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Abstract

Fluorescence fluctuation spectroscopy (FFS) refers to techniques that analyze fluctuations

in the fluorescence emitted by fluorophores diffusing in a small volume and can be used to

distinguish between populations of molecules that exhibit differences in brightness or diffu-

sion. For example, fluorescence correlation spectroscopy (FCS) resolves species through

their diffusion by analyzing correlations in the fluorescence over time; photon counting histo-

grams (PCH) and related methods based on moment analysis resolve species through their

brightness by analyzing fluctuations in the photon counts. Here we introduce correlated pho-

ton counting histograms (cPCH), which uses both types of information to simultaneously

resolve fluorescent species by their brightness and diffusion. We define the cPCH distribu-

tion by the probability to detect both a particular number of photons at the current time and

another number at a later time. FCS and moment analysis are special cases of the moments

of the cPCH distribution, and PCH is obtained by summing over the photon counts in either

channel. cPCH is inherently a dual channel technique, and the expressions we develop

apply to the dual colour case. Using simulations, we demonstrate that two species differing

in both their diffusion and brightness can be better resolved with cPCH than with either FCS

or PCH. Further, we show that cPCH can be extended both to longer dwell times to improve

the signal-to-noise and to the analysis of images. By better exploiting the information avail-

able in fluorescence fluctuation spectroscopy, cPCH will be an enabling methodology for

quantitative biology.

Introduction

Absolute numbers are necessary for quantitative biology, but are challenging to obtain in sin-

gle cells. Although ad hoc techniques exist [1–6], an established approach to measure the con-

centrations of fluorescently tagged molecules and their rate of diffusion is fluorescence

fluctuation spectroscopy, which has two main branches. Fluorescence-correlation spectros-

copy (FCS) uses correlations between the observed photon counts at different times to obtain
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both the diffusion coefficient and the local numbers of a fluorescent molecule in the illumi-

nated observation volume [7]. Analysis of photon-counting histograms [8, 9] and related

methods of moments [10, 11] exploit fluctuations in the amplitude of the photon counts to

estimate the brightness of a fluorescent molecule (and so allow an estimate of absolute

numbers and the degree of oligomerization through the number of fluorescence tags per mole-

cule). Nevertheless, information on both diffusion and brightness are often needed [12, 13].

Although it is possible to employ PCH and FCS on the same data [12–14], the two techniques

are not inherently linked, either making interpretation complicated or requiring global fits

across multiple experiments to extract the parameters of interest.

Techniques developed to be sensitive to both diffusion and brightness do exist, but often

are either computationally intensive or employ approximations that can limit their use. For

example, higher-order FCS [15] does not consider the statistical uncertainty of the higher

order moments and even later implementations are not able to fully exploit the information

available on the amplitude of the photon counts [16]. To improve signal-to-noise, PCH was

extended to consider longer dwell times in the observation volume [17–19]: molecules then

have time to move to regions with different intensities of illumination so that their diffusion

affects the data. By considering many dwell-times, these techniques become sensitive to both

diffusion and brightness. Yet the PCH methods only approximate the dependence on diffu-

sion, which can lead to errors in the estimation of the higher order moments [11, 20], and any

alternatives are computationally intensive [18, 21, 22].

Here we present a method that is not only sensitive to both brightness and diffusion, but

also unites FCS, PCH, and moment analysis. The new technique, which we call correlated pho-

ton-counting histograms (cPCH), generalizes dual-color PCH [23] so that the two channels

being compared can now be shifted in time. Like PCH, the histograms depend on brightness,

but how these histograms change from one time point to another depends on diffusion. The

histograms can be generated using data either from the same channel or from two different

channels, and, although we will focus on single channel measurements, the theoretical expres-

sions derived apply generally.

We also show that cPCH can be applied to the study of images, just as raster image correla-

tion spectroscopy (RICS) extends FCS [24] and spatial intensity distribution analysis (SpIDA)

extends PCH [25]. Spatial cPCH can be used to resolve combinations of both immobile and

mobile proteins, and like cPCH can resolve different species based on their brightness and dif-

fusion properties. We demonstrate its potential using a simulated system of a fluorescent

ligand binding to a receptor with two distinct binding sites.

