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Abstract

We address three problems faced by effective interfacial Hamiltonian models of wetting based
on a single collective coordinate #(y) representing the position of the unbinding fluid interface.
Problems (P1) and (P2) refer to the predictions of non-universality at the upper critical dimension
d =3 at critical and complete wetting, respectively, which are not borne out by Ising model
simulation studies. (P3) relates to mean-field correlation function structure in the underlying
continuum Landau model. Building on ecarlier work by Parry and Boulter we investigate the
hypothesis that these concerns arise due to the coupling of order parameter fluctuations near
the unbinding interface and wall. For quite general choices of collective coordinates Xi(y) we
show that arbitrary two-field models H[X|,X>] can recover the required anomalous structure
of mean-field correlation functions (P3). To go beyond mean-field theory we introduce a set
# of Hamiltonians based on proper collective coordinates s(y) near the wall which have both
interfacial and spin-like components. We argue that an optimum model H[s,/] € &, in which the
degree of coupling is cont-olled by an angle like variable 6*, best describes the non-universality
of the Ising model and investigate its critical behaviour. For critical wetting the appropriate
Ginzburg criterion shows that the true asymptotic critical regime for the local susceptibility y; is
dramatically reduced consistent with observations of mean-field behaviour in simulations (P1).
For complete wetting the model yields a precise expression for the temperature dependence of
the renormalised critical amplitude 6 in good agreement with simulations (P2). We highlight
the importance of a new wetting parameter which describes the physics that emerges due to the
coupling effects. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction
1.1. Preliminary remarks

During the last few decades the theory of continuous wetting transitions in inho-
mogeneous fluids and (simple) magnets has been extensively developed [1-3]. A
striking feature of theory is the prediction that the critical exponents characterising
the phase transition are sensitive to the details of the microscopic interactions (as well
as fluctuation effects). Consider, for example, systems with long-range fluid-fluid and
wall-fluid forces. Above the upper critical dimension, where mean-field (MF) the-
ory is valid, the values of the critical exponents depend on the precise power law of
molecular interactions [2]. Below the upper critical dimension, where fluctuations are
important, one encounters weak and strong fluctuation regimes, with true universality
only characteristic cf the latter [1,4,5]. For systems with short-range forces the up-
per critical dimensicn for both critical and complete wetting transitions is d =3 [6].
Below this dimension we expect the critical exponents to take universal non-classical
values at the respective transitions [4,5]. However, at and above the upper critical
dimension non-universality may appear in one of two ways. Firstly for d > 3, cor-
responding to the MF regime, critical exponents may be non-universal if the decay
lengths of the (exponential) wall-fluid and fluid—fluid forces are different [7]. More
interesting is the behaviour at the upper critical dimension for which calculations
based on the standard interfacial (or capillary-wave) model predict rather dramatic
fluctuation-induced non-universality [ 8—10]. However, as is well known these predic-
tions are not supporied by extensive Monte Carlo (MC) simulations of critical wetting
in the three-dimensional Ising model which are instead consistent with MF theory { 11—
13]. Therefore, the status of the theory of wetting in systems with short-range forces
at the upper critical dimension is somewhat controversial — and has been so for over a
decade.

In recent years concerted effort has been made to refine effective Hamiltonian meth-
ods in an attempt to overcome this (and other) problem(s) of capillary-wave theory for
three-dimensional systems [14]. In addition, developments in theory have been com-
plemented by new Ising model simulation studies [15,16] which raise more issues and
provide an independent test of the new ideas. In this paper we provide comprehensive
details of a theory of criticality and correlation function structure at wetting transi-
tions in systems with short-range forces based on a two-field effective Hamiltonian
H{[s, /] which accouats for the coupling of order parameter fluctuations at the wall and
depinning interface [17]. The model may be regarded as an extension of an earlier
coupled theory due to Parry and Boulter (PB) [18-22] which was largely restricted
to the complete wetting phase transition. The new theory, described here also allows
quantitative discussion of coupling effects at critical wetting as well as an improved
treatment of the crossover from complete to critical wetting. Our analysis is consis-
tent with the earlier PB theory which emerges naturally as a high-temperature limit
appropriate to modelling complete wetting. We shall argue that the coupled theory
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successfully explains three problems of (three-dimensional) wetting theory including
the critical wetting controversy mentioned above.

As noted above our analysis is a further development of the PB theory which is itself
a generalisation of a model and method introduced by Fisher and Jin (FJ) [23-28].
While the FJ model does not allow for coupling effects, it does generalise the standard
capillary-wave (CW) theory [29] by allowing for a position-dependent stiffness coeffi-
cient which has important consequences. We aim to keep our article as self-contained
as possible and to continve our introduction we review these separate developments and
focus on a number of important issues which provide more detail of the background
and motivation for the present study.

1.2. Microscopic models and the surface phase diagram

A suitable starting point for modelling adsorption in continuum fluids (or simple
magnets) with short-rangz (contact) forces at a planar wall (situated in the z =0 plane)
is the Landau-Ginzburg-Wilson (LGW) Hamiltonian [30,31]

Hicwlm] = /dy { /dz[]i(Vm)z + p(m)] + grn% —mih (1.1)
0

based on a local order parameter m(r = (y,z)) which we will refer to as the magnetisa-
tion. We will assume throughout this article that the continuum LGW model describes
the same physics as the Ising model as regards wetting properties occurring above the
roughening temperature Ty of the latter (with 7z ~ 0.54 T¢ for a simple cubic lattice).
The bulk potential function ¢(m) yields coexistence between bulk phases x and f§ at
sub-critical temperatures 7 < T¢ and zero bulk field A=0. We shall refer to the bulk
magnetisations for the up and down spin phases as m, > 0 and mp < 0, respectively,
including cases in which the phase is metastable. The parameters /#; and ¢ denote the
surface field and enhancement, respectively, while

mi(y) = m(y,0) (1.2)

is the magnetisation al the wall. Often we shall abbreviate the surface term in
Eq. (1.1) as ¢(m)= ‘imf — hymy. In most of our discussion of correlation func-
tions we will let kg7 =1 for convenience but will explicitly include it in definitions
of wetting parameters and for predictions of fluctuation effects.

The model is expected to show wetting behaviour so that for sufficiently large sur-
face field h; > A ( > 0) or temperature T > Ty (with Ty the wetting temperature)
the wall-8 interface is completely wet by the x phase when A=0"[31-33]. A section
of a possible surface phase diagram is sketched in Fig. 1 and shows two types of con-
tinuous wetting transition. At each transition the mean thickness (/) of the adsorbed
« phase diverges leading to large-scale fluctuations in the position of the «f interface
characterised by perpendicular and parallel correlation lengths &, and &|. We distin-
guish between critical wetting transitions which occur for 7 — T}, with fixed surface
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Fig. 1. Section of the surface phase diagram. Along the cut in the # = 0 axis the wall-f interface is completely
wet by the o phase. In Monte-Carlo simulation studies critical wetting has been investigated (for technical
reasons) along path (ii), that is with T = Ty and h — 0.

field (or for fixed temperature and h%h;”'*) at h=0" (for example, routes (i) and
(ii) in Fig. 1) and complete wetting in which (/) diverges for T>Ty (or h =h])
as h — 0~ (shown as route (iii)). If we consider the surface tensions involved for
the wall-x and wall-f§ interfaces we can define a singular contribution fgy, for each
transition by

Oy = Owy + Oyp + fsing s (1.3)

where 6,4 is the free fluid interfacial tension between the bulk co-existing phases. The
wall-8 interface is completely wet by the x phase if fyn, = O corresponding to zero
contact angle [2].

For critical and complete wetting transitions occurring along routes (i) and (iii),
respectively, the main critical exponents are defined by

£y ~ TPy G~ fng v T (1.4)
and
()~ R G~ BT fing ~ R (1.5)

where 7 denotes the deviation from the critical wetting phase boundary

W
h ,}1 for fixed T,
hHr
T~ ! (1.6)
Tw—T
- for fixed & .
Tw

A schematic illustration of the various lengthscales in the problem is shown in Fig. 2.
In principle, the transverse and perpendicular correlation lengths can be calculated
from the pair correlation function

G(ri,12) = (m(rm(r2)) — (m(r))) {m(r2)) (1.7)
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Fig. 2. Schematic picture of the diverging lengthscales at a wetting transition.

or its transverse Fourier transform (with y;, =¥, —¥,)

G(zi,22;q) = /dylzei""'llG(rl,rg) (1.8)

for particle positions near the «ff interface.

In effective Hamiltonian theories based on a collective coordinate /(y) representing
the local height of the interface (at vector position y along the wall) & may be
calculated from the analogous height-height correlation function while the root mean
square fluctuation is &, = [{#2) — (¢)*]'2. In fact, the two lengths are not independent
of each other and in d == 3 effective Hamiltonian theories predict (see Refs. [1,2.4] and
also later)

(k€LY = oln(l — (A4 (19)

with x the inverse (true) correlation length of the bulk 2 phase and A the high mo-
mentum cut-off. Here « is the wetting parameter

kB TKZ

0=
I dnX,p

(1.10)

with X, the stiffness (rzlated to the tension) of the free «f8 interface. Importantly, d =3
is the upper critical dimension for interfacial roughness (for thermal fluctuations) and
for d > 3 the interface width ~ &, is only of order a bulk correlation length.

A direct analysis of wetting in the LGW model is only possible in MF approximation
[30,32,33] which ignores fluctuation effects and is equivalent to an effective value of
the wetting parameter equal to zero. Minimising Eq. (1.1) determines the MF free
energy

Fur = min Hygy[m] (1.11)

and yields a standard Euler-Lagrange equation for the MF profile (z). For our pur-
poses we note only that for ¢ > k [32,33] sections of the MF surface phase diagram
are similar to Fig. 1 with the wetting field and temperature determined by the relation

Wo=em (THFY.  h=0". (1.12)
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The MF values of the critical singularities at critical and complete wetting are

K{{)~Int™h cf||~r‘l; fsmgmrz (1.13)

and
k() ~Inlh|™" &~ A7 fuing ~ hn]h|, (1.14)

respectively. Substitution of the MF critical exponents into the hyperscaling relations
2—os=(d—1)y and 2—o® = (d — l)v‘c“’ determines the upper critical dimensions as
d* =d}, =3 as quoted earlier [1,2,6]. It is, therefore, possible that fluctuations alter
the value of critical exponents and amplitudes in d <3 but to understand this we need
to resort to effective Hamiltonian methods.

1.3. The capillary-wave model

The fluctuation theory of wetting is based almost entirely on the phenomenological
CW model [1]

H[/]= /dy{-;gZa/s(W)z + W)} . (1.15)

This has been generally accepted as a suitable coarse-grained description of an inter-
face whose fluctuaticns occur on lengthscales much larger than the bulk correlation
length (hence the cut-off restriction A <€k in Eq. (1.9)). Instead of a microscopic order
parameter the Hamiltonian is a functional of the collective coordinate /(y) mentioned
earlier. Long wavelength fluctuations in the local position of the interface increase its
surface area and are resisted by the stiffness term in Eq. (1.15). The direct or bare
interaction of the interface with the wall is mediated by the binding potential W (/)
constructed with reference to MF approaches (see later). For systems with short-range
forces such as the LGW model the form usually assumed for modelling continuous
wetting transitions is [8,9,29]

W(()=ht + 2kmye ™ + be 2! (1.16)

together with a hard wall contribution which restricts configurations to Z(y) > 0. Here
h= (mp —my)h is a measure of the deviation from two-phase coexistence while b is a
positive constant near 7Ty (which is required to ensure the stability of the transition).
The deviation from the critical wetting phase boundary, 7, is given explicitly as

o Pz oms (1.17)

ct+K

and implies that the overall sign of the leading exponential is positive for T > T
Note that by minimising the binding potential we recover the MF expressions for the
mean film thickness and free energy [Egs. (1.13) and (1.14)] quoted earlier. Also
note that for complete wetting only the first exponential term is required to model the
transition.
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If we assume that the fluctuations 8/(y) = /(y) — / (where (£ ) = 7 in MF theory)
are small (which is valid for d > 3) then it is straightforward to calculate the structure
factor

8(q) = /dylze“”” (64(y,)o¢(y,)) (1.18)

which has a simple Lorentzian form

ksT

S(q) =
(q) w + qu,zﬁ

(1.19)

reminiscent of Ornstein—Zernike theory. Here W' = H—I%] + which allows us to identify
the transverse correlation cfﬁ = Z.p/W" [34]. If we assume that small fluctuations 6/
correspond to magnetisation fluctuations which translate the MF profile #i(z) we are

led to the prediction [35]
G(z1,22;q) = i (z1)r1 (22)S(q) (1.20)

for the MF correlation function for positions zy,z, close to the xf interface. Importantly
this agrees with the explicit solution of the Ornstein-Zernike equation for the LGW
model (in MF approximration) which reads {36] (setting kg7 = 1)

2

a’)
(ﬁ 5 + ¢"(m(z1)) + q2> G(z1,22:9) = 8(z) — 22) . (1.21)
7

éz

As we shall see in the next sections MF identifications such as Eq. (1.20) can be
made precise for arbitrary z),z, using generalised effective Hamiltonian and collective
coordinate theories.

For d < 3, renormalisation group (RG) and transfer matrix studies of the CW
model with binding potential, Eq. (1.16) predict universal critical behaviour for both
transitions [1,4,37-40]. For these dimensions the precise form of W(#) is not essential
because the critical properties are determined by fixed points of the RG transformation.
Thus in d = 2 approximating ¥ by a square well recovers the same critical exponents
for critical wetting as taose found in the exact Ising model calculation [41]. However
for d >3 the precise structure of W (/) is essential because there is no non-trivial fixed
point Hamiltonian [1].

At the upper critical dimension d =3, linear RG calculations predict that the critical
singularities are non-universal depending on the wetting parameter [ 8-10]. For crit-
ical wetting, the results are particularly dramatic, for example, the correlation length
exponent is given by

(1—w)! for 0<mw < %,
W= (2-vay? fol<o<2, (1.22)
00 for w > 2,

where the last regime corresponds to an exponentially fast divergence. Note also that
for w < 2 the wetting temperature is unaltered so that 7=0 still denotes the critical
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wetting phase boundary. For complete wetting the predictions are less dramatic and
critical exponents retain their MF values [10]. Nevertheless, critical amplitudes are
renormalised and of particular interest is the dimensionless adsorption amplitude

. K )
0 = lim { —X— 1.2
hio{mw-l} (129

which is given by [8]

1+2 for0<w<2,
0 = 2 (1.24)
2w forw > 2.

While these predictions are made using an approximate linear RG scheme which
cannot handle the hard-wall contribution to W (/) precisely, there are good reasons for
believing that the results are exact at least in the important regime @ < 2. In particular,
they are supported by MC simulations of a discretized CW model [42-44] and also
by numerical studies of a non-linear RG analysis which does allow for the hard-wall
term [4,5].

The value of the wetting parameter is not determined by the CW theory and must
be regarded as input into the model. During the time since these predictions were
first made the temperature dependence w(7) for the simple cubic Ising model has
been studied in some detail [45]). Near T, w =~ 0.5 but its value rises sharply on
increasing 7 and is very close to w = 0.8 for all temperatures in the range 0.67¢—T¢.
On approaching the bulk critical point, hyperuniversality implies that the wetting pa-
rameter tends to a universal value

lim {&(7)} = we (1.25)
T—To

estimated as w¢e = 0.77s. Thus for the Ising model RG calculations based on the CW
model predict the numerical values

V), = 3.7
‘ .26
{9%1.4} CW theory (1.26)
(assuming 0.67¢ < T < T¢) significantly different from the MF results, Egs. (1.13)
and (1.14).

