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Abstract
Motivation: When analyzing 1D time series, scientists are often interested in identifying regions where one variable depends linearly on the
other. Typically, they use an ad hoc and therefore often subjective method to do so.
Results: Here, we develop a statistically rigorous, Bayesian approach to infer the optimal partitioning of a dataset not only into contiguous piece-
wise linear segments, but also into contiguous segments described by linear combinations of arbitrary basis functions. We therefore present a
general solution to the problem of identifying discontinuous change points. Focusing on microbial growth, we use the algorithm to find the range
of optical density where this density is linearly proportional to the number of cells and to automatically find the regions of exponential growth for
both Escherichia coli and Saccharomyces cerevisiae. For budding yeast, we consequently are able to infer the Monod constant for growth on
fructose. Our algorithm lends itself to automation and high throughput studies, increases reproducibility, and should facilitate data analyses for a
broad range of scientists.
Availability and implementation: The corresponding Python package, entitled Nunchaku, is available at PyPI: https://pypi.org/project/nunchaku.

1 Introduction
A common scientific problem is understanding the relation-
ship between two variables. When the dependent variable, or
some transformation of it, depends linearly on the indepen-
dent variable, the underlying system linking the two often
behaves more simply than generally. As a consequence, scien-
tists commonly focus their efforts on identifying and under-
standing this linear regime.

A well-known example is the growth of a population of
cells. In log phase, when the logarithm of the number of cells
increases linearly with time, the total mass of every intracellu-
lar component grows exponentially and the mass per cell is
approximately constant. Such steady-state conditions regular-
ize growth; metabolic fluxes are balanced; and physiology
simplifies, generating behaviours controlled by only a handful
of variables (Scott and Hwa 2023).

Biologists therefore often wish to determine when growth is
in log phase. Historically the approach has been to plot the
logarithm of a variable correlating with the number of cells,
such as optical density (OD), against time and to identify a
linear region by eye (Monod 1949). Today this subjective
technique is still used, with one scientist’s linear region not
necessarily the same as another’s.

A challenge to developing objective approaches is identify-
ing a suitable nonlinear model with which to compare the

linear one. There is no general way to describe all relation-
ships that we may observe. With a mechanistic understand-
ing, we might generate a nonlinear description, but such an
understanding is often lacking and, anyhow, may obviate the
need to find linear regimes.

Here, we circumvent this problem by inferring the piece-
wise linear description that best approximates an entire 1D
time series. By doing so, we reframe the task to one of detect-
ing change points—time points where the process generating
the time series changes, a well-studied problem (Stephens
1994) with an established frequentist solution (Baranowski
et al. 2019). We use a Bayesian approach, complementing
others (Hutter 2007, Papastamoulis et al. 2019), and general-
ize by allowing each segment of data to be described by a lin-
ear combination of arbitrary basis functions, with straight
lines being but one example. For a given set of basis functions,
we compare the evidence for every possible piece-wise linear
combination, found by marginalizing over all possible fits to
all possible contiguous subdivisions of the data. For linear
segments and for the optimal choice of segments, we provide
statistics for each segment, allowing users to select straightfor-
wardly the segment or segments of most interest. To illustrate
our algorithm, we primarily discuss two examples: determin-
ing the range of OD of a liquid culture where the OD depends
linearly on the number of cells and finding the exponential
phases of microbial growth curves.
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2 Materials and methods
2.1 Inferring contiguous regions using model
comparison
Given 1D time-series data and a set of K basis functions, we
wish to divide the data into the group of contiguous segments
that is best characterized by piece-wise linear combinations of
the basis functions. Irrespective of the data’s behaviour, we
will always find such a group. Our approach answers two
questions: how many piece-wise contiguous segments best de-
scribe the data given the basis functions and where the opti-
mal segment boundaries lie.

Let us assume that we have observations, ðxj; y
ðrÞ
j Þ, where j runs

from 1 to N and the xj are in ascending order; r indexes the Nr rep-
licates if any. We denote these observations collectively as D.

First, we consider whether we should divide the data into M
or M0 segments, using Bayesian model comparison (MacKay
2003). Assuming equal prior probabilities, PðMÞ ¼ PðM0Þ, we
write the Bayes’ factor as:

PðMjDÞ
PðM0jDÞ

¼ PðDjMÞPðMÞ
PðDjM0ÞPðM0Þ

¼ PðDjMÞ
PðDjM0Þ

; (1)

and therefore we should determine the evidence PðDjMÞ for
each M.