Theoretical foundations

Deriving cPCH

To maintain sensitivity to both the brightness and diffusion of the fluorophores, we need to

simultaneously employ information on both the correlation and amplitude of the photon

counts. FCS-like methods are sensitive to diffusion through measuring correlations between

fluctuations in the fluorescence signal over time; PCH-like methods are sensitive to brightness

through analyzing fluctuations in the amplitude of the signal. Our approach is to calculate his-

tograms of the number of photons detected in time bins that occur a time τ apart.

We allow each channel to be stimulated by a different laser (the observation volumes in

each channel can therefore be of different sizes) and refer to the two channels as channel A
and channel B. Each diffusing molecule has a different brightness profile in each channel, IA(x)

and IB(x), with x representing a three dimensional coordinate. We assume that the sampling

time T is smaller than τd, the time to diffuse through the observation volume, so that molecules

Correlated photon-counting histograms
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can be considered stationary during each sampling event. For a stationary molecule, the emis-

sion and detection of photons in each channel will be uncorrelated (shot noise), and each will

follow a Poisson distribution with an average rate that depends upon the fluorophore’s posi-

tion in the observation volume.

We aim to calculate pN(nx, ny|τ), the probability of detecting nx photons at time 0 and ny
photons at a time τ later for a sample containing on average N molecules in the observation

volume. To begin, we consider the case of a single molecule diffusing in the observation vol-

ume [8, 26] and assume that the binning time T is much smaller than the diffusion time τd of

the molecules through the observation volume.

For a single molecule, the probability of interest is p1(nx, ny|τ). As we do not know the posi-

tion of the molecule, we integrate the probability of detecting nx photons from a molecule at

position x and ny photons at a position y over all possible positions:

p1ðnx; nyjtÞ ¼
Z

p1ðnx; ny; x; yjtÞdxdy

¼

Z

p1ðnyjyÞp1ðnxjxÞpðx; yjtÞdxdy
ð1Þ

assuming that shot noise is uncorrelated.

The term p(x, y|τ) in Eq 1 is an important difference between this equation and the single-

molecule probability functions for PCH and dual-color PCH [26]. This term defines the prob-

ability of being in position x at time 0 and position y at time τ. For free diffusion (without

boundaries) and if D is the diffusion coefficient of the fluorophore, then

pðx; yjtÞ ¼ pðyjx; tÞpðxjtÞ

¼
1

ð4pDtÞ
3
2

e�
ðy� xÞ2

4Dt
1

V
ð2Þ

where the probability p(x|τ) is the probability density of finding the molecule at x at time τ and

is 1/V, where V is the experimental volume (which is larger than the observational volume

VAB).

Rather than performing the integration in Eq 1, we instead find a solution using Taylor

series. If the probability of obtaining n photon counts from any given position depends only

on the illumination intensity at that position, I(x), then

p1ðnjxÞ ¼
IðxÞne� IðxÞ

n!
: ð3Þ

Eq 3 implies that Eq 1 contains exponentials of I(x) + I(y), which we Taylor expand and

then use the binomial theorem to expand further into terms in I(x) and in I(y). Reversing the

order of integration and summation gives

p1ðnx; nyjtÞ ¼
1

V

X1

k¼0

ð� 1Þ
k

nx!ny!k!

Xk

m¼0

k
m

� �Z

IAðxÞ
nxþk� mIBðyÞ

nyþmpðx; yjtÞdxdy ð4Þ

Without the diffusion term, p(x, y|τ), the integral in Eq 4 gives the moments of the bright-

ness profile. Eq 4 therefore reduces to a series solution for the single-molecule case of dual-

color PCH. With the diffusion term, the integral gives a higher-order two-point correlation

function, Gm,n(τ):

Gm;nðtÞ ¼
1

VAB

Z

IAðxÞ
mIBðyÞ

npðx; yjtÞdxdy ð5Þ

Correlated photon-counting histograms

PLOS ONE | https://doi.org/10.1371/journal.pone.0226063 December 30, 2019 3 / 31

https://doi.org/10.1371/journal.pone.0226063


where VAB is the volume of the observation region (found from the point spread function).