1.4. The Fisher—Jin model and position-dependent stiffness

In a series of important papers [23-27] FJ reassessed the status of the CW model
and suggested specific modifications that have some interesting consequences in d = 3.
They were principally motivated by one of the central problems of wetting theory (see
(P1) below) and forwarded a novel explanation. In retrospect however there are further
problems that need to be addressed that the FJ model cannot provide answers for and
it is our view that the FJ analysis should be regarded as an important step towards
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a fuller description of fluctuation effects rather than an end in itself. Nevertheless,
the systematic approach which they adopted for integrating out degrees of freedom is
crucially important to subsequent theoretical developments and we recall some of the
essential features of their formalism.

FJ seek to derive an interfacial Hamiltonian from a LGW model and begin their
analysis by emphasising the need to carefully define the collective coordinate /(y).
There is, of course, a good deal of freedom in the choice of definition [23] (see later)
and utility is an important criterion. By far, the easiest option is to adopt the crossing
criterion in which 7(y) corresponds to the surface of fixed magnetisation m*. In their
analysis, FJ set m* =C but in keeping with subsequent developments we keep m*
arbitrary. The generalised effective Hamiltonian for the surface of fixed magnetisation
is defined as [23]

e_HFJ[/;InX] - /Qfme—HLGw[m] , (1.27)
C

where C denotes a constrained functional integral or partial trace over configurations
m(r) which respect the crossing criterion

m(r = (y,4(y))) = m*. (1.28)

Next, FJ argue that for a given collective coordinate configuration all other fluctua-
tions are small and may be ignored. This leads to a saddle-point identification,

Hpy[£:m™] = Hiow[mz(x; )], (1.29)

where mz is the magnetisation configuration which minimises H;gw[m] subject to the
crossing criterion. Fortunately in order to derive effective Hamiltonians describing long
wavelength fluctuations, it is sufficient to consider planar constrained profiles m,(z; /)
which satisfy the Euler--Lagrange equation [27,46]

my(z) = ¢'(mn(z)) (1.30)
with boundary conditions
Tl = glma), (1.31)
0z z=0
lim mqa(z) = my (1.32)

(where m,; = m;(0;/;)) and the planar constraint
Ml i lr) = m*. (1.33)

In this way, FJ derive

HIGm ] = [ dy (LR m T AWF + W im®)) (134)
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where the binding potential and position-dependent stiffness for the surface of fixed

magnetisation m* are determined by m.(z;/,) as
X 7 1 6}?1,[ .
W):m ) = 3 pilmn) + [ dz |5 { =) + glms) (135)
0 {a=~(y)
(ignoring some ¢ independent terms) and
7 omy \
2y~ [ d: (—)
ot
0 z:/(y)
=T+ AZ(L(y);mY) . (1.36)

Note that the position-dependent increment A2 — 0 as / — oo for sensible choices
my, > m* > my comresponding to surfaces of fixed magnetisation which unbind from the
wall. For these choices the explicit expansion of the binding potential is very similar
to the CW expression Eq. (1.16) but the A term 1s new [24]

AZ(£:0) = 2iemyte ™ =27 mivle ™™ 4 ... (1.37)

with v = (¢ —x)/(c+«). Note that by construction, minimisation of W(¢£;m* ) recovers
the MF position of the surface of fixed magnetisation m*.

The (linear) RG analysis of the FJ model is more complicated than the CW model
because the flows of 42 and W are coupled. Nevertheless, FJ show [24,25] that the
effective potential (with # = In b the usual infinitesimal rescaling factor)

wA? _ »
WS¢y = wi£;0) + e (1 —e2HAXV (£ 0) (1.38)

satisfies the same diffusion-type flow equation familiar from the linear RG analysis
Fisher and Huse made of the CW model [10]. Due to the negative next-to-leading
order exponential term in AX(7;0) the critical wetting transition is destabilised for
sufficiently small w < w* and is replaced by a weakly first-order phase transition. FJ
I <w* <1 for the Ising model although
recent non-linear RG studies of the FJ model estimate a significantly larger value w™~2
[47]. For > w* tae critical wetting behaviour is similar to the CW model.

The FJ description of the complete wetting transition is the same (at leading order)
as the CW model because only the first exponential term in Weg)(f ) is required. Thus,
their model predicts the same value of the adsorption critical amplitude 6 as CW theory,

that is Eq. (1.24).

argue that the value of w* is in the range

1.5. Three problems of capillary wave theory

Here we point out three problems faced by the standard CW theory of wetting. Two
relate directly to d'screpancies with Ising model simulation studies and are associated
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with fluctuation effects al the upper critical dimension d =3. The third concerns ques-
tions of self-consistency and arises when we compare the CW theory with MF studies of
correlation function structure in the LGW model. We will argue, building on the earlier
analysis of PB that the final problem provides the key to understanding the other two.

1.5.1. (P1) Ising simulations of critical wetting

Extensive MC simulations of wetting transitions in the d =3 Ising model appear to
show that the critical wetting transition is characterised by MF-like critical exponents.
Specifically, Binder, Lardau and co-workers [ 11-13] studied two wetting transitions
occurring near 0.67¢ and 0.97¢ (corresponding to different choices of the surface field)
and establish the divergznce of the surface susceptibility y, = ém,/dh. According to
scaling expectations y; should behave as [11]

0 =1 () (1.39)

leading to the prediction z; ~ ||~ along the critical isotherm (route (ii) in Fig. 1).

Contrary to the CW model the Ising data are rather well fitted by the MF resuit
1 ~ |h|="? corresponding to v =1.

Despite widespread discussion in the literature only two detailed explanations have
been proposed. Shortly, after the simulation results were reported Halpin-Healey and
Brézin [48] used the CW model to calculate Ginzburg criteria for various response
functions. For the surface susceptibility y; they show that crossover from MF to
non-classical behaviour begins when the transverse correlation length is close to a
value satisfying

w %1n(1+cjﬁ/12)+1—+—15ﬁﬁ—1 =1. (1.40)
Typically this yields a value for ¢ of a few bulk correlation lengths which Halpin-
Healey and Brézin argued was not quite attained in the MC work. However, subse-
quent simulations for larger lattices and smaller bulk fields still show no substantial
deviation from MF behaviour [13]. Even re-analysis of the data for the susceptibility
critical amplitude (which is extremely sensitive to fluctuation effects) shows only mi-
nor deviations from classical expectations and is wildly different from CW theory [49].
Moreover, simulations of a discretised CW model shows no discernible MF regime
and are supportive of the RG predictions [42-44,50].

The second suggestion is the stiffness instability mechanism of FJ who argue that
the Ising model wetting transition is weakly first-order [24]. While this may very well
be the case (and certainly remains a possibility in our theory) on its own it does not
provide a quantitative explanation of why the MC data for y; is MF-like.

1.5.2. (P2) Ising model simulations of complete wetting
Recently, Binder, Landau and Ferrenberg (BLF) [15,16] have studied thin-film Ising
models with opposite surface fields /), hp = — hy acting on the spins in the planes
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z = 0,D, respectively. The phase diagram for this system was originally predicted by
Parry and Evans [51,52] on the basis of a MF analysis of the appropriate LGW model
and shows a number of intriguing features. Of particular interest is the behaviour of the
correlation length in the temperature window Ty < T < T¢ (and A= 0) which probes
finite-size effects at the complete wetting transition. In the thin-film this corresponds
to the one-phase regime in which an «ff interface sits at the centre of the slab and is
subject to very large-scale fluctuations. The transverse correlation length is predicted
to be exponentially large in the width D reflecting the shallowness of the effective
binding potential. It is a simple matter to construct a CW theory for this system
and use a linear RG analysis to predict modifications to the MF result. This yields
[19,20]

kD74l

{p~e

for kD — oc (141)

where 0 is the complete wetting adsorption critical amplitude introduced earlier. The
prediction of an ex»oonentially large correlation length was checked and confirmed by
BLF for several temperatures in the range 7y < T < T¢ (it can be extracted relatively
easily from the total and mid-point susceptibility). However, the exponent of the ex-
ponential term is inconsistent with both MF and CW theory! Using their data Parry,
Boulter and Swain (PBS) [53] have extracted the effective value of the critical ampli-
tude 6 as a function of temperature. A plot of the simulation results is shown in
Fig. 3 and shows a substantial increment to the expected value Ocy ~1.4 (recall
Our = 1) for temperatures deep in the complete wetting regime (7 > Ty =~ 0.97¢).
Specifically at high temperatures, the simulation results are consistent with 0 ~ 1.7-
1.8. The abnormally large values of 0 are inexplicable using the CW and FJ models
and raise further doubts whether the standard picture of interfacial fluctuation effects
captures all the essential physics at the upper critical dimension.

1.5.3. (P3) Correlation function structure

While the imporiance of the two problems described above can be recognised im-
mediately, it is not at all clear how to modify existing effective Hamiltonian theory to
overcome them (assuming that this is where the fault lies). However there is a third
long-standing puzzle associated with wetting theory, which while less dramatic than
the questions concerning non-universality, focuses attention on a specific defect of any
model based on a single collective coordinate /(y).

MF studies of the order parameter correlation function G(rj,r;) for a number of
different density functional models of wetting reveal intriguing features for positions
close to the wall which cannot be described using the CW model (or for that mat-
ter the amended model proposed by FJ) [54,55]. It should be emphasised that the
MF studies are consistent with some curious exact sum rule requirements which link
correlation function and thermodynamic singularities and which also defy explanation
using standard arguments [55,56]. We expect, therefore, that much of the correlation
function structure described below is also present in the full three-dimensional LGW
model beyond MF approximation.
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Fig. 3. BLF data for 8 vs. T/7¢ showing the anomalous enhancement to the CW result 0=1+ w/2=x14
deep in the complete wetting regime. Apart from the point at 7/7¢ =0.916 the error is within the symbol.
The dotted line is a cubic fit to the data while the asterix is the extrapolated value of 6 at Ty =~ 0.97.
The decrease in the value of (' as T — T, is indicative of novel crossover behaviour near critical wetting

associated with coupling effects.

First, consider the complete wetting transition in the LGW model. The MF correlation
function satisfies the diYerential equation, Eq. (1.21) whose solution has a simple
Lorentzian form for z,z; near the xf interface. However for particle positions at (or
close to) the wall the solution is non-Lorentzian [54]

~le
G(0,0;q) ~ 7 , (1.42)

~12 ~ ) 1+ sing
(c+ hf)m,l -+ qz Ty — G1(71)) + ”]’/TZ\%\L’

where #1) is the gradient of the magnetisation at the wall (which is of order t and
may be regarded a cornstant). As emphasised by PB the wave-vector dependence
shows crossover from coherent to intrinsic behaviour depending on the scaling variable
x = g&. By this we mean that for finite £ and ¢ — 0 the effective coeflicient of g% in
the denominator is the full surface tension (or more properly, stiffness) of the wall-f
interface and indicates the coherence of asymptotically long wavelength fluctuations in
the wetting film. This manifests itself in the second moment, defined in the expansion
G(zy,22;q) = Z:io qZ"Gzn(Z|,Zz), such that

— G2(0,0) x gyp — P1(my) . (1.43)

This is no artifact of the MF approximation since an equivalent statement is known to
be precisely true for the phenomenon of complete drying by a vapour phase ($) at a
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hard wall-liquid () interface. The exact sum-rule reads [56]
— G2(0,0) =0,y + Gup + fsing
== O_w[f ( 1 44)

and is valid for arbitrary fluid—fluid forces.

On the other hand, in the scaling limit of finite ¢ and & —oc (i.e. £ — 07) the
correlation function reduces to the appropriate expression for fluctuations typical of the
wall-o interface. For this case the effective coefficient of ¢ in the denominator is the
local, intrinsic stiffness X, = gy, — ¢1(s77)).

The correlation function with one particle at the wall and one at the af interface
also shows interesting features. For example, in their MF study of drying at a hard-wall
within the Sullivan density functional model Parry and Evans derive [55]

_Gx(0.7)
(/)

/o
K

~
~

%
G

where here 7'(£) denotes the gradient of the equilibrium number density at the vapour—
liquid (af) interface z = /. The second and third terms on the rh.s. correspond
to logarithmic next-to-leading order and coherent properties, respectively. The same
behaviour emerges in the LGW model at MF level although, unfortunately, there is no
exact sum-rule to compare with.

A cause for concern for theorists is that hardly any of these features are describ-
able using one-field Hamiltonians such as the CW and FJ models. In fact, one of the
virtues of the FJ asproach is that one may unambiguously calculate a correlation func-
tion G/ (z),22;q) (for a given m* ) at MF level (and beyond) since the theory allows
a one-to-one connection between order parameter and collective coordinate configura-
tions through the field 7(y). In this way, it is straightforward to show that the FJ model
with m¥ =0 (and by implication the CW model) cannot recover the non-Lorentzian,
next-to-leading orcler and coherent behaviour manifest in the MF G(z),z2;q) at com-
plete wetting [28].

Similar remarks apply to the critical wetting transition. Most importantly the corre-
lation function is non-Lorentzian at the wall — which can be read from Eq. (1.42) on
noting that 7 ~ ¢ and @, — ¢(si;) ~ 1. The result is conveniently written

1 N 1 n const.
G*7(0,0:q) ~ G*(0,0;q) 1 +¢*¢]

(1.46)

and shows the necessary crossover from singular to intrinsic behaviour dependent on
the scaling variable x = ¢&). This expression is consistent with a number of sum-rule
results which establish precise connection between the moments of G(0,0;q) and ther-
modynamic singularities [55,57]. The most important of these are

Go(0,0) ~ 7%,

G2(0,0) ~ (ra/ﬂ—z(wﬁ\) (1.47)
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and recall that o; = fi; = ( in MF theory. In addition, we note that [57]

o0

0
/deo(O,z) - %l ~ 7B (1.48)
0

which shows the role played by correlations from the interface to the wall.

A more precise MF expression for G"#(0,0;q) at critical wetting will be derived
later using the generalised stiffness matrix formalism. The point that we wish to em-
phasise here is that the CW and FJ models do not satisfy the exact sum-rules in
a manner that is also ccnsistent with the non-Lorentzian form of G(0,0;q) seen in
the MF LGW calculationis. The reasons for this will become clearer in the next few
sections.

1.6. Outline

In this paper we further develop the idea forwarded by PB that the problems of
wetting theory reflect the failure of effective Hamiltonian models based on a single
collective coordinate to account for the coupling of interfacial fluctuations. Thus, the
physical mechanism underlying our mathematical modelling is the following coupling
hypothesis:

The correlation function near the wall and some of the non-universal physics

associated with wetting at the upper critical dimension d =3 is sensitive to the

coupling of order parameter fluctuations near the unbinding interface and wall.
PB concentrated on the complete wetting transition and constructed a two-field model
H{/y,/,] which in Gaussian approximation (generalising the calculations leading to
Eq. (1.20)) identically recovered the MF correlation functions near the interface and
wall. Here the generalised collective coordinates /| and /, represent surfaces of fixed
magnetisation which remain bound and unbind from the wall, respectively. Subsequent
RG [19,20,22] analysis of the two-field model for fluctuation effects in d =3 showed
that the effective value of the wetting parameter determining the critical amplitude 0
was renormalised compared to the CW expression. Thus, addressing (P3) for complete
wetting appears to resolve the second problem (P2), at least semi-quantitatively. Un-
fortunately, the PB modzl is not well suited to studying critical wetting and only hints
at a possible influence of coupling on this transition [58].

The task of the present work is to generalise the PB approach to obtain a quanti-
tative theory of coupling effects at complete and critical wetting. To do this requires
a more thorough analysis of the connection between microscopic models (such as
the LGW Hamiltonian) and collective coordinate theories. As we shall show it is
first necessary to broaden the generalised effective Hamiltonian approach to allow for
different types of collective coordinates describing order parameter fluctuations near
the wall. Having done this we argue that it is possible to choose an optimal defini-
tion using a novel variational principle such that the sum over all possible configu-
rations appearing in the effective theory most accurately mimics the partition function
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for the microscopic model. The optimal Hamiltonian, written H[s, /], is then stud-
ied to elucidate the influence of coupling on the surface phase diagram and critical
properties.