The evidence is a marginal likelihood. For M contiguous
segments, there are M–1 unknown boundary points, which
we denote as n $ ðn1; . . . ;nM%1Þ with ni < niþ1. These points
are integers and index an xj. The two remaining boundaries
are the indices for the first and last x values: 1 and N. We as-
sume that each segment contains a minimal number of data
points ‘min, so that niþ1 ' ni þ ‘min. The choice of ‘min

depends on the type and number of basis functions: in gen-
eral, ‘min ' K.

The evidence is a sum over all potential n:

PðDjMÞ ¼
P

n PðDjn;MÞPðnjMÞ

¼ f ðN;M; ‘minÞ
P

n PðDjn;MÞ
(2)

where we use that any permissible ni is equally likely as any
other to write the prior PðnjMÞ as a function of N, M, and
‘min. Specifically, this bounded uniform prior is the reciprocal
of the number of possible n, which satisfy

n1 ' ‘min; n2 ' n1 þ ‘min; . . . ; nM%1 ' N % ‘min: (3)

for a given M and ‘min. We therefore have:

PðnjMÞ ¼

"
XN%ðM%1Þ‘min

n1 ¼ ‘min

(
XN%ðM%2Þ‘min

n2 ¼ n1þ‘min

( ) ) )

(
XN%‘min

nM%1 ¼ nM%2þ‘min

1

#%1

¼ f ðN;M; ‘minÞ:

(4)

Second, for a given M and n, we fit the data to M different linear
combinations of the basis functions, one for each segment, with
each combination independent of the other. The linear combina-
tion ending near the data points indexed by ni and niþ1 depends
only on the data indexed by the indices ni þ 1 and niþ1

inclusively, denoted Di, and this data does not determine any
other linear combination. Therefore, mathematically,

PðDjn;MÞ ¼ PðD1j1; n1Þ ( PðD2jn1 þ 1;n2Þ ( ) ) )

(PðDMjnM%1 þ 1;NÞ
(5)

where PðDijni þ 1; niþ1Þ is the likelihood of a linear combination
of the basis functions describing the data indexed by ni þ 1 to
niþ1.

2.1.1 Finding PðDjn;MÞ
For each segment of the data, we consider the K basis func-
tions, each individually denoted /kðxÞ and collectively /ðxÞ,
and correspondingly K coefficients, each denoted mk. If fitting
lines, we have two basis functions: /1 ¼ 1 and /2 ¼ x, and
two mk where m1 determines the line’s y-intercept and m2 its
gradient. We then set ‘min ¼ 3 so that there are sufficient data
points in each segment to define a line.

We let Pðyjjxj;mÞ describe how a data point yj at xj deviates
from the linear combination of basis functions and assume that
this deviation is independent of the deviations of other data
points.

For the ith segment, we then have

PðDijni þ 1;niþ1Þ ¼
ð

dm PðmÞ
YNr

r¼1

Yniþ1

j¼niþ1

PðyðrÞj jxj;mÞ

¼ PðmÞ
ð

dm
YNr

r¼1

Yniþ1

j¼niþ1

PðyðrÞj jxj;mÞ
(6)

assuming the prior PðmÞ is a constant, with each mk indepen-
dently and uniformly distributed in some bounded region so that

PðmÞ ¼
1

ðmmax
1 %mmin

1 Þ ) ) ) ðmmax
K %mmin

K Þ
for mi 2 ½mmin

i ;mmax
i +

0 otherwise

8
<

:

(7)

for fixed mmin
k and mmax

k for all k.

