one specific transcription factor while training but not while test-
ing neither substantially nor consistently affected performance 
(Supplementary Fig. S2C). For instance, removing data from 
Msn2 while training does not always lead to poor performance 
while testing with that data.

2.3 Comparing different methods
With the nuclear marker determining the ground-truth level 
of nuclear localization, we compared the various methods us-
ing three transcription factors that respond to extracellular 
glucose (Fig. 3A). Two of these enter the nucleus in low glu-
cose while the other exits (Fig. 1B). A difficulty is that each 
method makes predictions over a different numerical range 
because each has its own way of characterizing spatial inho-
mogeneity. We therefore plotted the log2 ratio of the meth-
od’s predicted value to the ground-truth level of nuclear 
localization and centred the results by subtracting each meth-
od’s mean ratio (non-centred results are in Supplementary 
Fig. S3). Accurate methods should have a tight, symmetric 
distribution.

The neural network performed best. Although having a 
skewness comparable to other approaches (Supplementary 
Fig. S3), it had the lowest standard deviation and highest con-
sistency over the three transcription factors. Plotting the pre-
dicted localization versus the ground truth (Fig. 3B), the 
neural network’s results tightly followed the y¼ x line 

Figure 3. The neural-network approach best identifies nuclear localization from among the different methods. (A) The neural network has the tightest distribution 
of errors when comparing predictions to the ground-truth level of nuclear localization found from the Nhp6A-mCherry marker. Data are for Msn2-GFP, Dot6-GFP, 
and Mig1-GFP from cells in a step from 1% to 0% extracellular glucose. We plot the log 2 of the predicted to the ground-truth value and subtracted the mean 
over all cells, so that each method has an identical mean of zero. For the approach of Bodvard et al. (2011), we ensured all values are positive by incrementing 
each by one. (B) Plotting the neural network’s prediction against the ground-truth level of nuclear localization shows a tight linear relationship. The shading 
indicates numbers of cells on a log10 scale, with zero cells in black. The corresponding plots for the other methods are in Supplementary Fig. S4.
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(Supplementary Fig. S4), and both its correlation and mutual 
information with the ground truth were highest 
(Supplementary Fig. S5). Unlike the other methods, as it is 
the only one trained to do so, we can also directly interpret 
its predictions as estimates of Equation (1).

Although the neural network’s performance is perhaps un-
surprising, being the only method benefiting from the train-
ing data, it is useful to quantify how much better it is over the 
alternatives. To this end, we investigated time-series—the fo-
cus of multiple studies (Cai et al. 2008, Hersen et al. 2008, 
Mettetal et al. 2008, Hansen and O’Shea 2013, Hao et al. 

2013, Bendrioua et al. 2014, Lin et al. 2015, Goulev et al. 
2017, Granados et al. 2017, 2018, Pietsch et al. 2023, 
Duveau et al. 2024). The results further highlight how much 
our CNN-based method can improve the prediction of nu-
clear localization.

2.4 The neural network’s predictions best capture 
dynamic single-cell responses
Information transmission, and more broadly, the variation in 
how individual cells respond to changes in their environment, 
often manifests not in the response at a given moment in time 

Figure 4. The neural network best predicts single-cell time-series of nuclear localization. (A) The ground-truth time series of nuclear localization for cells 
experiencing a drop in glucose from 1% to 0% after 6 h of growth. Each row represents a single cell with the shading showing the normalized degree of 
nuclear localization. For Msn2, n ¼ 233; for Dot6, n ¼ 360; for Mig1, n ¼ 341. (B) The predicted mean level of nuclear localization over all cells at each 
time point varies between the different methods (predictions for individual cells are in Supplementary Fig. S6). The grey curve corresponding to the 
neural network is so close to the ground truth that it is often obscured. We normalized each prediction to be between zero and one. For Petrenko et al.’s 
(2013) method, we inverted their prediction so that it behaves similarly to the others. (C and D) The root mean square error is defined as the root mean 
square of the difference between the ground-truth nuclear localization and that identified by the method. (C) The root mean square errors at each time 
point for all cells. (D) The distributions over all cells of the root mean square errors for predicting entire time series. For each cell, we calculated the root 
mean square error based on the predictions made at every time point and then repeated this process for all cells to generate a distribution of root mean 
square errors. Results for Msn2 are on the left and for Mig1 on the right.
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nor in the long-time limit, but rather in the full dynamical tra-
jectory of the response over time (Tostevin and Ten Wolde 
2009, Granados et al. 2018). In constant glucose (Fig. 4), 
both Msn2 and Dot6 stochastically enter and exit the nucleus 
in some cells (Dalal et al. 2014), impeding straightforward 
averaging, which would obscure this behaviour. Almost all 
cells responded, however, when we removed extracellular 
glucose, with Msn2 entering the nucleus on average faster 
than Dot6.