Our paper is arranged as follows: we begin by reviewing the PB theory and its
successes in addressing (P2) and (P3) for complete wetting. The breakdown of the
PB description nezr critical wetting is then discussed, in addition, to some pointers for
possible coupling effects at this transition. In Section 3 we introduce further examples
of coupled Hamiltonians which use different types of collective coordinate at the wall.
We provide a proof of a generalised correlation function reconstruction scheme (CFRS)
which shows that the physical correlation function G(z1,z2;q) may be recovered (at
MF level) using arbitrary choices of the collective coordinates, provided they satisfy
certain conditions of locality. The invariance of G(z|,z2;q) is crucial to our further
analysis.

In Section 4 wez introduce a particular class or set # of coupled models. This
smoothly interpolates between two cases which describe order parameter fluctuations
near the wall as local translations and enhancements of the magnetisation, respectively.
The set # contairs more general types of collective coordinate (which we shall refer
to as proper coordinates) which have both interfacial- and spin-like components. All of
the models in # are candidates for describing coupling effects beyond MF theory. We
forward a novel oostimisation scheme leading to a unique choice of proper collective
coordinate model in # which best describes fluctuations at the wall coupled to the
unbinding interface:.

In Section 4.2 we consider fluctuation effects and show that the extent of the cou-
pling is controlled by an angle-like variable 3* whose value depends on the proximity
of the critical wetting phase boundary. In particular for 7> 7y deep in the complete
wetting regime the angle 0* ~x/2 and the optimal theory reduces to the PB model.
As the temperaturz is reduced, so that the thermodynamic path (iii) is closer and
closer to Ty, the angle 6* rotates to zero signifying a qualitative change in the role
of coupling. This mechanism yields a precise expression for the temperature depen-
dence of the renormalised wetting parameter determining 0 in the proximity of 7.
For critical wetting the coupling has the effect of dramatically decreasing the extent
of the true asymptotic critical regime for the local susceptibility y; consistent with the
Ising model MC observations of MF-like behaviour (problem (P1)). The calculations
for both critical and complete wetting highlight the role played by a second wetting
parameter (written Q) associated with fluctuations near the wall which has no coun-
terpart in CW and FJ theories. We discuss the temperature dependence of the new
wetting parameter and argue that it approaches a universal value Q¢ close to unity as
T—-T,.

The justification for the coupling hypothesis is largely a posteriori and relies on the
success/failure of ~he theory to explain problems (P1)—(P3). Nevertheless, we con-
clude our article with some remarks suggesting that the coupling to order parameter
fluctuations at the wall can only effect thermodynamic singularities at the upper critical
dimension for systems with short-range forces.
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2. Stiffness matrix formalism for complete wetting

We begin our discussion of coupled fluctuations by reviewing the formalism and
results of the PB theory of complete wetting which will be generalised in subsequent
sections. To this end we first summarise the main results establishing the connec-
tion between FJ theory and MF correlation functions (further details may be found in
Refs. [8,28]).

2.1. FJ theory and correlation functions

The systematic structure of the FJ theory allows precise connection to be made with
the MF correlation function of the LGW theory satisfying the Ornstein—Zernike equa-
tion, Eq. (1.21). Following Parry [28], consider the continuous set of FJ Hamiltonians
{Hrs[£:m*]} by allowing for all possible values of m¥ belonging to the range of
magnetisations #; =>m* > my seen in the MF profile #i(z). Ignoring fluctuations, the
equilibrium position 7=z of the surface of fixed magnetisation m* clearly satisfies

m¥ =m(z). Now, consider the corresponding structure factor

S(q;z) = /dylze'q"“ (£(y)) — 2L (yy) —2)) - (2.1)
In Gaussian approximation, valid for small fluctuations, this is trivially calculated
1
S(q;z) = s 2.2
G2 = W ) + P2 ) 2
where
1" o d‘
Wi(z;m(z)) = (2.3)

dr?
for / =z and m" =m(z). Note that in writing Eq. (2.2) we have ignored terms of
order g* that would arise if we included an expression for the rigidity in the FJ model.
However these are not important for interfacial phenomena and will not be discussed
further (see Ref. [59] for explicit calculations). It transpires that there is a remarkably
elegant relation between the set {S(q;z)}, parameterised by z, and the MF correlation
function G(z,z;q). To see this note that within FJ theory a small local translation (say)
in the position of the surface of fixed magnetisation m¥ generates a precise change in
the magnetisation

om(y) = T8 (=2 )34(y) (24)

at position z. Therefore, a Gaussian approximation for each of the FJ Hamiltonians
in the set may be used to calculate an expression for a magnetisation pair correlation
function at any two points. Let us denote the result for the Hamiltonian H[/;m*] by
GFJ(zl,zz;q;mX). Then, we can identify

m,I

Gz miqm™) = (u ln )A (42,/ )S(q:z) . (2.5)
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where the values of m* and z on the Lh.s. and r.h.s. are related by m* = ri(z) and
the partial derivatives of the planar constrained profile are evaluated at equilibrium
P / =z The question now remains how does this set of correlation functions relate
to the actual solution G(zi,z;q) of the MF Ornstein—Zernike Eq. (1.21)? Explicit
calculation shows that each element Hg;[/;m* | generates the correct MF correlation

function only for positions z; = z; = z. Specifically, we can identify
G(z.2;q) = G™(z,2;:q;1i(2)) (2.6)

which becomes

G(z,2;q9) = ' (2)°S(q; 2) (2.7)
on using

omy 7. Ty,

?n(f,/n)h (/) (2.8)

(obtained by simple differentiation of the crossing criterion Eq. (1.28)). For example,
explicit evaluation of Eq. (2.3) in FJ theory yields

Golz,z) =1 (2)*S(0;2)

. 1 1z’
:ml(z)z <77 +/ = (2.9)
0

At (cry — i) w'(2/)2

which is the analyric solution to Eq. (1.21). These remarks make it clear why the FJ
model with m* =0 (and hence the CW model) fail to describe the wall correlation
function G(0,0;q) since the choice of m* is entirely inappropriate. With m* = 0 the
FJ model accurately describes fluctuations near the «f interface and can exactly recover
the MF G(z,z;q) only at the position z where #i(z) = 0.

2.2. Two-field theory and correlation functions

PB next consider the properties of two-field models H[/1,/2; m{,my] for surfaces
of fixed magnetisation m;\ and ms described by a pair of collective coordinates /; and
/5 [18]. Importantlyv for the complete wetting transition, on which they concentrate, the
MF and FJ profile has a significant lip at the wall (see Fig. 4) so that it is possible to
chose 7ty = mi* > my and my' = 0 (say) so that

(i) the upper surface unbinds

(i1) the lower surface remains close to the wall
as i — 0. Consequently, the MF positions /7,, =z, with u= 1,2 of these generalised sur-
faces represent planes that are close to the wall and unbinding interface. The two-field
Hamiltonian is constructed using a natural generalisation of the FJ method. The fun-
damental saddle point identification is

H[/1,02] = Higw[mE(6;41,/2)] (2.10)
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magnetization

2
m(n’(z;21 A2)

Fig. 4. Schematic portrayal of the single (dashed line) and doubly constrained planar profiles near a complete
wetting transition. Discontinuities in the gradients exist at z =/ and z = ¢ but these have not been explicitly
shown.

where we have droppec. the explicit mff dependence. Here m(:-z) represents the mag-

netisation distribution which minimises the LGW Hamiltonian subject to the double
crossing criterion

M1, 00) =mE with r=(y.7,). (2.11)

As mentioned earlier calculations are eased when we observe that only the properties
of planar constrained profiles mSE)(z;/‘ 1.£2) need be considered to derive models with
gradient terms.

In this way, PB find [18]

1
HI{1.02] = / dy{izmm,/z)va Y+ Wz(,/'l,fz)} : (2.12)
where the binding potertial is
e} 2
; 1 [ em?
Wi, 42) = ¢1(m;21))+/d2 3 ( 6; + Pp(m$) (2.13)
0 Cin=(i(y)

ignoring some constant ferms independent of /> (which are subtracted off). The stiffness
matrix elements are given by

X4 (2) 2)
. Cmy omsy;
Zw ! ./ - hr e 2.14
wlf1.42) '/02 o G (2.14)
0

fia=liy)

The constrained profile satisfies the same Euler-Lagrange, Eq. (1.30) considered ear-
lier but must now bz solved subject to the double planar crossing criterion.
Once m(nz)(z;{l,fg) is found then the explicit position dependence of W>(¢,£>) and
3,w(/1.£2) may be calculated. Conveniently, the binding potential decomposes into a
shielded form

Wil ) =U{1)+ W (=14, (2.15)
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where W(/) is similar to the CW result, Eq. (1.16). The first term simply serves
to bind the lower surface to the wall. We will always assume that the fluctuations
&) = [(8/3)]'2 are small so that we may write for complete wetting

Walt1,42) = %/H/Z/zl 4 2kmyre 4 (2.16)

with » ~ 72 explic'tly determined and ¢, = /3 — £,. Minimisation of W»(¢,./>) gives
the MF positions z;,z; of the collective coordinates. The position dependence of the
stiffness coefficients can also be determined

Zi) ~ Gy — 1 () + O(e ™),
I~ oy + Oe),
Z]o ~ sza'ffﬂe”h‘/:l (217)

and notice that ., — ¢,(s#) ~ 7°. In these expressions 7, is to be interpreted as the
surface magnetisation for the wall-» interface. In fact, the position dependence of the
stiffness coeflicients plays no part in determining leading order thermodynamic effects
although the cross term X, is important as regards the coherent and next-to-leading
order correlation function behaviour discussed earlier [18,21].

Due to the inclusion of two collective coordinates local to the off interface and wall,
the coupled model can fully explain the non-Lorentzian structure of G(0,0;q) described
in problem (P3). In fact, precise connection with MF correlations can be made using
the following CFRS [21]. Define the structure factor matrix S(q) as the 2 x 2 matrix
with elements

Sn(q) = /dY12eiq.y”<5/u(Y1mfv()’z)) . (2.18)

These can easily be calculated using the relation

—1 (‘%l 6;;2 , 2
stw={ 0 ) menm+er, (2.19)
€21 Op

where 02, = ¢%/2/,0/, and is evaluated at equilibrium. From the matrix elements one

can calculate the MF expressions for three possible correlation functions by

G(z,52:q) = W' (2, (2,)S,(4) (2.20)

where z,,z, € {z).2;}, ie. mff:/ﬁ(zﬂ). This identically recovers the known solution
to the Omstein—Zernike Eq. (1.21).

For example, at the wall PB derive

~ /2
nll

+ ¢ 2 + ‘———Zﬁ;?é‘"] + 0(q%)

G(0,0:q) = p (2.21)
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which is of the required form given by Eq. (1.42). PB proceed to show that the
elements of the stiffness matrix obey the relation [18,21]

> Eul0,22) = 0y — G1(7) (2.22)

wy

which ensures that the sum-rule Eq. (1.43) describing the coherence of long wavelength
fluctuations is exactly satisfied. The origin of the fn, contribution to G(0,0) is ele-
gantly explained by this approach through the position dependence of the off-diagonal
stiffness matrix term since

2212(0.22) ~ fiing (2.23)

and recall that the arguments refer to the mean positions of 7, and /,. Notice that the
position dependence of ;> (see Eq. (2.17)) is longer ranged than 2}, and X2, and is
precisely of the form required to yield the singularity fgng ~ h1n|h|. Following PB we
refer to Egs. (2.22) and (2.23) as stiffness matrix free energy relations.

2.3. Renormalisation of the wetting parameter

The most important consequence of coupling is independent of the position depen-
dence of the stiffness matrix elements and it suffices to write the Hamiltonian [20]

H[/1,42] = Hol¢1,42] + HilZh, 22 (2.24)
where

Holt1,72] = /}iy{ﬁz“(vm2 +1E0(V) + Yt} (2.25)
and

Hil = [ aywn), (2.26)

In this approximation we may identify X3 = 2,5 and 2| =0y, — ¢1(#1,). Note that
Z11/r = &, corresponds to the finite transverse (second-moment) correlation length
for surface correlations at the wall-o interface. This can be reliably calculated in MF
approximation away from T¢ yielding Ewy = [K(C + x)]~"2. The momentum cut-off
A, for the upper field is the same as that for the CW and FJ models (denoted A).
Similarly, the momentum cut-off A, for the lower field must be chosen appropriately
such that the r.m.s. fluctuations are small (and typically of order a bulk correlation
length) which requires A4; <+/2; [53].

As the fluctuations o” 7, are adequately described in Gaussian approximation, it is
possible to account for their renormalisation exactly. The interaction H,[/,/>] is then
treated in linear approximation analogous to the RG theory of Fisher and Huse [10] and
FJ [25]. First, the fast modes (appearing in the Fourier representations of the fields)
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with wave vectors ¢ satisfying A,/b < g < A, are integrated out and the Hamiltonian
rescaled leaving Hy[Z),7>] invariant. The flow equation for W (¢,£,) reads

G & ?

2— = — | WL ) =
[ 5 + i +w20[%:’ Wy, 42) =0 (2.27)

with ¢ = Inb the infinitesimal rescaling factor and
L R (2.28)
]_47132“ 211/1%+F ’ o

2

Wy = —2 (2.29)
2 47[21/; ) o

The diffusion equation, Eq. (2.27), can be easily solved
2t

WO, 42) = mgm ardeswO e, )
(41 =11 (=105
X Exp < 4ot 4yt ’ (2.30)

where WO(¢,,/,) is the bare interaction contribution to the binding potential. In the
PB model the fields only interact through a relative term which is a function of /5, =
{2 — ¢ so that Eq (2.30) simplifies to

5 o
W“)({Zl) — . e / dt’ W(O)(//)e—[(/zl —¢' Y1/ [4en+w2)i] (2.31)

VaAn(w; + anp )t

which needs to be studied at the matching point ¢* [10] where the curvature wen”
({£21)) = Z,px?. At this point we may identify e as k¢). These remarks establish
that the binding potential renormalises exactly as in the CW theory but the divergence
of (¢} is determined by a renormalised wetting parameter

@=w + Wy

= r
= —_— - —]. 2.32
0)+4TE2:1| ( Z“A%—FV) ( )

The value of @ lies between two extremes corresponding to » = oc and r = 0 repre-
senting cases where the #; fluctuations are suppressed and free, respectively.

The implication of the PB model is that the adsorption critical amplitude € is in-
creased due to coupling effects

1 K2
=14+ = 2.33
O=11%3 (‘” FrSN (A@M*]) 233)

which should be compared to the CW result Eq. (1.24) (assuming that @,® <2).
PB estimate [20] that the increment 46 to the CW result is about 0.3 for Ising-like
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systems deep in the comyplete wetting regime yielding a value for 8~ 1.7 close to the
BLF simulation result. Importantly, the linear RG expression, Eq. (2.33) is supported
by non-linear RG analysis [22] and also by MC simulation of a discretized version of
the model [60].

2.4. Interpretation

Before we discuss the unsatisfactory features of the PB model we make some new re-
marks concerning the interpretation of the fundamental results, Egs. (2.32) and (2.33).
The first of these is that the renormalisation of the critical amplitude 6 can be un-
derstood heuristically using a simple generalisation of the elegant scaling analysis of
Lipowsky and Fisher [4,5] which takes into account the asymptotic coherence of long
wavelength fluctuations at complete wetting.

To see this we initially recover the standard result, Eq. (1.24), using scaling argu-
ments based on the CW model given by Eq. (1.15). Neglecting fluctuation effects the
singular contribution to the free energy per unit area 4 of the wall is clearly

MF __ W(i)

sing
hinlh| ™! _
= M ody (234)

corresponding to MF theory. Now, following Lipowsky and Fisher we suppose that the
fluctuations in the position of the «f interface lead to an extra bending energy so that

; iy’ ;
e R%Zuﬁ(;_!l) + fan - (2.35)

Using the known interfacial roughness Eq. (1.9) and the divergence of &; (which is
unchanged from the MF result Eq. (1.14) we are led to

j ~
S (14 %) . mg:g (2.36)
which is the explicit RG result (for w < 2) consistent with Eq. (1.24) (recall that
{¢) = O fsing/0Oh).