2.1.2 Marginalizing PðDjn;MÞ
Using Equation (5), we factorize the sum in Equation (2):

P
n PðDjn;MÞ ¼

XN%ðM%1Þ‘min

n1¼‘min

PðD1j1; n1Þ

(
XN%ðM%2Þ‘min

n2¼n1þ‘min

PðD2jn1 þ 1; n2Þ ( ) ) )

(
XN%2‘min

nM%2¼nM%3þ‘min

PðDM%2jnM%3 þ 1;nM%2Þ

(
XN%‘min

nM%1¼nM%2þ‘min

PðDM%1jnM%2 þ 1;nM%1Þ

(PðDMjnM%1;NÞ
(8)

and use the method of variable elimination (Zhang and Poole
1996) to evaluate these sums. First we perform the rightmost
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one, over nM%1, to generate a function of nM%2. We then per-
form the next rightmost sum, over nM%2, of this function and
the next term in Equation (8), which generates a function of
nM%3. We repeat this process until we reach the leftmost sum
over n1, enabling OðMN2Þ operations in total instead of
OðNMÞ. We evaluate Equation (4) similarly.

All that remains is to determine PðDijni þ 1;niþ1Þ so that
we can find PðDjMÞ via Equation (2) and Equation (8).

2.1.3 Finding PðDijni þ 1;niþ1Þ for known measurement error
To proceed, we assume that Pðyjjxj;mÞ is a normal distribu-
tion with mean /ðxjÞTm, or equivalently

P
k mk/kðxjÞ, and a

standard deviation rj. If we know the rj, e.g. by approximat-
ing each by the corresponding measurement error, then
Equation (6), the likelihood of a linear combination describ-
ing the data indexed by ni þ 1 to niþ1, becomes

PðDjni þ 1;niþ1;rÞ ¼ PðmÞ
Yniþ1

j¼niþ1

ð
ffiffiffiffiffiffi
2p
p

rjÞ%Nr

(
Ð

dm exp %
XNr

r¼1

Xniþ1

j¼niþ1

½yðrÞj % /ðxjÞTm+2

2r2
j

2

4

3

5:
(9)

To evaluate the integral, we extend it to infinite range for all mk—
a suitable approximation because we expect the integrand to be
strongly peaked at the most likely values of each mk (MacKay
2003). We can then perform the integration analytically.

Consider data with a single replicate. Define ‘i ¼ niþ1 % ni

to be the number of x values in the ith segment and zðiÞ to be a
vector with components yj=rj, with the superscript i used to
denote the ith segment. Let UðXÞ be the K( ‘i matrix with
components Ukj ¼ /kðxjÞ=rj, and further defining

AðiÞ ¼ UUT ; mðiÞ ¼
$

AðiÞ
%%1

UzðiÞ (10)

so that AðiÞ
kk0
¼
P

j /kðxjÞ/k0ðxjÞ. The matrix AðiÞ is a symmetric
K(K matrix, which is invertible when the basis functions /k are
linearly independent and when ‘i ' K. Then standard algebra gives

Xniþ1

j¼niþ1

½yj % /ðxjÞTm+2

2r2
j

¼ 1
2

$
m%mðiÞ

%T
AðiÞ m%mðiÞð Þ þUðiÞ

(11)

where

2UðiÞ ¼
$

zðiÞ
%T

zðiÞ %
$

mðiÞ
%T

AðiÞmðiÞ: (12)

Using Equation (11) and the results for integrating multivari-
ate Gaussian distributions (MacKay 2003), we have that

Ð
dm exp %

Xniþ1

j¼niþ1

½yj % /ðxjÞTm+2

2r2
j

2

4

3

5 ¼ ð2pÞ
K
2

$
detAðiÞ

%%1
2

(e%UðiÞ :

(13)

If we are fitting straight lines with K¼ 2 and /1 ¼ 1 and
/2 ¼ x, then it is useful to define (Hinrichsen et al. 2017)

T1 ¼
P

j

y2
j

2r2
j

; T2 ¼
P

j

x2
j

2r2
j

T3 ¼
P

j
1

2r2
j

; T4 ¼
P

j
yj

r2
j

T5 ¼
P

j
xjyj

r2
j

; T6 ¼
P

j
xj

r2
j

(14)

with j running from ni þ 1 to niþ1. Using these definitions,

AðiÞ ¼ 2T3 T6
T6 2T2

& '
; mðiÞ ¼

2T2T4 % T5T6

4T2T3 % T2
6

2T3T5 % T4T6

4T2T3 % T2
6

0

BBB@

1

CCCA

UðiÞ ¼ T1 %
T2T2

4 þ T3T2
5 % T4T5T6

4T2T3 % T2
6

(15)

and the integral becomes ð2pÞð4T2T3 % T2
6Þ
%1

2e%UðiÞ .
With more than one replicate, z runs over all y in all rep-

licates, with the replicates arranged contiguously, and is of
length Nr‘i; U has rows of length Nr‘i with xniþ1 to xniþ1 re-
peated Nr times in each row to match the corresponding y
values. For the linear case, the sums in Equation (14) are
over both j and the number of replicates, so that T1, e.g.,

becomes
P

j;r

$
yðrÞj

%2

2r2
j

.

