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Figure S1. A comparison of different methods to identify the nucleus. (A) A compar-
ison of the different methods for identifying the nucleus from a fluorescence image of a nuclear
marker (Table 2). To establish a ground truth, we identified the nucleus by eye in approximately
200 images. (B) A matrix showing the high correlation between the different methods.
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Figure S2. A neural network to predict localisation from fluorescence and, option-
ally, bright-field images. (A) The structure of the convolutional neural network. Each gray
rectangle represents a different stage as the network processes the image. The size of the image
is indicated on the side and the number of feature channels on top. The single-cell images we use
as inputs are 117 × 117 pixels and have two channels: fluorescence and bright-field. (B) Typical
training curves for the network. We used a mean-square loss function and ≈ 180, 000 images
with 90% randomly selected for training and 10% for validation. To compute an accuracy, we
applied a threshold to the predicted level of nuclear localisation (the threshold divides the white
from the gray shaded areas in Fig. 2C). (C) The distributions of root mean square errors for each
single-cell time series of the dataset used in Fig. 4 for networks trained on data from different
pairs of transcription factors ignoring one. We chose the number of images to allow equally
sized datasets for all the training conditions. The results from the entire dataset are the same
as Fig. 4D. We show Msn2 are on the left and Mig1 on the right.
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Figure S3. Comparing predictions of nuclear localisation on an absolute rather
than relative scale. (A) The error distributions for the different methods of predicting nuclear
localisation from Table 2. Unlike in Fig. 3A, these distributions are not normalised to have zero
mean. Most poorly predict Eq. 1 because they are not explicitly designed to do so, although
their values do correlate with the transcription factor’s localisation. We have combined data for
Msn2-GFP, Dot6-GFP, and Mig1-GFP in a step from 1% to 0% extracellular glucose at all time
points. For the Bodvard et al. method [1], we ensured values are always positive by incrementing
each value by one. (B) The mean, standard deviation, and skewness of the error distributions.
We use shading to indicate the different transcription factors, with Msn2-GFP on the left and
Mig1-GFP on the right.
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Figure S4. The predicted nuclear localisation versus the ground-truth localisation.
Colours represent the number of cells on a log10 scale; black represents no cells. The white
dashed-line is a linear regression. Ideal predictions should be linearly proportional to the ground
truth, with a high R2.
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Figure S5. Statistically comparing the methods’ predictions to the ground-truth lo-
calisation favours the neural network. (A) A correlation matrix of the methods’ predictions.
Only the magnitude of the correlation is relevant because some methods are anti-correlated with
the ground truth. (B) The mutual information between the predictions and the ground-truth
localisation. Unlike the correlation coefficient, the mutual information measures both linear and
non-linear relationships between two variables.
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Figure S6. Predictions of nuclear localisation for individual cells during a drop in
extracellular glucose. Each row represents a single cell, with the colour code showing the
predicted level of nuclear localisation normalised to be between zero and one. We decreased
the extracellular glucose concentration from 1% to 0% after six hours. To aid comparison, we
inverted the values predicted by Petrenko et al.’s method [2], subtracting their prediction from
one.
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