To include coupling effects we first assume (as is reasonable) that the estimate of
the bending energy cortribution from the large-scale capillary-wave-like fluctuations
of the #5(y) field is unchanged i.e. the roughness relation between £, and | of the
af interface is the same as the CW model (see below). Further, we suppose that the
only effect of the small fluctuations in the #,(y) field is to increase the effective area
of the wall as seen by asymptotically long wavelength (coherent) fluctuations in the
aff interface. The relative increase in area can be estimated (analogous to the bending
energy contribution) as

Al

s
:{ =14 E(KQL )2 s (237)
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where

kpTi?

c(1)y2 8 e \2 )

= "2 In(1 + (A &y .
(k¢ ") 47(Zuln( (A1 &wx)?) (2.38)

determines the r.ra.s. fluctuation of the lower surface. Now, due to the asymptotic
coherence of long wavelength fluctuations the direct MF contribution to the singular
free energy must be modified due to the increase in the effective area of the wall.
Thus, we must add a coupling contribution

L& 2w (/) (2.39)

which with the usnal MF bending energy term gives

. kg TK? A ln|A|~!
P (1424 B g, 2 )
sing ( + 2 + 871'211( 16 1) K (240)

and correctly identifies the renormalised expansion for § for small A,.

A nice feature of this argument is that it directly relates the renormalisation of 8 to
the coherence of asymptotic long wavelength fluctuations signifying the importance of
similar coupling effects for problems (P1) and (P3).

Implicit in the above is the assumption that the roughness of the xf interface is
not changed by ccupling effects. This takes us to our second remark that statements
concerning the renormalisation of the wetting parameter only refer to the critical ampli-
tude 0 and not the value of w determining the divergence of the roughness ¢ . In fact,
this can be easily deduced from the renormalised CFRS which identifies the structure
factors S,.(q) (defined in Eq. (2.18)) beyond MF approximation in d =3 [58].

The renormalised CFRS is very similar to that described earlier because the RG
matching procedure reduces the problem to a Gaussian calculation just as in MF
theory. Thus, we need only replace the binding potential and stiffness matrix by their
renormalised values and allow for the spatial rescaling factor. We first calculate the
renormalised (inverse) matrix

)

~

(S @) = ( ) w1, )+ P, (2.41)

V2
|

where
ALy 311 22 (1)
Wi = Sl 4+ W)

2 1 > 0 v
=e (5-r/% + bty + 2myrre™ TR 4 ) (2.42)

and we have assumed that @ < 2. Ignoring the position-dependent elements, the stiff-
ness matrix is

s_ (& 0 (2.43)
0 2y
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and is not renormalised (analogous to the stiffness coefficient in CW theory [4,5]). The
required structure factors then follow as

Su(q) = ¥ 5% (q) (2.44)

which are easily calculated and yield final results that are basically unchanged from
the MF calculations described earlier. In particular, the S5;(¢) element determines the
mean square value of the Fourier amplitude 872(q) (see Ref. [21]),

Snlg)= <|522(‘l)|2>

eZl

- PN P
2" g7 + W Eighye”
WS pedt™ (r4g2 X1 )

N ezt’
W(N ¥ + ‘E‘yﬁqZGZfﬁ

1

S (2.45)
Zaﬁ(gu +- qz)
using W' = 5,4x? and ¢ = k¢|. Performing the Fourier inversion in the standard
fashion yields
(k&1 ) ~ wln(l +(Ag)) (2.46)

as quoted in the introduction for the CW model. Thus, the effective value of the wetting
parameter is unaltered as regards the interfacial roughness relation in contrast to the
calculation involving the critical amplitude 0.

Combining Eq. (2.46) with the two-field prediction for the transverse correlation
length in the thin-film geometry with opposite surface fields Eq. (1.41) yields

. [ wD
&L = m— for D — oc (2.47)

in the soft mode regime. This shows that the divergence of the roughness as D — oc
is controlled by the bare and renormalised wetting parameters (see Eq. (2.33)). Data
for the mid-point width (m, — mg)/m'(D/2) (denoted as w = V2ré, in Ref.
[61]) have been extracted from the BLF simulation data [61] at 7/7¢ = 0.9554 and
compare favourably with the asymptotic prediction above for moderately wide thin
films D <40. Note that the prediction, Eq. (2.47), correctly identifies the pre-factors
for the square root divergence of ¢, (and hence w) misquoted in [61] although the
numerical estimates for w are very similar to their Fig. 3b.

Also, note that the present RG result for Sy1(g) gives an identical non-Lorentzian
expression as that found in the MF calculation Eq. (1.42) strongly suggesting that the
exact G(0,0;q) has such a structure.
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2.5. Problems with the description of critical wetting

2.5.1. Crossover from complete to critical wetting

The PB model is certainly not capable of yielding a fully quantitative theory for
the temperature dependence of the renormalised critical amplitude 6 which could be
compared in detail with the simulation results. This is due to the uncertainty in the value
of the momentum cut-off A; for the lower field which appears in the RG prediction.
This is a serious defect of the model which forces us to rethink the nature of order
parameter fluctuations near the wall in the vicinity of Ty . To see this we follow PBS
and consider complete wetting transitions occurring along paths (iii) in Fig. | closer
and closer to the wetting temperature Ty-. Recalling that the stiffness coefficient for
the lower surface vanishes like 2| ~ t? we are forced to conclude that the cut-off A,
must also vanish ia this limit otherwise the value of & is singular (see Eq. (2.33)). In
fact, such behaviour can be anticipated since as mentioned earlier we need to impose
the inequality 4, <+/Z|, in order that the r.m.s. amplitude of the Gaussian fluctuations
£1(y) at the wall remains bounded. This pathology is intimately linked to the behaviour
of the MF and FJ profiles near the wall which flatten as the critical wetting transition
temperature is approached, signalling the breakdown of the crossing criterion method
used by PB to model small order parameter fluctuations. In fact this feature is also seen
in the equilibrium magnetisation profiles extracted from the Ising model simulation
studies — see, for example, Fig. 4 of [16]. PBS point out that this has important
consequences for complete wetting close to 7y since it implies that the increment to
@ due to the coupling of fluctuations must vanish

lim {&} = o(Tw), (2.48)
A'TL;
so that
. )
lim {6} =1+ —. (2.49)
T—T} 2

This prediction is in very good agreement with the BLF simulation data (see Fig. 4) and
extrapolation to 7y = 0.97¢ yields 0 =~ 1.4 and hence w(Ty ) ~ 0.8 which is close to
the series expansion estimate of Fisher and Wen at this temperature [45]. As conjectured
by PBS the result [Eq. (2.48)] is indicative of some kind of decoupling phenomenon
between order parameter fluctuations near the «f interface and wall occurring close
to Tw. However, the PB model can only describe this in the crudest possible (and
unsatisfactory) way by allowing the cut-off A, to vanish as 7 — T,.

2.5.2. Towards a theory of coupling at critical wetting

Despite the unwelcome behaviour of the cut-off A; during the approach to Ty we
note that the two-field theory does hint at a possible explanation of problem (P1).
As pointed out by Parry and Boulter [58] if we simply assume that the model, with
a suitably chosen cut-off A; <7?, is appropriate for describing coupled fluctuations
along route (1) in Fig. 1 then it immediately follows from the RG transformations
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described earlier that the structure factors S$);(0) and S;5(0) associated with the lower
field retain MF-like singularities even when $»(0) has a non-classical divergence with
v given by Eq. (1.22). While we should be rightly suspicious of the precise status
of this prediction one might tentatively suggest that coupling somehow reduces the
manifestation of critical singularities for local response functions at the wall. As we
shall see in the next sections this conjecture is supported by a more quantitative theory
of coupling effects at wetting transitions.

2.6. Open questions

While the semi-quantitative successes of the coupled model introduced by PB are
encouraging there are a number of unpleasant features associated with the theory that
warrant further investigation. All of these concern the pathological behaviour of the
cut-off A, associated with the approach to the wetting temperature which clearly limit
the application of the model. This is most unwelcome from a fundamental point of
view since we should take a harsh opinion of any field theory (at least in condensed
matter physics) in which the cut-off has singular behaviour.

Our central goal in this paper is to develop a coupled theory of wetting transitions
which involves a unified description of order parameter fluctuations at the wall. It
should be equally applicable to complete and critical wetting and avoid the need to
impose any special behaviour of the cut-off(s). The theory should also be able to explain
the apparent success and simplicity of the PB model deep in the complete wetting
regime and provide a more sensible mechanism for the decoupling of fluctuations
“associated with the result Eq. (2.48) (assuming that this survives).

3. Generalized coupled models and the CFRS

To develop a fully quantitative model of coupling effects at wetting transitions it is
necessary to reassess the role played by collective coordinates in effective Hamiltonian
theory. The original motivation of PB was to construct an effective Hamiltonian which
in Gaussian approximation could reproduce the Lorentzian and non-Lorentzian structure
of the MF correlation function near the af interface and wall, respectively. As PB
showed MF correlations could be precisely recovered using the CFRS described in the
last section. We shall now show that this is also possible for different choices of the
collective coordinates. We begin with an illustrative example before considering the
general case.

3.1. Interfacial- and spin-like collective coordinates
In Section 2 we reviewed how the two-field theory grew out of observations concern-

ing the connection between MF correlations and the set of FJ Hamiltonians {H[/;m*]}.
Heuristically, the crossing criterion naturally defines an interfacial-like collective



194 A.O. Parry, P.S. Swainl Physica 4 250 (1998) 167-230

coordinate /(y) which generates magnetisation configurations by translating the position
of a surface of fixed magnetisation. However, it is also possible to define spin-like
collective coordinates which model local enhancements of the magnetisation in some
plane. We begin by considering one-field models parallelling the analysis of
Section 2.1.

Let us focus on the behaviour of the (4 — 1)-dimensional plane of spins a distance
z from the wall and constrain them to satisfy

m(y.z¥) = a(y). (3.1

We may define ar effective Hamiltonian for this spin plane by tracing over all mag-
netisation configurations that leave {o(y)} invariant

H[o:z%] = —In / Gme ~Hiawlml | (3.2)
C

where C denotes the spin constraint Eq. (3.1). Now let us assume, rightly or wrongly,
that all fluctuations apart from those of the spin plane are small such that we can use
a FJ-like saddle point identification

Hlo;z"] = min Hygw [m]
= Higw[msz], (3.3)
where mz(r; o) is the profile that minimises H;gw[m] subject to the constraint given
by Eq. (3.1). Whether or not this assumption is justified will be considered later. For
our present purpose of reconstructing MF correlations, it is of no consequence as we

now show.
The constrained magnetisation satisfies the usual Euler-Lagrange equation

—Vimz+ ¢'(mz) =0 (3.4)

with boundary conditions
6m3
0z z=0

_lim mz(z) = mg (3.5)

=cmz| — hy,

and spin criterion Eq. (3.1).
In the same manner as FJ theory, however, it suffices to consider planar constrained
profiles m;(z; 0,) “rom which mz(r; ¢) may be constructed perturbatively using

2 3a(y) (3.6)
oy

with da(y) = o(y) — o,. In this way it is straightforward to construct the effective spin
plane Hamiltonian

mz(r;0) = mz(z;0(y)) +

H[e;z"] = /a’y{%Z(a;zX) + W(o;z")} (3.7
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(ignoring terms of O(V?2a)), where

W(a;z%) = { ¢d1(ma(0; Un))+/ dz [% (@Zn)~+ (b(mn(Z;Un))} (3.8)
0 on=0(y)
and
¥ T omg \’
2(oyz% ) = /dz(A ) . (3.9)
00,
0 6z=0(y)

By construction minimisation of W{a;z¥) recovers the MF value of the magnetisation
at position z = z¥X. Thus, we can identify

mq(z;6) = m(z) (3.10)
with
6 =m(z¥). (3.11)

So far our analysis pzrallels that of FJ but with a different type of collective coordi-
nate. Now, we follow Parry [28] and use the set of spin-plane Hamiltonians (by allow-
ing all possible values of z¥) to derive a set of correlation functions G'*)(z,z;q;z%).
Consider first the zeroth moments G((J”’(zl,zz;zx ). Each Hamiltonian can be used to
calculate a correlation function since there is a one-to-one relation between fluctuations
in ¢ and the magnetisation at any point r;. For homogeneous enhancements we note
that

0

ﬁ’:”(zl.an)éc(yl) (3.12)

om(r) = 3

and, in particular, at the plane z = z¥ itself

omy,

7‘X' =
o) =1. (3.13)

Assuming that fluctuation are small and can be adequately described by a Gaussian
approximation we arrive at the prediction

amy. . {émy .
Gz 2 a¥) = G- (21, 00) 572 (223 07) (3.14)
0o 1,22, )= W (6;2zX) ) ’
G

for the (zeroth) momerit correlation function according to the model given in Eq. (3.7).
Here

2
w625y = T (61259

- (3.15)

a
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Following our earlier observations for the FJ Hamiltonians let us focus on the prediction
for the correlation exactly at the position of the spin-plane for the model in question.
In this case Eq. (3.14) reduces to

1

(@) X X, Xy _
GO (Z A )—WZT)

(3.16)
which can be explicitly calculated using techniques very similar to those described in
Section 2.2 of [16 . This procedure identically reproduces the analytic expression for
the MF correlation function so that we identify

G (z%,2%2%) = Goz",27). (3.17)

In this way we can reconstruct the MF correlation function from a set of spin-like
Hamiltonians {H[o;z%]} using each element at the appropriate local position in space.
Similar remarks can be shown to be valid to order g2 (and beyond if rigidity-like terms
are allowed for in Eq. (3.7)), so we may identify

1

Gz",z%:q) = -
(z7,z75q) W(G,z% )+ 2(6525)q2 + - --

(3.18)

and recall that ¢ = mi(z¥).

We can easily generalise the analysis to derive effective Hamiltonians containing
any number of spin- and interfacial-like collective coordinates by imposing spin and
crossing constraints at arbitrary positions. Of particular interest is the two-field model
Hl[o,/] with o(y) the (d — 1)-dimensional plane of spins at the wall and /(y) the
collective coordinatz for the surface of fixed magnetisation m* = 0. This is a coupled
Hamiltonian similar to the H[/,/>] theory describing the interaction between order
parameter fluctuations near the interface and wall. The model can be constructed from
the properties of the planar constrained profile m,(z;0.,/,) which satisfies the usual
Euler-Lagrange equation subject to the constraints

m(0;05,47) =07, (3.19)
Mo(f 23 00,47) =0 (3.20)

using now standard methods. We simply quote the results since the details of a more
involved calculation will be discussed later. The Hamiltonian is

Hlo,/]1= / Ay{1211(Vo)? + 212Va - VL + 3 Zn(VEV + Wa(a, ()}, (3.21)

where explicit evaluation of the various terms in the reliable double parabola approxi-
mation for ¢(m) yiclds

w/ —2K/

Wa(a,£) = L1(c — 60)" + 2Kkmy(6 — my)e™ + (m2+ (c —m,))e

(3.22)
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with
r=c+kK,
Gy =My +7T. (3.23)

Similarly, the stiffness coefficients are given by

a(y), £(y)
1 e~
=5 +t—, (3.24)
omy omy,
o= | d —=
i / ‘ (m) (/)
0 aly)/(y)
= mu(xt — e ™ +0(e ™) (3.25)
and
7 omy \*
2y = dz L
- / (6/,, )
0 a(¥). (¥)
= Zup + 2Kkmy 0 — my)e ™~ — szmif‘e‘z"/ + &[2(0 — my ) 4 3mile .

(3.26)

Note that minimisation of W(o,/) recovers the MF surface magnetisation and position
of the «f interface. The two-field model H[a,7/] is an alternative candidate for describ-
ing coupling effects at wetting transitions and has its own CFRS which enable us to
address problem (P3). We again simply quote the results since a more general proof
will be given in the next section.