Returning to Equation (9), we find

PðDijni þ 1; niþ1; rÞ ¼ PðmÞ
$ Yniþ1

j¼niþ1

ð
ffiffiffiffiffiffi
2p
p

rjÞ%Nr
%

(ð2pÞ
K
2

$
detAðiÞ

%%1
2
e%UðiÞ

(16)

with the help of Equation (13). For this approximation to
be valid, we require that the strongly peaked region in m
space is within the a priori range for m. The area under the
integrand in Equation (13) is proportional to the square
root of detAðiÞ, and the prior range of m must be large
enough to contain this area. Using Equation (7), we need

$
detAðiÞ

%1
2 ( PðmÞ , 1: (17)

2.1.4 Finding the boundary points
After determining the optimal number of segments into
which to divide the data from Equaion (1), we next find
their boundary points. Using Bayes’ theorem, the posterior
for n is

PðnjD;M;rÞ ¼ PðDjn;M; rÞPðnjMÞ
PðDjM; rÞ

(18)

which we evaluate using Equations (2, 4, and 5). We use the
mean posterior value of ni to estimate the optimal ni:
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E½ni+ ¼
P

n niPðnjD;M; rÞ

¼ PðnjMÞ
PðDjM; rÞ

X

n
niPðDj1;n1;rÞ ) ) )PðDjnM%1;N;rÞ

(19)

which we sum following Equation (8). The posterior variance,
Var½ni+, determines the error in this estimate, which we find
similarly.

2.1.5 Finding PðDjMÞ for unknown measurement error
If the rj are unknown, we assume the same constant r for all j
with a uniform prior probability between ½rmin;rmax+
(Gelman 2006). Equation (2) then becomes

PðDjMÞ ¼ f ðN;M; ‘minÞ
P

n PðDjn;MÞ
¼ f ðN;M; ‘minÞPðrÞ

P
n

Ð rmax
rmin

drPðDjn;M;rÞ:
(20)

The constant PðrÞ ¼ 1=ðrmax % rminÞ will cancel in Equation
(1) when we compare the evidence for different M.

Using the equivalent of Equations (9 and 13), we find that

PðDijni þ 1; niþ1; rÞ ¼ PðmÞð
ffiffiffiffiffiffi
2p
p

rÞ%Nr‘iþK

(
$

detAðiÞ
%%1

2
exp %UðiÞ

r2

( ) (21)

where we now explicitly follow r and so set the rj in
Equation (10) to unity, making zi ¼ yi and Ukj ¼ /kðxjÞ.
Similarly for the linear case, the rj become unity in Equation
(14).

Consequently,

PðDjn;M;rÞ ¼ PðD1j1;n1;rÞ ( PðD2jn1 þ 1;n2; rÞ ( ) ) )

(PðDMjnM%1 þ 1;N;rÞ

¼ PðmÞMð
ffiffiffiffiffiffi
2p
p

rÞ%NrNþMK
YM

i¼1

$
detAðiÞ

%%1
2

( exp %
PM

i¼1 UðiÞ

r2

& '
:

(22)

Although with Equation (22) it is possible to approximate an-
alytically the integral over r in Equation (20) by extending
the range of the integrand to ð0;1Þ, the resulting expression
prevents us from summing over n using variable elimination.
Instead, we swap the sum and the integral to write

PðDjMÞ ¼ f ðN;M; ‘minÞPðrÞ
ðrmax

rmin

dr
X

n
PðDjn;M; rÞ (23)

and numerically evaluate, using variable elimination to sum
over n in Equation (23) for each r chosen by the integration
algorithm.

We find the expected boundary points via Equation (19),
again numerically integrating over r.