Our data are a time series of images taken every 5 min. 
Processing these images into time series for each cell (Fig. 4A) 
and applying the methods time point by time point for each 
time series, we saw substantial differences even in predicting 
the mean nuclear translocation (Fig. 4B). Although all meth-
ods identified that the cells responded to the drop in extracel-
lular glucose, shown by a peak in the time series, some had 
difficulty when the transcription factors were predominantly 
in the nucleus, with higher errors for Msn2 and Dot6 after 
glucose drops and for Mig1 before. Only the neural net-
work’s predictions had low errors both at each time point 
(Fig. 4C) and averaged over all the time points in each single- 
cell time series (Fig. 4D).

3 Discussion
Our study shows that machine learning, through the CNN 
we developed, consistently outperforms ad hoc approaches, 
particularly for single-cell time series. Such time series best 
characterize individual responses (Murugan et al. 2021).

We opted for a CNN because this architecture balances the 
trade-off between accuracy versus ease of implementation 
and training. Although a more complex architecture such as 
a visual transformer (Liu et al. 2024) likely can increase accu-
racy, such networks require more training data and more 
computational resources having an order of magnitude 
more parameters.

Although neural networks require training data, so too do 
ad hoc approaches because without such data these 
approaches cannot be validated. The difference lies in the 
quantity of training data, but with microfluidic technology, 
generating sufficient data is possible in a single experiment, 
as we demonstrated here. Additionally, the quality of the ap-
proach can be continually improved by adding more images 
to the training data, such as from different microscopes, im-
aging protocols, strains, or species. Even better, a network 
trained in one laboratory will likely need much less data to be 
re-trained for another, with the promise to improve the con-
sistency of signal-cell analyses broadly.

Single-cell data are often noisy, and a poor choice of signal 
can further reduce the signal-to-noise ratio, confounding 
analyses. For nuclear translocations at least, we have shown 
that using machine learning to identify the signal, through 
optimizing the image processing required, is one way to gain 
accuracy and with it, no doubt, greater biological insight for 
the future.

4 Methods
4.1 Strains
Details of all strains are given in Granados et al. (2018)
[Synthetic Complete (SC)] medium at 30�C either supple-
mented with either 2% or 1% glucose or with no additional 
carbon source, denoted 0% glucose.

4.2 Cell preparation and loading ALCATRAS
We used overnight cultures in a 30�C incubator under agita-
tion to generate mid-log cells, which we diluted in fresh SC 
medium to an optical density of 0.1 and then incubated for a 
further 3 h before loading into a microfluidic device. To ex-
pose different strains to the same extracellular conditions, we 
used a multi-chamber version of ALCATRAS (Crane et al. 
2014). Prior to loading, the ALCATRAS chambers were pre- 
filled with growth medium supplemented with 0.05% bovine 
serum albumin (BSA) to facilitate cell loading and reduce 
cell clumping.

4.3 Time-lapse microscopy
Our microscope is a Nikon Ti Eclipse, optimized for imaging 
GFP, mCherry, and Cy5 fluorescence, as well as bright-field 
transmission. For GFP, we used a Chroma dual-band filter 
set (59 022) with an excitation range of 452–490 nm, centred 
at 470 nm, a beam splitter range of 496–548 nm, and an 
emission filter at 535/30 nm (520–550 nm range). The 
mCherry imaging shared the dual-band filter set for GFP, 
with an excitation range of 554–558 nm (centred at 556 nm), 
a beam splitter range of 595–677 nm, and an emission filter 
at 632/60 nm. Finally, for Cy5 imaging, we used an excitation 
filter at 620/60 nm (590–650 nm, centred at 620 nm), a 
660 nm longpass dichroic, and a 665 nm longpass emission 
filter. For Cy5 and bright-field transmission, the microscope 
had a white LED with a broad-spectrum range, and for fluo-
rescence imaging, an OptoLED light source from 
Cairn Research.