First, construct the appropriate direct correlation function matrix

~2 A2
‘n O ) 5

Clq) = Wilo,{) +q°E, (3.27)
&3 82
21 022

where this time
52 @2 52
2 LA2 a2 La2
of = 602’612-621'6707/’02215’3 (3.28)

and all derivatives are evaluated at equilibrium. The required MF order parameter
correlation functions are then given by

G(0,0;q9) = Si(q),
G(0,/;q) = —i'(F)S1(q),
G(/,4;q) = ' (/) Sn(q)., (3.29)
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where the structure factor matrix S(q) (defined analogous to Eq. (2.19)) is the inverse
of C(q) and (/) = 0.

Let us finish this subsection by using the H[o,/] Hamiltonian to calculate the
non-Lorentzian form of G(0,0;q) for critical wetting along route (i). For simplic-
ity, we shall ignore the position dependence of the stiffness coefficients although these
can easily be included (see Section 5.2 for further discussion).

The elements of the matrix C can be calculated from Egs. (3.22) and (3.23). To the
appropriate order we find (where v = (¢ — x)/(¢c + k))

2K 22
Cu(O) =c+rt =t (3.30)
x£
C12(0) = 2Ky, (3.31)
C(0) = 2631272 (3.32)

and so using Eq. (3.29) derive

1
G(0,0;q) = 2 _ (3.33)
c+r+ L 2

1+g* &

for iﬁ = m2v/2x*t®. This is of the desired form consistent with Eq. (1.46) and the
exact sum-rules, Ec. (1.47), quoted earlier.

In fact, the form of G(0,0;q) at critical wetting emerges much more naturally from
the CFRS of H[o,/] model compared to that of the PB model because in the latter
we have to explicitly include the vanishing of the magnetisation gradient at the wall
(recall Eq. (2.20)). [n the H[a,/] description the singularity of /] is implicitly included
in the binding potential W>(a,/). This feature works against us somewhat if we use
the H[o,/] model to calculate G(0,0;q) at complete wetting. While we can derive
a formally correct expression for this quantity, comparison with Eq. (1.42) is not as
immediate as with the H[/,#,] approach which has the natural inclusion of explicit
)% terms in its CFRS. Consequently, there is no elegant analogue of the stiffness
matrix free energy -elation in the H[o,/] formalism of complete wetting. Thus, while
both Hamiltonians {[o,/] and H[/},/,] yield precisely equivalent expressions for the
MF correlation function, which formally solves the Ornstein-Zernike equation (1.21),
the spin- and interfacial-like representations of order parameter fluctuations at the wall
are more convenient for critical and complete wetting, respectively. We shall return to
this point later.

3.2. Invariance of correlations within the CFRS

In the section above we stated that the two different collective coordinate models
H[o,/] and H[/\,/>] constitute equivalent approaches to recovering MF correlation
functions (near the wall and «ff interface). That is, apart from the question of conve-
nience for analysing particular transitions both choices of collective coordinate give the
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same final expression for the physical order parameter correlation functions G(z,,z,;q)
at MF level. Here we give a general proof of the invariance of the G(z,,z,;q) with
respect to different effective Hamiltonian descriptions. This section is rather technical
and the reader may prefer to skip to Section 3.3 where we summarise the main points.

Let us denote the collective coordinates X;(y) and X>(y) which we use to represent
order parameter fluctuations at the wall and interface, respectively. The proof can be
trivially extended to any number of fields at arbitrary positions. Associated with the
collective coordinates is a pair of surfaces described by Z,(y) and Z;(y). These may
be viewed as the locations of the fluctuating fields and are specified by appropriate
functions

Zi(y) = Z{(X(y),X2(y)) (3.34)

which will depend on the choice of collective coordinate system.
The magnetisation profile is doubly constrained by the conditions

m(y, Zi(y); X1, X2) = Mi(Xi(y), X2(¥)) (3.35)

and notice that we have allowed the value of the magnetisation at position Z;(y) to
depend on one or indeed both of the collective coordinates. The effective Hamiltonian
is defined in the usual way as a constrained fluctuation sum

/
H[XI,XZ]:~ln( f GmeHiovlm) | (3.36)
\C
We will assume that it is possible to find collective coordinates X, X, such that the
FJ saddle point approximation is valid. Then

H[X\,X2] = Hiow [mz] (3.37)

where mz is the profile that minimises H,gw subject to Eq. (3.35). Thus, mz satisfies
the usual Euler-Lagrange equation, Eq. (3.4), together with the required boundary
conditions given by Eq. (3.5). Following all our other treatments, we calculate mz
perturbatively in terms of the planar constrained profile which satisfies the analogue of
Eq. (3.35)

Me(Zin; Xt Xan) = Mi( X1, Xar) (3.38)
with Z;z = Z{(X\z, X2z ). Following Fisher et al. [27] we write
mz(y,z; X1, X2) = ma(z; Xi(y), X2(y)) + 6(r; X1, X3) (3.39)

where &(r;X|,X,) denotes the error term. By construction & vanishes for planar con-
figurations

Xi(y) = Xix V¥ (3.40)
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and also at the position of the collective coordinates

z = Z(y) (3.41)

for any y.

Now, let us denote the equilibrium MF values of the fields X, and X, respectively.
These may be found by minimisation of the Hamiltonian H[X;,X>]. Clearly setting
X; = X, recovers the MF profile

me(z: X1, X2) = ni(z) (342)
and together with Eq. (3.35) this implies ’

wi(Z:) = M(X1,X7) (3.43)
with Z; the MF position of the collective coordinate X;.

To elucidate the reconstruction scheme we need to find a relationship between the
magnetisation pair correlation functions of the LGW theory and the collective coordi-
nate correlations of the effective Hamiltonian. Recall that the former are defined by

G(ri,r)=Glz1,22.¥, — ¥y)
= (m(r)m(r2)) — (m(ry)) {m(ry)) (3.44)
and satisfy the Ornstein-Zemike equation [62]

S Hyw[m]
/ I (e, Jom(r)

G(r.r) = o(r; —r2). (3.45)

Similarly, for the macroscopic collective coordinate theory
S(Y1Y2) =50, - ¥))
= {2 — VD) () (3.46)
which obey [62]

/d‘ O H[X,X2]
y 5X,u(y )5’Yl’(y) X=X, X=X,

and note our implicit use of the summation convention.
Considering the Ornstein—Zernike direct correlation function

Spv(ya yz) = 6m'5(y] - yz) (347)

& Higwlms|

577’1_:‘([')5"15(]‘5 (3.48)

with an eye on Eq. (3.37), the correlation functions S(y,,¥,) can be introduced by
changing the functional derivatives to be with respect to X; rather than mz. For this
we need to use the functional chain rule

> oX\(y,) o oXo(y,) 0 } 349
Sm=(y.2) ‘./ d“{émg(r) () T mam) 60y ) (349)
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so that we can write

& Hygw(m:] :/'d' {5X1(Y1) 0 ., oX(y) O
Smz(r)omz(r') " om=(r) 8Xi(y,)  oms(r) oXa(y,)

x/dy {5X1(Y2) 0 . oXo(y,) 0 }
2 om=(r) 0Xi(y,) | Omz=(r') 3Xa(y,)

xH[X1,X,] . (3.50)

Fortunately, this can be written in matrix form. Defining

{j’\/l(y) -
o1y = | (3.51)
y SXoly) :
omz(r) _
SH[X), X:] STHX),X:]
0X1(7)0X1(¥,) aXi(y,)0Xa(y,)
C(y,,y,) = 3.52
(¥1-¥2) S H[X.X] FH[X,X:] ( )
X )0X1(y,)  Xa(y,)0X2(y,)
we can rewrite Eq. (3.50)
3 Higwlm]
= = [ dy,dy,x" (y,,0)C(¥,,¥,)x (¥-,1'). 3.53
(Sm(l‘)am(l") _— / yl y2 (yl ) (yl yz)“(.‘z ) ( )

The elements of the effective Hamiltonian direct correlation function matrix C(y;,y;)
are

5 X
Colh1¥2) = 5 S = G = ¥a) (3.54)
with derivatives evaluated at equilibrium X; = X,

So far we have succeeded in writing the first part of the Omstein—Zernike equation
given by Eq. (3.45) in matrix form involving functions of the effective theory. It is a
simple matter to show that the magnetisation correlations can be expressed in a similar
way. Define

éms(l‘)
Wy = | 0 (355)
X2 (Y)
then
G(r,r) = / dy,dy,w’ (y,,0)S(¥, ¥, )W (¥ 1) . (3.56)

where § is the functional inverse of C

/ dyCup(¥.¥)S (¥, ¥2) = 0,u0(¥ — ¥2) - (3.57)
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Clearly, S is the matrix of correlation functions S,,(y,,¥,). To prove Eq. (3.56) notice
that the Ornstein—Zernike equation can be written

5(!‘] —1'2)2/dl'dllldUQdV1dV2xT(ll1,l’1)C(l.ll,llg)x(llz,l’)

XMYT(VMr)S(vI:VZ)w(VZHr2)5 (358)
where we have used Eq. (3.53) and Eq. (3.56). Next from the chain rule identity

/ jﬁ:((}r; ?S?_((;)) re fs))?((i; = oy = X)0u , (3.59)
one observes that
[ amswmenon= [| S | (65 5 ] ar
omz(r)
= [(1) (1)} ouz =v1). (3.60)
Then, from Eq. (3.57) the r.h.s. of Eq. (3.58) becomes
/d“le(“hrl)W(UlJz):/ du [3:2?:1 gﬁ_((l:l.))} (:z:]_((l:]))
X501
=d(n —r2) (3.61)
using the identity
Ly z =(r .
/ “ { 5(;):{:1)) 55’”/\;1%2)) * ;mX;gl)) O(Séiyz))} =on —n). (3.62)

Eq. (3.61) is just the Lh.s. of Eq. (3.58) and consequently the Ornstein—Zernike relation
is satisfied. Therefcre, we have shown that

O Hygwm)
/ I Sy yom(r)

G(r,ry) = o(r) —r3). (3.63)

m=mz

If we set Xi(y) = X, the consistency condition Eq. (3.42) together with Eq. (3.39)
imply that the above relation reduces to the required Eq. (3.45). In this way, the pair
correlation function (in MF approximation) is

R R R SHAC I (3.64)
AXi:XI

To simplify Eq. (3.64), we first functionally differentiate Eq. (3.39) with respect
to X

omz(r) o om,, .. 5E(r)
5X,(y") =dy—Yy )(77)(“,1 (z; X1(¥), X2(y)) + X(y") . (3.65)
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This implies

om on z,, .
G(r,r )—/dhdY {8/\’1” (z) ( )] oy =y )S(y,¥2)
Cm.
()
0X)x o8
Sy — .
|2 (5E) 30
X XX

Here the r.h.s. is evaluated at the planar values X; = X L and Xo = X, implying that
the error term & vanishes. However, it is not necessary that the 060X, also vanishes.
In fact, it only does so at particular points as we now show.,

As remarked earlier the Fisher—Jin-Parry ansatz, Eq. (3.39), is constructed so that
the error term vanishes when z = Z;(y), i.e.

(Y. Z(y); X1, X)) = 0. (3.67)

Recalling that Zi(y) = Z;(X1(y),X2(y)) functional differentiation with respect to X,(x)
gives

oe ¢Zly) | 06(y.z)
—(v,z) ‘ =0 3.68
0z =z OXuX)  0Xu(X) |y eow
implying
06 (y,z) ﬁ‘(i \' '
: ~ - y) ) (3.69)
0X,(x) 2=7(y) @/‘ =Zi(y)

Evaluated at the MF wvalues of the fields X, the r.h.s. disappears since & vanishes
identically and hence so do its partial derivatives, implying
068(y,z) o0&
0X,(x) oz

=0. (3.70)

=Z;. X=X, =7, X=X,

Therefore, the error term in Eq. (3.66) only vanishes for

22 €{Z,.25} . (3.71)

Multiplying out the matrices in Eq. (3.66) and choosing z and z’ according to the
above criterion, one finally arrives at

“(Zi ) (Zj)S;u'(y -Y) (3.72)
ﬁX“r £.X;

which is the central result of the generalised CFRS. It follows that for any two collec-
tive coordinates satisfying the local constraints Eq. (3.35) it is possible to recover the
underlying MF correlations of the LGW theory for particle positions at and between
the planes Z; (corresponding to the MF locations of the fields). Connection with our

earlier statements can be made by simply taking the Fourier transform with respect to
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the transverse variable. The relation establishes that the physical order parameter cor-
relation function is an invariant, independent of the choice of collective coordinates.
Before we use tae formalism to construct effective Hamiltonians based on collec-
tive coordinates wirh both spin- and interfacial-like components we illustrate how the
general CFRS reduces to the matrix equations for the models considered earlier.

3.2.1. Examples
(i) The PB model For this case the collective coordinates X;(y) = 7i(y) are
interfacial-like and may be simply identified with positions Zi(y)

Xi(y) = y) = Z(y) (3.73)

and the planar constraint is

Mol iy € 17, Can) = m* . (3.74)
This leads to a simplification of the ém,/0X terms in Eq. (3.72). Differentiation yields

a

T (23 1mlan) =0 for z = £ (3.75)

0l jx
and

ﬁmn amn: ; .

@(Z;Zim{rr) = —E*(Zlfm,/zn) .

=~ ({;) forlin ={, (3.76)

and recall that the equilibrium positions #; = z, are solutions of m} = #i(z). Substitu-
tion into the invariance relation Eq. (3.72) and taking a Fourier transform yields
G(z1,21;9) = ' (21 ’S1(q) .
G(z2,22:q) = i’ (22)*S22(q) .
G(z1,22;q) = i (2 (22)812(q) (3.77)
as quoted earlier in Section 2.2.
(ii) The spin-like Hamiltonian. The collective coordinates are X| =0, X; =¢ and

correspond to positions Z, =0, Z, =/, respectively. From the constraint equations [Eq.
(3.19)] we can calculate the 0m;/¢X terms which satisfy

%(fn;on,/n) = 20100, 00) =0 (3.78)
with
cmy omy
a—[n(Z;Gm/n): ~ (z:00,77) .
=il ({) fortp={and o, = ¢ (3.79)

at equilibrium. The CFRS equations [Eq. (3.29)] then follow directly from the general
result given in Eq. (3.72) if we also use Eq. (3.13).
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3.3. Summary

The general CFRS provides the necessary mathematical framework for a complete
solution to problem (P2). For arbitrary collective coordinates X;, X, with MF posi-
tions z; (near the wall) and z; (near the off interface) we can construct an effective
Hamiltonian using a saddle-point identification

H[X),X:] = mCinHLGw[m] (3.80)

subject to appropriate constraints. The MF order parameter correlation functions (satis-
fying the Omstein—Zernike equation, Eq. (1.21)) can be recovered using the invariant
relation (noting the surrmation convention)

om,.

G(zppzv3q) = .,
X,

omy
(Z;t; {)(i})m(zv; {AXi})Su’v’(q) s (3.81)
where m,(z;{X;}) are the planar constrained profiles. The matrix S has elements
Sl = [ dy ¢ (6X,(1)X.0) (3:82)

corresponding to generalised structure factors. In practise, we will only be interested
in Hamiltonians modelling long wavelength fluctuations in which case the models all
have the form

1
H[X,X;] = / dy {EZ,LIV(XBXZ)VX;L - VX, + Wz(Xl,Xz)} (3.83)

with generalized stiffness coefficients and binding potential determined by m.(z; {X;}).
The formulae for these are given by obvious generalisations of Eqgs. (2.13) and (2.14)
replacing the /; by JX;. The structure factor matrix S is the inverse of the direct matrix

Cw = [ dypecay) (3.84)
with
PH[X, X>]

Cu = 3.85

o (yl)_) OX,I(}Q)()X,-()’Z) ( )

Focusing on long wavelength fluctuations the matrix C(q) has elements
FW(X1, X

Cu(q) = (. %2) + ¢ 20X, ) (3.86)

X, X,

ignoring rigidity terms of O(g*) which can also be calculated if so wished. This scheme
is valid for general collective coordinates (X),X>) such as the PB choice (£1,72) and
spin-like model (o,7) discussed at length earlier. If our sole problem was (P3), that is
to develop a effective Hamiltonian theory of correlations at the wall, the only remaining
concern would be which choice of coordinates is most convenient for studying critical
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and complete wetting, say. In fact, we have already answered this. At a complete
wetting transition occurring for temperatures 7 > Ty the CFRS is best studied using
the PB model H[/ ,/,] because the surface gradient | is large and does not exhibit
any singular as # — 07. On the other hand, for critical wetting it is more convenient
to use the H[a,/] model because #i; contains important scaling behaviour and vanishes
at T = Ty for h=0. It is, therefore, better to adopt a CFRS in which the r?z', do not
enter explicitly but are implicitly contained in the binding potential.