Consequently, Eq 4 can be written as

p1ðnx; nyjtÞ ¼
VAB

V

X1

k¼0

ð� 1Þ
k

nx!ny!k!

Xk

m¼0

k

m

 !

Gnxþk� m;nyþm
ðtÞ: ð6Þ

To find explicit expressions for the two-point correlation functions (Eq 5), we use a Gauss-

ian profile for the intensity of illumination [16, 18, 27]:

IAðxÞ ¼ �A exp �
2ðx2

x þ x2
yÞ

r2
A

�
2x2

z

z2
A

� �

ð7Þ

where rA and zA denote the radial and axial beam waist parameters, and �A is the constant

brightness of the single molecule in channel A in units of photon counts/bin (of duration T
seconds). A similar expression holds for IB(x). Eq 7 implies that the two-channel observation

volume is (as in fluorescence cross-correlation spectroscopy [28]):

VAB ¼
p

2

� �3=2 rA2 þ rB2

2

� �
zA2 þ zB2

2

� �1=2

: ð8Þ

Independently treating each spatial dimension in Eq 5 gives

Gm;nðtÞ ¼ �A
m�B

ngm;nkm;nðt;DÞ ð9Þ

where κm,n(τ, D) is

km;nðt;DÞ ¼ 1þ
8mnDt

nrA2 þmrB2

� �� 1

1þ
8mnDt

nzA2 þmzB2

� �� 1
2

: ð10Þ

The shape factors of the observation volume are defined as

gm;n ¼

R IAðxÞ
�A

� �m
IBðxÞ
�B

� �n
dx

VAB

ð11Þ

and obey

gm;n ¼ 4
m
rA2
þ

n
rB2

� �

rA2 þ rB2ð Þ
2m
zA2
þ

2n
zB2

� �1=2

ðzA2 þ zB2Þ
1=2

" #� 1

ð12Þ

for the Gaussian intensity profile.

If the two channels have the same observation volume (A = B), Eq 10 becomes the correla-

tion function derived by Melnykov et al. [16]. The shape factors simplify to γm,n = γm+n and

become the shape factors for a single channel (gn ¼ n� 3
2 for a Gaussian intensity profile).

Extending to N molecules. We have considered the probability of detecting photons from

single molecules, but the molecules of interest will diffuse in and out of the laser’s observation

volume, and the actual number of molecules in the observation volume at any given time will

fluctuate around the average value N. These fluctuations are also driven by a Poisson process

and so the probability of detecting nx photons from channel A and ny photons from channel B
will be given by a compound Poisson distribution.

First, we briefly discuss a technical point. The fraction VAB/V in Eq 6 is the ratio of the

observation volume to the larger experimental volume, but can be set to unity when we con-

sider more than one molecule in the observation volume because this ratio then cancels in the

Correlated photon-counting histograms
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generating function [29]. Although we should consider the number of molecules in the larger

experimental volume, Nv, we will assume VAB = V and employ N = Nv throughout because a

constant concentration of molecules implies Nv/V = N/VAB.

The probability of detecting nx photons in channel A and ny photons in channel B at a time

τ later when there are N molecules on average in the observation volume can be found by mar-

ginalizing the probability of detecting those photons given there are m molecules exactly in the

observation volume multiplied by the probability of detecting these m molecules if there are N
in the observation volume on average:

pNðnx; nyjtÞ ¼
X1

m¼0

pðnx; nyjt;mÞpðmjNÞ ð13Þ

where p(m|N) is given by a Poisson distribution,

pðmjNÞ ¼
e� NNm

m!
: ð14Þ

The probability p(nx, ny|τ, m) is given by the m-fold convolution of the single molecule

probabilities. The probability density of a sum of independent variables (nx and ny are both

sums over the photons emitted by each molecule) is the convolution of the individual proba-

bility densities [30] (these densities determine the individual n0x and n0y emitted by each mole-

cule). Therefore we have

pðnx; nyjt;mÞ ¼ p1ðnx; nyjtÞ � p1ðnx; nyjtÞ � . . . � p1ðnx; nyjtÞ ðm timesÞ: ð15Þ