The objective was a Nikon 60× oil-immersion lens with a 
numerical aperture (NA) of 1.4, using Nikon F2 immersion 
oil. Imaging was captured with a Teledyne Prime 95 b 
sCMOS camera, with an 11 µm pixel size, 16-bit dynamic 
range, 1 × 1 binning, gain of 1, and air cooling at −15�C. 
Exposure time for imaging was set at 30 ms, with images cap-
tured every 5 min for 150 time points, i.e., 12.5 h. We ac-
quired bright-field and fluorescence images at five Z-sections 
spaced by 0.6 µm, but in a single focal plane for the Cy5 
channel. Both the microfluidic device and the media were 
kept at 30�C inside an incubation chamber (Okolabs). 
Nikon’s Perfect Focus System maintained consistent focus.

We used Fluigent pressure-driven system to control the 
flow of media and to switch extracellular glucose concentra-
tions. We applied carbon stress after 6 h by switching the 
flow rate of either 2% or 1% glucose medium from 9 µL/min 
to 1 µL/min and the flow rate of 0% glucose medium from 
1 µL/min to 9 µL/min. Slowly flowing medium did not enter 
the chamber containing cells and was redirected to waste. We 
used Cy5 dye in the 0% glucose medium to confirm media 
switches. Media were supplemented with 0.05% of BSA to 
facilitate cell loading and reduce cell clumping.

4.4 Image segmentation
To segment and track cells, we used BABY (Pietsch et al. 
2023) and the aliby Python pipeline (Mu~noz 
Gonz�alez 2023).

To identify nuclear pixels, we used Otsu thresholding on 
single-cell images after applying a Gaussian blur (Gonzalez 
and Woods 2009). Alternative methods, which we also 
tested, are in Table 2.

We estimated mutual information with the nearest- 
neighbour approach (Kraskov et al. 2004, Ross 2014).
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4.5 Constructing and training the neural network
We optimized, using random sampling, both the hyperpara-
meters and the architecture of the neural network using a 
subset of the training data of approximately 12 000 images. 
The training hyperparameters were the batch size (from 16 to 
256), the total number of epochs (from 20 to 200), the learn-
ing rate (from 10− 1 to 10−5), the number of epochs for the 
learning-rate scheduler (from 20 to 100), and the optimiza-
tion algorithm (Adam or stochastic gradient descent). The 
hyperparameters determining the network architecture were 
the number of input channels (from 4 to 32) in the first con-
volution layer with the number doubling in subsequent 
layers, the total number of convolution layers (from 1 to 3), 
the number of convolutions for each layer (from 1 to 3), 
whether the last convolution layer either increases the num-
ber of channels and uses maximum pooling or keeps the 
number of channels fixed, and the number of fully-connected 
layers (from 1 to 3). We selected hyperparameters by compar-
ing accuracy, defining a cell to have a localized transcription 
factor if their nuclear localization, Equation (1), was above 
1.65. The optimization suggests that there is no unique best 
architecture, but a diverse set of well-performing ones. Using 
the Adam optimizer with both a small batch size and learning 
rate, however, was strongly favoured.

The network we used had three convolutional layers 
(Supplementary Fig. S2A). The first two layers are followed 
by Relu activation functions and maximum pooling. The 
third layer has no maximum pooling, and we flatten its out-
put into a one-dimensional array. The final, fully-connected 
layer is a linear transformation with a ReLu function fol-
lowed by another linear transformation to a scalar value.

For training (Supplementary Fig. S2B), we used mean 
square error as the loss function and the Adam optimizer. We 
used a batch size of 64, a CUDA implementation of the net-
work for speed (Garland et al. 2008), and a learning rate of 
10− 3 with a linear learning-rate scheduler of ratio 0.5 over 
50 epochs.

The training data comprised around 180 000 single-cell 
images with 90% randomly selected for training and 10% 
for validation. We used data from an experiment with a 
strain with MSN2-GFP and a switch of extracellular glucose 
from 1% to 0%. To test the network, we used an entirely dif-
ferent data set also with MSN2-GFP but a switch of glucose 
from 2% to 0% (Figs 3–4 and Supplementary Figs S3–S6).

For coding, we used Python and Pytorch with the 
CUDA package.
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