These remarks a-e strongly suggestive that we introduce a model based on a col-
lective coordinate .X| describing order parameter fluctuations near the wall that can
smoothly interpolate between spin-like (o) and interfacial-like (/) representations. With
such a continuous family of possible collective coordinates we will be better placed to
ask which choice is optimal for describing coupling effects beyond MF approximation.

4. Optimal two-field theory
4.1. Proper collective coordinates

First, let us state that the choice of upper field X; is not in question and that fluctu-
ations in the local position of the xf interface will be described by the interfacial-like
collective coordinate /(y) corresponding to the surface of fixed magnetisation m”™ = 0.
For a given value of (planar) field 7/, let us denote the FJ profile

m(z, /) = mFJ(z; ) (4.1)

which will simplify our notation. Now, the FJ theory does not account for fluctuations
near the wall and it is natural to introduce a collective coordinate X; which perturbs
their profile in this area. We will denote the collective coordinate s and allow it to have
both interfacial- and spin-like components (note that while the upper field certainly has
a spin component nothing is lost by just including the much much larger interfacial
fluctuations). This may be achieved by supposing that the doubly constrained profile is
locally translated and enhanced. Specifically, choose an arbitrary position z; close to
the wall satisfying 0<z; < k1. The value of z, will not appear in our final equations
concerning problems (P1) and (P2) and in calculations we can set it equal to zero
without loss of any information. Next, we construct a doubly constrained (planar)
profile which satisfies

m(z1 + C1zisan ) = m (210 /7) + 0x (4.2)
as well as
Ma(l 75 Sz, /'t) =0. (43)

The components ¢, ¢ are parameterised by the single variable s which we suitably
scale to have the dimensions of length (and so allowing contact to be made with the
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PB theory). By construction s will be zero if hoth ¢ and ¢, vanish. A general linear
parameterisation may be achieved using a free variable J such that

{1 =ssino 4.4
and

0 = KMySCoS 9 . 4.5)
Dividing these we obtain

tand = LM (4.6)
G

which establishes that the angle § controls the relative magnitudes of the spin- and
interfacial-like components. In particular, if we set 6 =0 the collective coordinate is
spin-like since there is no /; component and the constraint Eq. (4.2) simply enhances
the local magnetisation. For this choice the field theory reproduces the (o,7) analy-
sis discussed earlier. On the other hand, é =n/2 corresponds to a purely interfacial
collective coordinate in which s denotes the position of the surface of fixed magnetisa-
tion m/(z;;/) and is essentially the same as the PB theory. Generally, the collective
coordinate has both spin-like and interfacial-like components satisfying

(o 2

st = prepes + 7 (4.7)
which illustrates the metrical properties of the linear parameterisation Egs. (4.4) and
(4.5). We will refer to such generalised fields as proper collective coordinates. The
geometrical meaning of the proper collective coordinate and coupling angle is shown
in Fig. 5. We note that it might be possible to choose different metrical factors (which
scale the magnetisation and the distance) to ensure that Eq. (4.5) is dimensionally
correct but the choice tsed here appears the most natural.

We could now proceed to construct a family of coupled Hamiltonians {H[s,/; 0]}
characterised by stiffness coefficients X,,(s,¢;¢) and binding potential W(s,7;4d). In
fact, we are also allowed to consider models in which & varies with 7. In this case the
set of Hamiltonians whose properties we wish to study is denoted.

H = {H[s,¢; ()]} (4.8)

with elements distinguished by different choices of continuous function (7).

4.2. The optimal model

The equivalence of each of the Hamiltonians in # as models of the MF free
energy, adsorption and correlation functions certainly does not extend to fluctuation
effects in d =3. As noted earlier there is no true non-trivial fixed point Hamilto-
nian for wetting at the upper critical dimension and it is possible that the different



208 A.O. Parry, P.S. Swain/ Physica A 250 (1998) 167-230

m(2)
Mo
5
Mey @) KS
Mo
\\\;
1 _— P LYy
- Kz
KZ4

Fig. 5. Details of the p anar magnetisation profiles near the wall in scaled units, The broken curve shows
m(z) which incorporates a local enhancement and translation of the FJ profile (corresponding to the solid
line). The proper coordinate s and angle & are shown.

models in d =3 predict slightly different behaviour for some non-universal quantities.
For example, H[s,;0] or equivalently H[o,/] does not show any wetting parameter
renormalisation at complete wetting. To see this note that the arguments of the expo-
nential terms in the binding potential Eq. (3.22) only depend on the upper field and
substitution into th¢ RG equations (2.27) leads to the same prediction for the value
of @ determining ¢ as the CW and FJ models. This contrasts with the H[s,/;n/2]
model, equivalent to the PB model, which yields the different expression given by
Eq. (2.32). In two dimensions, however, we can expect that all the models in #
belong to the same universality class and flow to a fixed point under the action of
the RG.

These observations generate a host of questions. For example, why should we pre-
fer the PB prediction for @ over the o result equivalent to CW theory? It is not
sufficient to chose the PB description of complete wetting simply because it appears
to fit the simulation results better at high temperatures. More generally, we must ask
which of the models in # best approximates the non-universality of the underlying
LGW model? Recall that our hypothesis concerning the physical origin of problems
(P1) and (P2) is that the CW model does not account for the coupling of interfacial
fluctuations to the relatively small order parameter fluctuations near the wall. With this
our task reduces to finding the coupling angle & which most accurately models small
order parameter fluctuations in a Gaussian approximation (which is the basis of the
RG flow equation, Eq. (2.27)). We will argue that there is a unique answer to this
question.

Let us concentrate exclusively on the order parameter fluctuations at the wall. To this
end consider a system with no CW-like fluctuations which may be achieved by fixing
the location of the planar field ¢,. Now ask what is the correlation
function near the wall? Because the fluctuations are small a Gaussian approximation
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certainly suffices in which case we are led to the prediction (using any of the models
H{s,Z;4])

(- i35.40))
(sl D)+ @Il d)|

&s?

G™(z1,21;q) = (4.9)

which by the invariance of the CFRS is independent of 6. We may view this as the
cotrect MF expression for the correlation function in a thin-film magnet of width /
with fixed spins m¥ = 0 at the z = ¢ layer (so that G"™*(z,,z,;q) = 0). Now focus on
the value ¢* which maximises the equilibrium curvature:

2w . o'W .
—5(8.600) < %ST(S,/,[;(S*) for 8 # 0* (4.10)

with s = 0. Note that in general §* will depend on / as well as T, %,/ etc. Due to the
invariance of the G™(zy,z,;q) with respect to & the same value must also maximise
the stiffness matrix element:

Z11(0,42;6) < 21 (0.44:07) (4.11)

The same argument implies that the variation of the order parameter m, with col-
lective coordinate s is also largest for this value:

o
< | (2155, £(5%))
cs

Mn (21:5.4(8))
oS

fors=0. (4.12)

Thus with this choice o7 coupling parameter d = 0*;

(1) The Gaussian approximation is most accurate since the curvature is maximal.
Recall that the fundameatal assumption of the RG analysis is that a Gaussian approx-
imation adequately describes the small fluctuations in the order parameter near the
wall. In the effective Hamiltonian theory H[s,/; 5] the extent of these fluctuations is
controlled by the curvature (¢*W/0s*)(s,/;d). Ensuring that this is maximal avoids
problems associated with the PB theory near T = Ty when 7| vanishes.

(ii) The gradient approximation (i.e. the neglect of rigidity-like terms) implicit in
the use of a Gaussian Hamiltonian for the lower field is most accurate. Importantly by
maximising X(;, we completely avoid problems encountered in the PB theory when
the lower stiffness vanishes — the value of X, in the optimal theory is always finite.
We also note that by maximising the stiffness we can also hope to have maximised the
cut-off A, for the lower field which will no longer show any singular behaviour (at
least for T < T¢). Therzfore, we have succeeded in taking any physics associated with
the decoupling of fluctuations near T = Ty out of the behaviour of the cut-off which
had to be assumed in the PB theory. As we shall see the physics of decoupling effects
associated with crossover from complete to critical wetting has a much more elegant
description in the optimal model.

(iii) The trace over s accesses the largest region of the magnetisation phase space
since the variation of ni; with s is maximal. The simple geometrical interpretation of
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the optimal angle 3* can be seen from Fig. 5 where it defines the normal to the FJ
profile (in appropriate scaled units) at the point z = z;.

It is instructive to compare the optimal angle 6* with the worst possible choice of
coupling angle wh.ch minimises the curvature, stiffness and variation ém,/Cs. In the
geometrical interpratation this corresponds to directing s along the tangent vector to
m'(z;¢,) at z = z;. Thus to first-order variation of s produces no change in the profile
so the constraint Eq. (4.2) does not generate new configurations. Moreover, it is easy
to establish that the minimum values of (32W/0s* 0,7/ ,;0) and X,,(0,7 ;) are both
zero. Thus for this choice of ¢ the Gaussian approximation completely breaks down.

In this way, we propose that the best Hamiltonian in the set # for describing
coupling between crder parameter fluctuations near the interface and wall is

H[s./] = Hl[s,/;6"], (4.13)

where 0* satisfies the novel (and equivalent) variation conditions given by Eq. (4.10)
and Eq. (4.12). Moreover, it is straightforward to derive a simple expression for the
optimal coupling angle §* in terms of the known FJ profile. To do this note that the
explicit formula for the variation dm,/Cs is

cmy omt

(z138.42)] = Kmacosd —
s=0 cz

S (z1:{)sind (4.14)
s

which follows from differentiation of the constraint equation, Eq. (4.2), remembering
Egs. (4.4) and (4.5). It is trivial to maximise the r.h.s. and hence derive

_(@om ezl

KMy,

tan o~ = (4.15)

which is indeed the equation for the direction of the normal in Fig. 5.

4.3. Derivation of the position dependence

While the fundamental equations for the construction of the optimal model H[s,/]
may appear to be rather involved and complicated, the actual derivation of the Hamil-
tonian requires only minor modifications to previous calculations. First, we find the
general expression for the Hamiltonian H[s,/;d] with & arbitrary then specify the op-
timal coupling angle via Eq. (4.15).

The constraint equation for the planar constrained profile is

Mo (5280 0; 8,4 7) = m™(0;4,) + Kim,scosd , (4.16)
where we have set z; = 0 for convenience. It is a simple matter to perform the
calculations with finite z; but our final results are unchanged provided we chose

0 < «z;<1. This may be viewed as the necessary mathematical condition which
ensures that we are including the effect of order parameter fluctuations that are
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indeed near the wall. The planar constrained profile satisfies the Euler-Lagrange
equation

*my,

52 &) = ¢ lma(z ) (4.17)

which we need to solve. As shown by FJ [23] the all important position dependence
of the various quantities is captured by the double parabola approximation [63]

32
Oﬁgn(z;-~-):xi(m—m1) forz < ¢ (4.18)

with ¢(m) remaining arbitrary for m < 0. Also note that position-independent terms
such as the interfacial stiffness coefficient(s) are not actually evaluated in any particular
approximation but are left undetermined to be later combined into the appropriate
dimensionless wetting parameter(s). The values of these are estimated by other means
independent of the construction of the effective Hamiltonian. This is, of course, essential
to the whole philosophy of effective Hamiltonian methods.
The solution to Eq. (¢.17) is fully specified by the following boundary conditions.

e For 0 < z < s;sind

omy

= cm, - h (4.19)

P
cz z=0

and Eq. (4.16).
e For s;sind < z < £,

M n;Satz) =0 (4.20)

and Eq. (4.16).
e Forz >/,

Mme({n; 82, 07) =0, (4.21)
lim m(z; 87,4 7) = mg . (4.22)
I—0C

From the explicit solution for mg(z;ss, /) it is straightforward (but tedious) to
construct

Hufy:/dﬂgxmvg?+xgh-V/+%nﬂvm?+%31ﬁn,(4%)

where the binding potential may be decomposed

Wals,£38) = Sr(s — s0) + W(s./56). (4.24)
Writing
m‘fJ = my +I+Am1FJ(/) (4.25)

with
Amf(4) = ——ZT*”M - 2—f e ™, (4.26)
C K C K
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we find (working to second-order in Amf”’)
r = Kk*(c + 1)g* — K(c + x)sin 8(2(c — k)g + KT sin HAmt7 (£, (4.27)
so = (kq) ' Am’ (¢) (4.28)
and (for h=0)
W(s,£) = 2kmy(myks cos & + T+ Am{” (£))e </ 55?9
+ic(m? + (myks cos & + 1) )e K TSSO 4 (4.29)

where the useful abbreviation
g = mycosd + Tsin d (4.30)

has been introduced. As usual we impose W(s,/;d) = oc for £ < ssind.

It is worthwhile pausing at this stage to emphasise the important features of the
binding potential. First, note that if we set s = 0 then we automatically recover the FJ
potential which neglects coupling effects. Secondly, the form of the two-field potential
is similar to that found in the PB model. In particular, the exponential terms in the
interaction term Eq. (4.29) only depend on the combined variable / —ssin ¢ similar to
the £/, — £ depencence in H[/\./>]. If we set & = n/2 note that this variable indeed
reduces to the difference /> — /, consistent with our earlier statements that in this limit
the proper field is interfacial-like. Similarly, if we set & = O the arguments of the
exponential terms ere independent of s just as in the H[o,/] model confirming that for
this case the proper field is spin-like.

As can be anticipated the position dependence of the stiffness coefficients is a little
more involved. We will only quote the results to the appropriate order that we will
require in our calculations. As in the PB model the stiffness of the lower surface
is essentially position independent and we do not incur any problems if we simply
approximate

Z11(s,£50) = £11(0,00;9)
_~q’
=
Note that if we set = /2 we find 2|, = x1?/2 which is, in fact, identical with the
PB result (which, of course, it should be). On the other hand, for 6 = 0 the proper
field is spin-like and the stiffness does not show any dependence on the scaling variable
. It is interesting to note that for small 7, Eq. (431), is the exact result found by
solving Eq. (4.17) for arbitrary potential function ¢(m), i.e. beyond the double parabola
approximation. This is because in the limit of 7 — 0 the profile near the wall is flat
and the double parabola assumption does not lead to any error in the calculation.
At leading order the off-diagonal element is

4.31)

T19(s5,4;0) &~ Kmaq(£ — ssind)e U ssind) (4.32)

and dominates the position dependence of the stiffness matrix X due to the algebraic
pre-factor linear in / —ssind. For 6 = 7/2 Eq. (4.32) reduces to the PB expression and



A.O. Farry, P.S. Swain! Physica A 250 (1998) 167-230 213

satisfies the stiffness matr.x free energy relation Eq. (2.23). For general J, the analogue
of this relation is not so elegant due to non-universal pre-factors which detract from
the simplicity of the PB result.

The stiffness coefficient for the surface of fixed magnetisation m* = 0 is

325,43 8) = Zpp + 2km(myis cos d + T)e N Tssin )
—2m2KPv({ — ssin d)e I s (4.33)

showing the FJ-like negative next-to-leading order exponential term. Indeed setting
s = 0 recovers their resu't Eq. (1.37) precisely.

The final expression required to complete our specification of the optimal model is
that for the temperature, surface field and position dependence of the optimal angle J~.
This can be easily calculated from the known FJ profile and we find
2¢ 2ct ot

. T
tand* ~ — +

e et 34
m et Crom. (434)

which needs to be substituted into Eqs. (4.29)—(4.33).