Performing the integration: To stabilize the numerical inte-
gration, we scale the integrand of Equation (23) by its value
at the most likely value of r, making the integrand nearly al-
ways less than one and preventing overflow. We use

expectation-maximization (EM) to estimate the most likely r
for a given M. The EM algorithm finds the r that maximizes
PðDjM;rÞ (Bishop 2006). We guess a value of r, ro say, and
find PðnjD;ro;MÞ from Equation (18). To update ro, we
maximize Qðr;roÞ with respect to r, where

Qðr;roÞ ¼
P

n PðnjD;M;roÞ log PðD;njM;rÞ
¼ E½log PðDjn;M;rÞ þ log PðnjM;rÞ+
¼ E½log PðDjn;M;rÞ þ log f ðN;M; ‘minÞ+

(24)

with the expectations taken over PðnjD;M;roÞ. Expanding
Equation (24) using Equation (22), there are only two terms
that depend on r, and we can differentiate to find the updated
r ¼ rn:

r2
n ¼

2
NrN %MK

XM

i¼1

E½Ui+: (25)

We use the equivalent of Equation (19) with r ¼ ro to evalu-
ate these expectations and iterate until the value of r
converges.

2.1.6 Implementation
For basis functions that generate lines, we compare the differ-
ent linear segments by calculating the gradient, intercept, and
the coefficient of determination R2 of the line maximizing the
likelihood for each segment. The user can then select a desired
segment, such as the one with the largest gradient.

The algorithm requires the a priori bounded region of m in
Equation (7). Again specializing to straight lines, the prior speci-
fies the range of the intercept m1 and the gradient m2:
½mmin

1 ;mmax
1 + and ½mmin

2 ;mmax
2 +. The user can either provide both

ranges or only the range of m2 or give the maximal range of y
possible in the experiment, ½ymin; ymax+. If the user provides only
the range of m2, we estimate mmin

1 as minð%mmax
2 xmax;mmin

2 xminÞ
and mmax

1 as maxð%mmin
2 xmax;mmax

2 xminÞ. If the user provides the
range of y, we estimate the range of m2 as ½%gmax; gmax+, with
gmax ¼ ðymax % yminÞ=Dxmin and Dxmin being the smallest differ-
ence between two neighbouring x values.

2.1.7 Availability
We coded the algorithm as a Python package available at
https://pypi.org/project/nunchaku and via pip. We have also
embedded nunchaku into our omniplate software for ana-
lyzing plate-reader data (Monta~no-Gutierrez et al. 2022).

2.1.8 Generating and testing with synthetic data
To test our method, we generated a piece-wise linear function
f(x) with 1 - M - 10 continuous linear segments, each hav-
ing between 10 and 50 data points and with a unit distance,
Dx ¼ 1, between data points. We sampled h, the angle be-
tween each segment and the x-axis, from a uniform distribu-
tion on the interval ½%tan %1ð20Þ; tan %1ð20Þ+, so that the
gradient, tan h, lies between ½%20; 20+. Furthermore we en-
sured that the difference in h between neighbouring segments
is larger than a fixed minimum, h0. We added Gaussian noise,
e . Normalð0;r2Þ, to give three replicates of y ¼ f ðxÞ þ e.
We generated 3600 synthetic datasets in total, a combination
of 200 different piece-wise linear functions f(x), three values
of h0, and six values of r. In Figs 1 and 2, h0 ¼ 10

/
.
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2.2 Experimental methods
We used a prototrophic strain of Saccharomyces cerevisiae
(FY4), precultured in synthetic complete (SC) medium with
2% (w/v) sodium pyruvate in a 30/C shaking incubator at
180 rpm for two days. Before the experiment, we diluted the
cells 6-fold and let them grow for six hours. After washing the
cells twice with fresh minimal media (Verduyn et al. 1992),
we inoculated them into minimal media with different concen-
trations of fructose on a 96-well microplate. The liquid vol-
ume of each well was 200 ll.

For Escherichia coli, we precultured cells in 3 ml liquid
Luria broth (LB) with one colony from a fresh plate and grew
aerobically to log phase (6 h) at 37/C with 250 rpm shaking.

We then inoculated 3 ll culture into 147 ll fresh LB medium
per well on a 96-well microplate.

We used either a Tecan Infinite M200 Pro or F200 plate
reader at 30/C for S.cerevisiae and 37/C for E.coli with linear
shaking at amplitude 6 mm. Measurements of absorbance at
600 nm, OD600, were taken every 10 min.