To proceed, we use the bivariate probability generating function given by:

gNðt; sjtÞ ¼
X1

nx¼0

X1

ny¼0

tnx snypNðnx; nyjtÞ ð16Þ

and note that the m-fold convolution of a probability distribution is equivalent to raising its

generating function to the m’th power [30]. If g1(t, s|τ) is the generating function for the sin-

gle-molecule probability distribution, we can write

gNðt; sjtÞ ¼
X1

nx¼0

X1

ny¼0

tnx sny
X1

m¼0

pðnx; nyjt;mÞpðmjNÞ

¼
X1

m¼0

g1ðt; sjtÞ
mpðmjNÞ

¼
X1

m¼0

g1ðt; sjtÞ
m e� NNm

m!

¼ exp ½Nðg1ðt; sjtÞ � 1Þ�:

ð17Þ

We have an exponential generating function in Eq 17, and we will show that this property

translates into a sum of the different single molecule generating functions, weighted by the

concentration of each species, because the generating function of a sum of independent ran-

dom variables is the product of their individual generating functions [30]. If there are w inde-

pendent, fluorescent molecular species in the observation volume (which do not have

substantial interactions over the time scale of the experiment), the generating function can be

Correlated photon-counting histograms
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written as

gNw
ðt; sjtÞ ¼ exp

Xw

q¼1

Nqðg
ðqÞ
1 ðt; sjtÞ � 1Þ

" #

: ð18Þ

For better comparison with experiments, we also include a constant (Poisson) background

noise in each channel. This noise has an average of λA counts per bin time T in channel A and

λB counts per bin time T in channel B. The generating function is then

gNw
ðt; sjlA; lB; tÞ ¼ exp

Xw

q¼1

Nqðg
ðqÞ
1 ðt; sjtÞ � 1Þ

" #

þ lAðt � 1Þ þ lBðs � 1Þ

 !

: ð19Þ

Although later we will derive a recursion relation for the cPCH probability distribution

from Eq 19, it is often more efficient to use the Fourier transform to evaluate the generating

functions (replacing t and s in Eq 16 by eit
0

and eis
0

[30]) and directly calculate the cPCH distri-

butions using the inverse Fourier transform, F � 1:

pNw
ðnx; nyjlA; lB; tÞ ¼ F � 1 exp

Xw

q¼1

Nqðg
ðqÞ
1 ðt0; s0jtÞ � 1Þ

" #

þ

  

log Fðpðnx; nyjlA; lBÞÞ
� �

!! ð20Þ

where the second term describes the background noise. The generating functions for each sin-

gle molecule probability distribution, gðqÞ1 ðt0; s0jtÞ, are calculated using the Fourier transform of

the single molecule probability distributions p1(nx, ny|τ). The joint probability in the back-

ground noise is

pðnx; nyjlA; lBÞ ¼ Poissonðnx; lAÞPoissonðny; lBÞ ð21Þ

and, using the properties of the discrete Fourier transform,

log ðFðpðnx; nyjlA; lBÞÞÞ ¼ la e
� it0 2pLt0

� �

� 1

" #

þ lb e
� is0 2pLs0

� �

� 1

" #

ð22Þ

where Ls0 and Lt0 are the numbers of elements in s0 and t0. We note that different species are

included in Eq 20 by summing their single-molecule generating functions weighted by their

concentrations rather than the successive convolutions of the PCH approach [8, 26].