5. Fluctuation effects in the optimal model
5.1. Complete wetting

The essential observation here is that in the approach to a complete wetting transition
(route (iii) in Fig. 1) the position dependence of the coupling angle is unimportant
and we may write

5% = tan~! — 5.1
My
Within the H[s,#] model it is the size of this coupling angle that describes the quali-
tative and quantitative nature of the coupling between the two fluctuating fields. First
consider complete wetting transitions occurring at relatively high temperatures corre-
sponding to 7> m,. From Eq. (5.1) we see

(5.2)

so that the proper field is interfacial-like. Thus deep in the complete wetting regime
the optimal model is essentially the same as the PB model vindicating their earlier
study. Indeed provided we keep away from the crossover region described below the
PB model is a suitable starting point for the discussion of fluctuation effects. We can,
therefore, anticipate on the basis of the optimal model that the value of the wetting
parameter determining the critical amplitude 6 is renormalised in accordance with the
earlier coupled theory. We shall turn to this shortly.
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On the other hand, as we consider complete wetting transitions occurring closer and
closer to the critical wetting temperature we encounter a crossover regime in which
the size of the coupling angle diminishes rather quickly. Again from Eq. (5.1) we see

T
J o (5.3)

in this region (1 <m, ). Consequently, near to the critical wetting temperature the proper
field is essentially spin-like and the optimal model is basically the same as the H[a,/]
Hamiltonian considered in Section 3.1. Recall our remarks made earlier that in the
absence of any interfacial or translation component (so that the argument of the expo-
nential terms in the binding potential only depend on the / field) there is no increment
to the effective value of the wetting parameter . Consequently, due to the rotation of
the coupling angle as the temperature is reduced we can also anticipate that
lim {&} =w (5.4)
T—T)
confirming the suggestion of PBS on the basis of the PB model.

These remarks clarify the qualitative nature of the decoupling of fluctuations asso-
ciated with the crossover from complete to critical wetting. The mechanism for this
in the optimal model is far more elegant than the rather heuristic arguments given in
Section 2.5 using the PB theory. Importantly. we have succeeded in deriving a model
of coupling effects which does not suffer from any pathological behaviour of the lower
cut-off as 7— 0. To see this note that the stiffness coefficient of the proper field in the
optimal model is s:mply

I =X sec? 5", (5.5)
where
. Km?
I = (5.6)

is the stiffness coeTicient at the wetting temperature. Note that Ef| is perfectly well
behaved as 7 — Ty i.e. T— 0. Also recall our remarks made earlier when we noted
that Eq. (5.6) is the exact analytical MF result valid for arbitrary ¢(m) and is not
limited to the double parabola approximation.

The main benefit of constructing the optimal model is seen by focusing on quantita-
tive predictions for the scale of the wetting parameter renormalisation in the crossover
region (where Eq. (5.3) is valid). To calculate the critical exponents and amplitudes
for complete wetting it is sufficient to ignore the position dependence of the stiffness
matrix elements and write the optimal model

H[s,/] = /dy{%Z”(Vs)z + 1En (VY + 3rs? + W(/ — ssind*)} (5.7)

where W(/) is the standard binding potential for wetting. This can be approximated
by

W(/)=ht +2kmyre™ for £ >0 (5.8)
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familiar from earlier approaches. Recall also that the parameters X, and » are related
to the transverse correlation length ¢, at the wall-x interface by &2, = Z,,/#. As has
been emphasised before one of the satisfying features of the two-field approach is that
the final predictions for observable critical amplitudes do not depend on terms like
X1 and r separately but only on scaled combinations which can be related to physical
quantities for other systems (such as the Ising model).

By writing # = ssind* we see that the rescaled optimal model H{5, /] and the PB
Hamiltonian have precisely the same form so that we do not have to perform any new
RG calculations. Consequently, we can simply substitute the appropriate optimal model
parameters into expression given by Eq. (2.32) derived by Boulter and Parry [20]. In
particular, in the crossover regime when the coupling angle is small we are led to the
prediction

(r./”fi )2

b=+ Q5 TAT + O((1/my)*) , (5.9)
where

L kBTK2 510

~ 4nXh (>.10)

is the wetting parameter for the proper field evaluated at the wetting transition tem-
perature. An important point to note here is that the cut-off A appearing in our central
result Eq. (5.9) is perfectly well-behaved. As we shall show in the next section the
numerical value of XV, is very similar to 2,4 (at any temperature) so that we can
reasonably anticipate that the cut-offs for both fields (s and /) are the same. Alterna-
tively, we may go further and argue that the cut-off for the proper field is the same
as the LGW model. This may arise asymptotically close to the wetting temperature
as the proper field is then a spin-like variable. In the terminology of Section 3.1 the
spin-like Hamiltonians {H[g;z]} can, in principle, be exactly calculated by evalua-
tion of the functional integral Eq. (3.2) since ¢ is always a single valued variable.
Thus, in principle, the models {H[a;:-X]} carry the same information as the full LGW
Hamiltonian concerning correlation functions along the spin-plane at z = z¥. This
contrasts with interfacial variables for which the corresponding Hamiltonian is only
appropriate for long wavelength fluctuations because overhangs in the field are ig-
nored. Fortunately these considerations are of no concern away from 7 and for the
most part we can safely assume that the cut-off for the s and 7 fields is the same as
that present in the CW and FJ models.

Thus, the optimised theory yields a precise perturbative expression for the surface
field or temperature dependence of the renormalised wetting parameter determining the
observable critical amplitude 0. 1t follows that the increment to ¢) vanishes quadratically
as 7 — 07, a result that cannot be derived from the PB model. The coefficient of the
quadratic term in Eq. (5.9) is determined by the new wetting parameter €2 the value
of which we need to estimate.
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5.2. Critical wetting

In many respects the optimal model yields results for critical wetting that are sup-
portive of the CW and FJ theories. However, the model also allows a more precise
expression of the queries raised at the end of Section 2.5 concerning the influence of
coupling on the behaviour of local response functions near the wall. First, let us state
that if we neglect the position dependence of the stiflness coefficients then a lengthy
but straightforward application of the renormalisation group equations described in
Section 2.3 reveals the same results for the leading order critical behaviour as the
CW model. In particular, the critical exponent v, for the correlation length &, is
strongly non-universal and dependent on the usual (un-renormalized) wetting param-
eter . We do not repeat this analysis here since it is not a particularly illumi-
nating calculation ard the results can be anticipated by inspection of the binding
potential Eq. (4.29) with 6 =0. Similarly, we can be anticipate that the inclusion of
the position dependence of the stiffness coefficients will drive the transition weakly
first-order in the same way as the central result of the FJ theory. Actually this cal-
culation requires a slight extension of the RG theory of two-field models since the
scheme developed by Boulter and Parry (within linear and non-linear treatments of
the interaction term W (/3 — /1)) [20,22] outlined earlier does not cater for the pres-
ence of all the postion-dependent stiffnesses. Nevertheless, such a scheme has re-
cently been derived within a linear RG approximation to the interaction term and
yields a very similar flow equation for the effective binding potential to the FJ equa-
tions [64]. In particular, it is no surprise to learn that the flows of W and the 42,
mix under RG iteration so that the critical wetting transition is destabilised due to
presence of the FJ-like negative next-to-leading order exponential term in the 2y
stiffness coefficient. However, as is now known the value of the tricritical wetting
parameter »* at which the transition returns to being second order is rather sen-
sitive to the proper inclusion of the hard-wall contribution to the binding potential
[25,47]. Consequently, a detailed study of fluctuation-induced first-order behaviour in
the optimal model requires a fully non-linear RG analysis including the position de-
pendence of the stiffness matrix. Such a scheme has not been developed yet although
we are aware of work in progress [65]. Consequently, we content ourselves with the
qualitative but nonztheless important remarks that the optimal model yields predic-
tions for the true zsymptotic critical singularities that are similar to the FJ and CW
models.

However, there is behaviour associated with coupling effects that is not included in
either of these modzls independent of the predictions for true asymptotic criticality. This
is most simply seen by calculating the Ginzburg criterion for the surface susceptibility
y1 and comparing the result with that of the CW model Eq. (1.40). The Ginzburg
criterion tests the self-consistency of the MF approximation and yields an estimate for
the size of the correlation length when crossover from MF to non-classical behaviour
occurs. Now, this non-classical behaviour need not be specified and may correspond to
non-universality or indeed crossover to fluctuation-induced first-order effects, However,
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we note that the estimates given by FJ for the size of the correlation length when
the film jumps to infinity, characteristic of a first-order transition, are truly enormous
and will turn out to be rnuch larger than the crossover length that we calculate below.
Consequently, we feel justified in ignoring the position dependence of the stiffness
matrix elements in our calculation.

The calculation is for the susceptibility y, along the critical isotherm (route (ii)
in Fig. 1) and follows the same method as that outlined for the CW model by
Halpin-Healey and Brézin [48]. As 1 is small we need to use the full expression for
the position dependence of the coupling angle é* given in Eq. (4.34). The Hamiltonian
is

H[s,/]= / V{IER(VsY + 1Z,4(VEY + V(5. A}, (5.11)
where we have written

Vs, 1) = Wa(s./507(£)) (5.12)
and changed notation to avoid a plethora of W’s. Now from (Eq. (4.34)) we note that

g KU/ =ssind™) o @ U =SUP() 4 O(se ™)), (5.13)

where p> = m2 4 . In this way (and using Eqs. (4.26), (4.29)), we specify the
explicit position dependence of the optimal model binding potential by

22 T el — 1)
V(S,f): %KZ(C + K)phsh +a (l *S#) e K(/ =51/ p)
i p

N
+be—21\'(’7§7;’[1) + h (/ _ S£> };_.Z.C_m_ se (5.14)
p (c +x)p?
with
a = 2KkmyT, (5.15)
b= ;c(r2 + vmi) (5.16)
—2r/

and (as usual) v = (¢c—k)/(c+x). Terms of order O(se "/, s’e ") have been ignored.
Only a Gaussian approximation is used to include fluctuations and the onset of
non-classical behaviour is heralded by the breakdown of the self-consistency of this
approach. Expanding Eq. (5.14) about its minimum value gives
82 V 1 . 8‘
Vis,()=V(E L)+ = (/—{)‘ s )2 (5.17)

7 2 £§
with, of course, the MF fields given by

v

v
ar |,

A
cs B

=0. (5.18)
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Next, we write the Hamiltonian in Fourier representation in anticipation of the func-
tional integrals

d’ 1 , 1 .
Hls = | 5 ‘;2{ (e’ + V.s.q)f(q);w;(zz,;qﬂV//)lf(qnz}, (5.19)

where we have written ¢2¥V/dn® = V,, with all derivatives evaluated at s =§ and # = /.
The partition function is

¥ = /f/?'/fzfsexp(—H[s._ 4)] (5.20)
and is evaluated in MF and Gaussian approximation. The MF result is
I~ o AVED . (5.21)

while in Gaussian approximation

, - o dz‘] ar N2
s [asaren |- [ S5t ok

1 2 2 2
+ 5(216(]" + V//)V(‘l)h}J

¥ A/ d*q In T }
exXp (77I)2 Az(ZL q + Vvv)

i
o [Zm} H ’ (5.22)

where .47 is a suitable normalisation factor which plays no role in the following calcu-
lation. In going between the last two equations we have made use of standard functional
integrals [66]. Therefore, the effective potential in Gaussian theory is

e d’q
y H(s/)—lf(v/)+—/(2 7

while the MF susceptibility is defined as

{(In(ZHg* + V) + In(Zapq” + Vi)l (5.23)

o PV
K= T Bh oh

(5.7); (5.24)

the analogous Gaussian result is

1 &

=y — > T (2 )2 il BN NG L P In(Z.5q° + Vi)}

. I d*q {?72 Vi/OhiCh ¢V /Ch - &Vy/Ohy
EAR Y A TEI 2 N A S R

& V,i/Ch|Ch _ eV ich - cVypich, }
Zpa* +Vy, (Zapq* + Vi )?

(5.25)
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Evaluation of the partial derivatives in Eq. (5.25) is very algebraically intense and
for our calculations we used the computer package MATHEMATICA. Once these are
determined however the integrals are straightforward and we find

ﬁi—l—w Inil+ E24%) + ! —1
7 2 I I+ ¢ A2
- 2 PR
s In(: + &A% + O (5.26)
where we have used the definitions &2 = W,/ and ¢ &, " = Ws/2y. The higher-order

terms are tiny in the crossover region and can be saTely ignored. Following Halpin-
Healey and Brézin we suppose that a suitable definition of crossover is when

el}

_/1‘

1 5.27)
VAR (

from which follows our central result

1
w{zln(] + AT+ }_1+an(1¢ &A%y, (5.28)

1

In the above expressions note that A corresponds to the momentum cut-off for the
/ and s fields and may be safely identified with the cut-off for the CW and FI models
away from the bulk critical region.

Importantly, the optimal model expression for the Ginzburg criterion shows the pres-
ence of the wetting parameter Q2 associated with the fluctuations of the proper field.
Note that in the corresponding CW expression, Eq. (1.40), there is no such term (which
is equivalent to setting €2 = 0 in Eq. (5.28)) with the consequence that the true critical
regime predicted by the present optimal coupled model is much smaller than previously
expected. As we shall show in the next section the value of the second wetting param-
eter is about unity for lIsing-like systems with the result that the crossover length ¢
is very large. For this case we may further approximate, Eq. (5.28), by the expression

A ”~e1+‘” (14 A& Yo, (5.29)

Egs. (5.9), (5.28) and (5.29) are the main results of this paper. In the next section,
we turn to a discussion of the numerical value of the new wetting parameter © which
will allow us to make “etter contact with the anomalous simulation data at the heart
of problems (P1) and (P2).

5.3. Value of the second wetting parameter Q

Our final task is to specify the temperature dependence of the second wetting pa-
rameter  in order to fully quantify our central predictions Eqgs. (5.9) and (5.28). As
with the CW and FJ theories we should regard Q (and w) as inputs into the model
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which must be calculated by reliable means beyond MF approximation (at least in the
bulk critical region). In particular, we can identify two immediate concerns

(1) Establish a link between 2 and observable thermodynamic and correlation func-
tion properties of the underlying microscopic model.

(ii) Determine the critical behaviour of Q as Ty — T o

We should emphasise here that these tasks stand somewhat apart from the rest of
our paper and will probably require further work.

3.3.1. Connection with thermodynamics

A link between the proper field wetting parameter  and thermodynamics follows
from the CFRS. To see this note that we can use a proper field s to describe the surface
correlations at the wall-o interface — equivalent to setting / = oc in the Hamiltonian
H[s, /] (with =0 of course). According to the CFRS
(45055, 5))°

f}i—_’f(s,oc; O+ g2 Z(s,00;0) + - -+

G*(0.0;q) ==

(5.30)
s=0
and is valid for any value of 4. Now exactly at the wetting transition temperature the
optimal angle 6* = 0 (with / =oc) and using this we find

5
m% K-

G*"(0,0;q) == — =
0.0 =

(5.31)

using the fact that the surface and bulk magnetisations are equal at 7 = 7y and #=0.
From an exact sum-rule identity [57], we can relate the zeroth moment Gy(0,0) to the
wall susceptibility

o )
GU(0.0) = FI— = Xll/’kBT (532)

and also recall that £} and » determine the (second-moment) correlation length &,..
Consequently, we can write

w 2,.2 22
20 _ MR o (533)
ksT 73

and bare in mind that quantities are defined for the wall-¢ interface. In this way,
the value of the new wetting parameter (at a particular wetting temperature) can be
identified as
Ak
Q=—"5— forT=T7Tp. (5.34)

- 222
drmy &5,

In principle, all the quantities on the r.h.s. can be precisely determined for the full
LGW model.