Data were analyzed using the omniplate software
(Monta~no-Gutierrez et al. 2022).

2.3 Fitting Monod’s equation
After estimating the specific growth rate k at each concentra-
tion of fructose s, we have a dataset D $ fðki; siÞg with 38
data points. We use Bayesian inference to estimate the

Figure 1. The nunchaku algorithm correctly predicts the number of linear segments in synthetic data when the measurement noise is not too high. (A)
Example synthetic datasets with the ground truth in blue (small circles) and the triplicate data in light grey. The large red circles are the predicted
boundaries of each linear segment with the best-fit line in red. Left: with a measurement error of 0.25, the predictions overlap the data; Right: with a
measurement error of 8, the predictions miss some segments, which the noise obscures. As a prior, we specify only that the gradient of each line lies
between ½%25; 25+. For this data, a measurement error of 0.25 is 0.5% of the mean of y and an error of 8 is almost 15%. (B) The algorithm underestimates
the number of linear segments only once the magnitude of the measurement noise becomes sufficiently high. The actual number of segments is M; the
estimated number is M̂ .

Figure 2. Nunchaku performs as well as or better than the NOT algorithm (Baranowski et al. 2019). This algorithm only supports input of one y value for
each x value: we therefore input either one replicate or the mean of three replicates. The data are generated similarly to that in Fig. 1 (Section 2). As a prior
for nunchaku, we specify that the gradient of each line lies between ½%25; 25+. (A) The root mean squared error (RMSE) between the ground truth and the
best-fit lines. (B) The difference between the predicted number of segments M̂ and the ground truth M (left) and the percentage of correct predictions of
M with M̂ ¼M (right).
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constants kmax and KM of Monod’s equation. Assuming a
Gaussian measurement error of kmax with a standard devia-
tion r and independent measurements, the likelihood

PðDjkmax;KM;rÞ ¼ ð
ffiffiffiffiffiffi
2p
p

rÞ%N

(
YN

i¼1

exp %
ki % kmax

si
KMþsi

* +2

2r2

" #

:

(26)

To marginalize over r, we assume PðrÞ / 1=r, so that

PðDjkmax;KMÞ /
ð1

0
drPðDjkmax;KM; rÞPðrÞ

/
XN

i¼1

ki % kmax
si

KM þ si

& '2
" #%N

2

:

(27)

We further assume that the prior Pðkmax;KMÞ is uniform, and
so the posterior probability kmax and KM is proportional to the
likelihood, Equation (27). We therefore maximize the likelihood
with respect to kmax and KM using the BFGS algorithm. We esti-
mate the errors in these inferences using the diagonal elements of
the Hessian matrix %rr log PðDjkmax;KMÞ evaluated at the
maximum of the likelihood (MacKay 2003).

3 Results
3.1 Approximating data with a piece-wise linear
model
Although our goal is to allow scientists to choose objectively
the segment of their data that is ‘most’ linear, we adopt a gen-
eral methodology and allow the data to be described by linear
combinations of arbitrary basis functions. For straight lines,
there are two basis functions, /1ðxÞ ¼ 1 and /2ðxÞ ¼ x, but
datasets may require higher order polynomials or even
Gaussian or sigmoid functions (Bishop 2006).

For a 1D time series and a given set of basis functions, we
will infer the optimal piece-wise description—the number of
contiguous segments into which we should divide the data,
where the boundaries of each of those segments should be,
and the best-fit linear combination of basis functions for each
segment. Deciding which of these segments is then most ap-
propriate for the task in hand is unavoidably subjective. It is
straightforward, however, to compare different segments by
comparing properties of their best-fit linear combinations.
For lines, these properties include their gradients and R2

value—how much of the variance of the dependent variable is
explained by the independent one (Moses 2017).

We use a Bayesian approach to infer the best piece-wise de-
scription and assume only that the data of each segment is
normally distributed around a linear combination of the basis
functions (Section 2). To proceed analytically we marginalize
over all coefficients constituting the linear combination for
each segment using a mild approximation and choose the op-
timal number of segments by comparing marginal likelihoods.
The data points bounding each segment are then estimated by
the means of their posterior distribution. We consider the case
with known measurement error separately from an unknown
one and call our algorithm nunchaku.

3.2 Verifying our approach
To verify our methodology (Section 2), we first focused on
identifying linear regions. We generated synthetic data using
piece-wise linear functions, where we know the number of
segments and their gradients, added Gaussian noise, and then
inferred from this data the optimal number of segments and
the gradients of the best-fit lines, assuming that we know the
magnitude of the measurement noise (Fig. 1A).

The algorithm predicts correctly the number of segments
when the noise in the data is sufficiently low (Fig. 1B and
Supplementary Fig. S1), but underestimates this number when
the noise is larger. Such noise tends to blur two neighbouring
segments so they seem one, rather than cause a single segment
to appear as two or more. Similarly, if we decrease the angle
between neighbouring segments, the noise is more likely to
make two neighbouring segments appear contiguous, and the
algorithm’s accuracy falls (Supplementary Fig. S1).

We confirmed that the algorithm also correctly predicts the
underlying piece-wise linear functions, and hence the gradient of
the lines generating the data in the segments (Supplementary Fig.
S1). As expected, this accuracy falls too with more noisy data.

When the measurement error is unknown, the results are
similar (Supplementary Fig. S1), but the algorithm is slower
because we numerically integrate over all possible magnitudes
of this measurement error. We also confirmed that the algo-
rithm’s performance is robust to broad choices of the prior
distribution (Supplementary Fig. S2).

We next compared our methodology to the Narrowest-
Over-Threshold (NOT) algorithm (Baranowski et al. 2019), a
state-of-the-art frequentist approach. Whether we consider
the root mean square error between the best-fit lines and the
ground truth (Fig. 2A) or the predicted number of segments
(Fig. 2B), our algorithm consistently performs as well as or
better (see also Supplementary Fig. S3). This greater accuracy
however comes at the expense of speed: the NOT algorithm is
faster than our implementation of nunchaku.

Finally, we demonstrated that nunchaku works with other
basis functions, including constant functions, third-order pol-
ynomials, and sines (Supplementary Fig. S4).

3.3 Application 1: finding the range of OD that
increases linearly with cell number
The OD of a microbial culture increases linearly with the num-
ber of cells only for sufficiently small ODs. At higher ODs, the
light from the spectrophotometer may scatter off multiple cells,
and the relationship between OD and the number of cells
becomes nonlinear (Stevenson et al. 2016). To calibrate OD
measurements, researchers often serially dilute a dense culture of
microbes and measure the relationship between the OD and the
dilution factor (Warringer and Blomberg 2003, Stevenson et al.
2016) (Fig. 3A). Interpolating this curve, we can convert an OD
measurement to the corresponding dilution factor and so correct
for any nonlinearity between the OD and cell numbers.

Dilution factors, however, are not intuitive units, and it is use-
ful to identify the range of ODs over which there is a linear rela-
tionship with cell numbers. Not only is this range itself
important, but by using the ratio of the maximum of the range
to the corresponding dilution factor, we can re-scale the dilution
factors back into ODs.

We used the nunchaku algorithm to identify the linear
range, using basis functions that generate straight lines and an
unknown measurement error. Two linear segments are opti-
mal, and the one of interest, where OD is proportional to the
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number of cells, is the segment beginning at the smallest OD.
This segment also has the highest coefficient of determination
R2. Its maximal OD is 0.66 for a relative cell number of 0.25
(Fig. 3A), and we should therefore multiply the dilution fac-
tors by 0.66/0.25, or 2.6, to convert back to ODs.

3.4 Application 2: identifying the log phase of
microbial growth
Microbes are most often studied when growing exponentially,
with the logðODÞ of the culture increasing linearly with time
(Monod 1949). Researchers identify this log-phase growth
from microbial growth curves.

To detect log phase automatically, we applied nunchaku,
again with basis functions generating lines, to OD measure-
ments of E.coli (Fig. 3B). Partitioning the data into six seg-
ments is optimal, and the segment whose best-fit line has the
highest gradient—the greatest specific growth rate—corre-
sponds to exponential growth.