The argument given above is not completely rigorous since it is based on reinterpre-
tation of the CFRS equations which has only been established at MF level. Thus one
may legitimately worry therefore whether Eq. (5.34) is only appropriate away from
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the bulk critical region. In case this query is well founded we will content ourselves
that the final identification above is reliable outside the bulk critical regime and try a
different method of attack: for Ty < T¢.

3.3.2. Universality of Q

Here we give an argument aimed at establishing the universality of the parameter
Qas T — T, ie. for wetting transitions occurring close to the bulk critical point. In
fact, the argument leads to a rather precise estimate for the critical value

Qc = lim {7 )} (5.35)

complementing the known universality of w(7¢). The reasoning we give is different
to the simpler one used earlier [14] although the final numerical estimates are rather
similar.

In the bulk critical region the surface correlation length ¢, is very large and the
simpler expression Eq. (5.29) for the Ginzburg criterion is appropriate. However in
this result, the two wetting parameters do not appear separately but as a ratio and
it is natural to focus on this combination. We noted before that expression given by
Eq. (5.6) for Z}| was exact in MF theory for arbitrary ¢(m). We can extend this by
including an arbitrary pre-factor f,(m) (denoted K in Ref. [17]) as the coefficient of
%(Vm)2 in the LGW Hamiltonian. With this the exact result for the lower stiffness of
the proper field at 7y becomes

o fZ(moc)mif‘-
=
Now, following the pioneering studies of Fisk and Widom [67] (reviewed in some detail
by Rowlinson and Widom [68]) we can chose /> and ¢(m) to mimic the inclusion of
bulk critical fluctuations in a variational (i.e. MF) treatment of the functional H; gy [m].
This appears, of course, in the saddle-point identification used in constructing effective
Hamiltonians. From the precise variational result Eq. (5.36) and the definition of it
is straightforward to show that the critical ratio
Q

Z =8K, Ty —Tc, (5.37)
w

Zn (5.36)

where K is the surface tension critical amplitude defined in Eq. (9.82) of [68].

The quantity K naturally arises in the Fisk-Widom theory of the surface tension and
its value has been estimated using a variety of techniques. Rowlinson and Widom quote
the predictions K = é and K =~ % arising from pure MF and the rather accurate Fisk—
Widom theory, respectively. From a fundamental point of view K is a nice quantity
because it can be calculated using the celebrated ¢ expansion in the RG analysis of the

LGW model. Therefore directly from the known first-order result in ¢ we find [69]

/
Qc:§wc [1—1 [3—”*1> s+0(sz)+--} (5.3%)
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evaluated at ¢ = 1. Thus, we predict
Qc ~ 092 (5.39)

close to the Fisk—Widom result Q. ~ %(uc. The error in this estimate is small (and in
the last digit) because of the accuracy of w¢ and K.

The argument given above is different to one used earlier [14] which was based
on a direct analysis of Eq. (5.36) using Fisk-Widom theory to express f, in terms
of bulk thermodynamic functions. This also predicts that Q¢ is universal but the final
expression is solely in terms of bulk critical amplitudes and looks rather different
to Eq. (5.38). Interestingly, however, the final numerical estimate is rather close to
Eq. (5.39) althougt we prefer the present argument because it reduces Q¢ to previously
studied surface quentities.

5.4. Connection with simulations

5.4.1. Critical wetting; (Pl) revisited
Let us denote the solutions to Eqgs. (1.40) and (5.28) determining the respective size
of the MF regime in CW and coupled models, respectively, by 5P and &gi. Then, we
see that the effect of coupling is to dramatically reduce the extent of the true asymptotic
regime for the susceptibility y, since
<Gi

=CW

=Gi

~ (14 A7E Y. (5.40)

It is easiest to assume that the exponent on the r.h.s. is close to the critical value
Qejwe =~ % Alternatively we may argue that away from 7 the exponent is determined
by the MF value of K in which case we can estimate Q/w ~ % We do not know
the precise value of the surface correlation length C,, in the simulation studies but a
sensible estimate away from the bulk critical regime is A&, ~ n leading to
o x15-24 (5.41)
SGi
depending on the choice of K. The coupled model leads to the same prediction for the
divergence of £ as the CW model and we can use the estimate of Halpin-Healey and
Brézin [48]

L htt (5.42)

for the Ising mode! with Ty = 0.637. Here J is the usual spin-spin coupling strength.
In this way, we predict crossover occurs when
h
Z~10°° 543
7 (5.43)

(compared to the CW result ~ 10~*) which is much smaller than the values studied
in the simulations.
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Thus, the optimised thzory of coupling effects yields a quantitative explanation of
(P1) and allows a precisc expression of the conjectures made earlier on the basis of
the PB model. As we have emphasised before future simulation studies should focus
on the measurement of response functions local to the xf interface if they hope to
see fluctuation effects consistent with the original CW model predictions for critical
wetting.

5.4.2. Complete wetting; (P2) revisited

As regards the BLF simulations [15,16], the most important results of the optimal
coupled model are the qualitative remarks

(i) For T'> Ty the PB model is recovered so that the effective value of the wetting
parameter @ is greater than . Hence, the value of 0 > 1 + w/2.

(ii) As T — T, the increment to @ vanishes so that the extrapolated value of &
(or 0) at Ty is the CW result. Thus, the optimised model is entirely supportive of the
prediction Eq. (2.48) of PBS [53] based on the PB model.

It is worth re-emphasising the merits of extracting the value of w(7y ) by extrapo-
lating from the data for 0 not least because it yields a value for @ ~ 0.8 consistent
with long-standing theoretical predictions. Tmportantly, it avoids the issue of whether
the wetting transition is weakly first-order or not. Moreover the BLF data are taken
from susceptibility measurements near to the xff interface (and not at the wall) where
fluctuation effects are very strong. The fact that the BLF simulation results are in quan-
titative agreement with these predictions is (currently) the most important independent
confirmation of the hypothesis concerning coupling effects.

Unfortunately, the BLF study is not sufficiently accurate to test the quantitative
prediction Eq. (5.9) although the data is certainly consistent with a quadratic power
law for @ near Ty (see Fig. 4). The small 6* result simplifies further if we consider
complete wetting transitions occurring close to the bulk critical point. If 7T is fixed
close to T¢ and h; = A", then provided that AZ,, and ¢/x are large enough we can
write

_ mo— AN

O = w0, + Q¢ (——W——> + - (5.44)
which is a universal result. We accept here that forcing our theory to work in the
vicinity of the bulk critical point is a contentious issue since there are well known
difficulties interpreting effective Hamiltonian models in the bulk critical region [70].
Therefore, we wish to not dwell too long on the nature of @ near T¢.

5.4.3. A conjecture for the value of w¢

Before we close the paper we comment on an intriguing numerical coincidence
that caught our attention when estimating the extent of the critical region for y;
on the basis of the coupled theory. If we focus on the Ginzburg result, Eq. (5.29),
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in the bulk critical region we are naturally led to the evaluation of the universal
number

eltoc’ (5.45)

Taking the Fisher—Wen estimate [45] w¢ ~ 0.77s we find that this quantity is extremely
close to m?! It is tharefore tempting to conjecture that the exact value of we is

1

“C= a1

=0.7755186 (5.46)

although this is of course entirely speculative.

6. Discussion
We begin with a summary before addressing some pertinent questions.
6.1. Summary of method and results

The starting point of our study is the coupling hypothesis
Some of the non-universal physics of wetting transitions at the upper critical
dimension (for systems with short-range forces) d =3 is sensitive to the coupling
between order parameter fluctuations near the zf8 interface and wall.

The rest of our analysis is a thorough investigation of the procedures we must follow
in order to construct a two-field model of coupling effects at critical and complete wet-
ting transitions. We first address (P3) related to the reconstruction of MF correlations
and establish the following result:

For arbitrary choices of local collective coordinates X, (y), the two-field model
H[X.X>] (defined using a FJ-like saddle-point identification) can precisely re-
cover the order parameter correlations of the underlying LGW theory (in MF
approximation) using the invariant relation

Gaia) = Sp= (i (X} VS G DS @) (6.1)
where z;, z; are the MF locations of the two fields X;,X> and S is the structure
factor matrix.

To consider fluctuation effects beyond MF we must carefully chose the collective
coordinates X, (y). Following all earlier studies we adopt a standard interfacial variable

X> = ¢ for the upper field which we define as the surface of fixed magnetisation m¥ =0.

The choice of X, is not so obvious and we, therefore, focus on a set of Hamiltonians

A = {H[s,¢; 8]} (6.2)
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characterised by different coupling angles ¢ which describe the relative importance of

the spin-like (o) and interfacial-like (¢, ) components of a proper field s with magnitude

satisfying

) , o2

=t .

s i+ -y (6.3)
At the upper critical dimension the Hamiltonians in the set # can exhibit different

non-universal critical behaviour (for some quantities). We argue that the model

H[s,/] = H[s,¢;5"] (6.4)

with 6* the optimal coupling angle, best describes the fluctuations of the order pa-
rameter near the wall as determined by a novel variational principle. Analysis of the
optimal model yields the following predictions.

(1) Deep in the comp ete wetting regime the proper field is interfacial-like and the
model reduces to the P3 theory. RG analysis predicts the same wetting parameter
renormalisation effect at high temperatures and an elegant crossover mechanism asso-
ciated with the rotation of ¢* as the temperature is reduced to 7w . This leads to the
explicit perturbation expansion result

(t/ms)
1 + (A':\VO()72

@ =w+ R (6.5)
in the vicinity of Ty-.

(2) At critical wetting, the effect of coupling is to dramatically reduce the size of the
true asymptotic critical regime for the local susceptibility y; at the wall. Specifically,
crossover to non-classicel behaviour should occur when the correlation length is

Ay el ™ (1 + A8 (6.6)

much larger than corresponding CW result.

(3) The new physics that emerges is controlled by a second wetting parameter Q2
that has no counterpart in simpler one-field theories. We argue that Q approaches a
universal value Q¢ =~ 0.92 in the bulk critical regime.

(4) The values of the critical exponents in the true asymptotic critical regimes of
critical and complete wetting are the same as those of the CW theory. Similarly, it is
highly likely that the optimal model exhibits fluctuation-induced first-order behaviour
for sufficiently small @ < @* similar to the FJ theory.

6.2. Remaining questions

While, one can argue that the coupling hypothesis is justified a posteriori it is still
perhaps surprising that the inclusion of coupling effects leads to the modification of
the CW model results in Eq. (6.5). To finish, therefore, we try to stand back from the
mathematics and give more physical answers to some important questions. We begin
with:
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6.2.1. Why do coupling effects appear to matter so much?

Firstly, we should emphasise that most of the physics is insensitive to coupling
effects. As mentionzd in the last remark of Section 6.1 even though we are at the upper
critical dimension the values of the critical exponents for both critical and complete
wetting are identical to those of the CW model. Nevertheless, one can force the question
and ask why does any of the underlying physics depend on the coupling to a weakly
fluctuating field? To answer we draw on recent work aimed at studying wetting at
rough walls [71].

If we fix the position of the lower field 7/ (y) = zy(y) (say) in the PB model the
two-field Hamiltonian H[zy, /2] describes the problem of wetting at a fixed corrugated
non-planar wall. However even at MF level it is now known that the surface phase
diagram is effected strongly by minor deviations of the wall from the plane. In partic-
ular, analytical anc numerical studies of a LGW model show that a (planar) critical
wetting transition is driven first-order (and occurs at a lower temperature) provided the
width a of the walls deviation satisfies [71]

a>\/z;:}-*‘ (6.7)

which is less than a bulk correlation length. More generally numerical studies [72] of
CW-like models of wetting at rough walls in d = 2 shows that the order of the wetting
transition is altered if

Cs =0 (6.8)

where { is the roughness exponent for the free xf interface and (s is the roughness
exponent for the wall configurations. Now, let us return to the case of wetting at
planar walls but include the coupling of order parameter fluctuations using a two-field
model. It is natural to make analogy between the non-planar wall and fluctuations near
a planar wall which increase the effective area as seen by the upper surface. Since the
fluctuations in the order parameter near the wall are small they can only correspond to
some effective roughness {5 = 0. Thus, we surmise that it is possible that fluctuation
effects are sensitive to the coupling if
- 3—-d

0>~ (6.9)

which is only marginally satisfied in d =3. Recall that for systems with long-range
forces MF theory is expected to be valid in this dimension which suggests that coupling
can only be of any possible importance for those with short-range interactions. We also
remark that in & =2 transfer matrix studies confirm that coupling does not change any
of the universal critical properties associated with wetting transitions. We do not include
the details of the calculation here [73] since we feel it would take us away from our
central concerns.

These remarks complement those made earlier [22] that in the non-linear RG anal-
ysis of the CW riodel [4,5] a shift in the origin of the binding potential (i.e. the
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location of the wall) is a marginal operation in d =3 (and irrelevant for d < 3). Since
such fluctuations are allcwed for in two-field theory (by the variation of ssind*) it is
perhaps not surprising that some of the non-universal physics is sensitive to coupling
effects.

Hopefully, the above discussion helps clarify the reason why fluctuation effects can
be sensitive to coupling at the upper critical dimension. If we accept their importance
it is natural to proceed to our final question

6.2.2. How should we visualize coupled fluctuations?

In order to address this question we first recall the answer to a related one — what
fluctuations give rise to the standard binding potential W (/) in the CW model? In the
absence of long-range wall-fluid and fluid—fluid forces the direct interaction between the
interface and wall also arises due to fluctuation effects. This issue has been emphasised
by a number of authors notably Gompper et al. [S0] who point out that within a
solid-on-solid (SOS) approximation an effective binding potential arises due to the
presence of spike-like fuctuations from the interface to the wall (which can be seen
in simulation studies). Note that these are not particularly important in d =2 because
of the contact condition £ ~ ¢, . In d =3 however where /> ¢ |, the interface rarely
reaches the wall and the spike-like fluctuations are crucial to the picture, determining (at
least in part) the structure of W (¢). Beyond the SOS approximation we can expect the
spikes to correspond to string or tube-like objects of f-like magnetisation that wander
on their way from the »f8 interface to the wall. This is reminiscent of the Abraham-—
Chayes—Chayes (ACC) description of bulk correlations in the d =3 Ising model which
is known to reproduce the expected Omstein—-Zernike decay of the correlation function
[74]. In this interpretation the leading order exponential decay of the binding potential
can be directly related to bulk-like correlations (i.e. wandering SOS tubes) between
points near the 2f interface and wall [75]. The coupled model describes deformations
to the ACC tube arising from interactions with loca) (droplet-like) fluctuations which
increase the effective area of the wall. This is consistent with the heuristic scaling theory
discussed in Section 2.4 that coupling alters the manifestation of the direct interaction
between the fluctuating surfaces. These ideas are illustrated schematically in Figs. 6-8

and only constitute a minor change to the overall picture implicit in the CW model.

Moreover, with this interpretation it is clear why in d = 2 coupling is not important
because the spike-like fluctuations are not needed to convey information from the wall
to the interface. Nevertheless, we surmise that coupled models are still applicable even
if they do not change any of the critical properties associated with wetting transitions
as such theories should provide a more reliable description of correlation function
structure.

With this picture it is also clear why it is not necessary to explicitly include more
fields describing fluctuations at other positions since such effects are implicitly included
in the effective Hamiltonian theory when we replace the MF « and X, by their true
Ising values (see Fig. 7).
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B-phase

wall

Fig. 6. Example of a spike-like fluctuation in the SOS model carrying information from the wall to the fluid
interface. Such configurations arc believed to give rise to the exponentially decaying terms in the binding
potential.

wall

Fig. 7. Tube-like fluctuat on from the interface to the wall in an Ising-like system. The tube is deformed due to
its interaction with a local droplet-like fluctuation near the wall typical of fluctuations at the wall-x interface.
Those droplet-like fluctuations away from the wall or near the zf§ interface only result in a renormalisation
of the MF expressions for « and Z,y, respectively.

wall

Fig. 8. In d = 2 tube or spike-like fluctuations are no longer needed to carry information between the wall
and the fluid interface as the contact condition / ~ & ensures that the interface itself regularly visits there.
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