Monod noticed an empirical relationship between the nutri-
ent concentration and the specific growth rate of microbes in
log phase (Monod 1949). Denoting this growth rate as k, the
maximal specific growth rate as kmax, and the nutrient con-
centration as s, his equation becomes

k ¼ kmax
s

KM þ s
(28)

where KM is now called the Monod constant. To estimate
kmax and KM, researchers systematically vary the concentra-
tion of the carbon source and identify the log phase and the
corresponding gradient for each growth curve.

Here, we use the nunchaku algorithm to select data to esti-
mate kmax and KM for S.cerevisiae growing on fructose (Section
2), from 38 growth curves measured with plate readers
(Fig. 3C). Each biological replicate has two technical replicates.

4 Discussion
Determining where data are best described by a line is a prob-
lem familiar to most scientists. We present a statistically rigor-
ous solution, which we generalize by considering linear
combinations of arbitrary basis functions. Our methodology
is Bayesian and similar in approach to earlier work that fo-
cused on piece-wise constant functions (Hutter 2007).

Like all Bayesian inference, our algorithm depends on prior
information: the bounds on the coefficients constituting the
linear combination of basis functions. For basis functions gen-
erating lines, these bounds describe the range of the gradients
and intercepts of all possible lines within a segment. The opti-
mal number of segments will depend on this prior if the
amount of data is sufficiently small, as it should (MacKay
2003). In practice, however, users interested in lines need
specify only one prior range with the other inferred (Section
2), and we see that although a wide prior favours fewer seg-
ments, a single segment is robustly assigned to sections of the
data that appear linear.

Our method makes two assumptions about how the data de-
viate from a linear combination of basis functions. We assume
these deviations are independent and we assume that each devia-
tion obeys a normal distribution. For some data, a distribution
with a purely nonnegative support, such as a log normal, may
be more appropriate. Although we can use such a distribution in
principle, in practice some of the steps that we performed

Figure 3. The nunchaku algorithm gives intuitive results when applied to biological data. (A) The calibration curve for plate-reader measurements of the
OD of S.cerevisiae, found by diluting an overnight culture in 2% fructose, is nonlinear (blue dots). There are three replicate measurements for each
dilution factor. Our algorithm identifies two linear segments (boundaries marked as circles). Lighter orange circles bound the segment with the highest
R2. We specify the likely maximal range of OD as our prior: ½0; 2+. Inset: the logarithm of the model evidence for the number of segments. (B) Identifying
contiguous linear segments in the logarithm of the OD of growing E.coli cells as a function of time allows us to identify automatically the region of
exponential growth. We show the mean of four replicate measurements (blue) with twice their standard deviation shaded. Circles denote the boundaries
of linear segments; orange circles bound the segment with the best-fit line with highest gradient and so highest specific growth rate. The average specific
growth rate over this segment is 1.5 h–1. Inset: the logarithm of the model evidence for the number of segments. (C) With our algorithm, we can
automatically identify the region of exponential growth in multiple datasets, here 38, to reveal growth laws such as Monod’s equation. We plot the
specific growth rate in log phase for S.cerevisiae as a function of the concentration of fructose, with the solid line a fit of Monod’s equation:
kmax ¼ 0:42260:006 h–1 and KM ¼ 0:02660:002% (w/v). The shaded area shows the 95% confidence interval. Inset: three example growth curves with
dots marking the region of exponential growth, identified as the segment with the highest gradient. For panels (B) and (C), we specify a prior on the range
of the gradient: ½0; 5+ h–1.
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analytically would have to become numerical. Further, if noth-
ing is known a priori about these deviations, we assume that
their standard deviation is identical for all time points. Our algo-
rithm would work too if the standard deviations vary but are
proportional to a known function of xj and yj.

Our work adds to existing algorithms for detecting change
points in time series, including those aimed at analyzing mi-
crobial growth (Papastamoulis et al. 2019). We have simpli-
fied this problem by considering change points to occur only
at data points and by imposing no continuity between the
functions underlying the data for each segment. These simpli-
fications are not restrictive for our task of finding one particu-
lar segment of interest. Identifying change points more
generally typically requires Markov chain Monte Carlo meth-
ods (Stephens 1994, Papastamoulis et al. 2019).

The nunchaku algorithm by using enumeration is robust
and lends itself to automation, facilitating high throughput
studies. It should both ease and increase the reproducibility of
data analyses for a wide range of scientists.
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