Recursive solution. The probability generating function can also be used to derive the

probabilities. By definition [30]

pðnx; nyÞ ¼ lim
s!0

lim
t!0

1

nx!ny!

dnx
dsnx

dny
dtny

gðs; tÞ ð23Þ

and exploiting the Leibniz rule for differentiation (for both s and t)

dn

dtn
f ðtÞgðtÞ ¼

Xn

k¼0

n

k

 !
dn� k

dtn� k
f ðtÞ

dk

dtk
gðtÞ; ð24Þ

and writing p1i
ðn1; n2jtÞ for the single-molecule probability, Eq 1, for species i, we find the fol-

lowing recursion for the cPCH probability distribution:

Correlated photon-counting histograms
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• for nx> 0 and ny> 0:

pNw
ðnx; nyjlA; lB; tÞ ¼

lA
nx

pNw
ðnx � 1; nyjlA; lB; tÞ

þ
Xny

z¼0

Xnx

q¼1

q
nx
pNw
ðnx � q; ny � zjt; lA; lBÞ

�
Xw

i¼1

Nip1i
ðq; zjtÞ

ð25Þ

• for nx> 0 and ny = 0:

pNw
ðnx; nyjlA; lB; tÞ ¼

lA
nx

pNw
ðnx � 1; 0jlA; lB; tÞ

þ
Xnx

q¼1

q
nx
pNw
ðnx � k; 0jlA; lB; tÞ

�
Xw

i¼1

Nip1i
ðq; 0jtÞ

ð26Þ

• for nx = 0 and ny> 0:

pNw
ðnx; nyjlA; lB; tÞ ¼

lB
ny

pNw
ð0; ny � 1jlA; lB; tÞ

þ
Xny

q¼1

q
ny
pNw
ð0; ny � kjlA; lB; tÞ

�
Xw

i¼1

Nip1i
ð0; qjtÞ

ð27Þ

• for nx = ny = 0:

pNw
ðnx; nyjlA; lB; tÞ ¼ exp �

Xw

i¼1

Nið1 � p1i
ð0; 0jtÞÞ � lA � lB

" #

: ð28Þ

To calculate the recursion we start at nx = ny = 0, followed by nx = 0 and ny = 1, and then by

nx = 1 and ny = 0 before continuing with successively higher values of nx and ny.
Eq 25 is also applicable to dual color PCH if τ = 0. Analytical expressions for single-channel

PCH can be derived similarly [31, 32].

Moments

Similar to PCH [11, 27], the moments of the cPCH distributions efficiently summarize the rel-

evant information. The moments are easier to compute than the full distribution, and we can

express all of the moments, and even the single-molecule probability distributions, in terms of

the factorial moments of the single-molecule distributions.

Correlated photon-counting histograms
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For moments of order m for nx and n for ny, we use the notation: Mm,n for the raw moment

(about zero); (M)m,n for the factorial moment; Km,n for the cumulant; and (K)m,n for the facto-

rial cumulant. All these quantities can be found through generating functions. As well as the

probability generating function, Eq 16, the moment generating function is required:

gðMÞðt; sÞ ¼
X1

m¼0

X1

n¼0

etmesnpðm; nÞ: ð29Þ

The raw moments, Mm,n, and cumulants, Km,n, are found from this moment generating

function. Differentiating g(M)(t, s), m times with respect to t and n times with respect to s, and

then setting s = t = 0 gives the raw moments; differentiating the logarithm of g(M)(t, s) and set-

ting s = t = 0 gives the cumulants. The factorial moments, (M)m,n, and cumulants, (K)m,n, are

found from the probability generating function, Eq 16. Differentiating g(t, s), and setting s =

t = 1 gives the factorial moments; differentiating the logarithm of g(t, s) and setting s = t = 1

gives the factorial cumulants.

Factorial moments for a single molecule. Using Eq 3 in Eq 1 and the definition of the

probability generating function, Eq 16, we find that g1(t, s|τ) is

g1ðt; sjtÞ ¼
1

V

Z Z

eIAðxÞðt� 1ÞþIBðyÞðs� 1Þpðx; yjtÞdxdy ð30Þ

after performing the sums over nx and ny. Differentiating Eq 30, we find that the factorial

moments of the single molecule distribution are

ðMÞm;nðtÞ ¼
VAB

V
Gm;nðtÞ ð31Þ

with Gm,n(τ) being given by Eq 9.

We note that comparing Eq 6 and Eq 31 allows the single-molecule probability distributions

to be expressed as an infinite sum over the factorial moments:

p1ðnx; nyjtÞ ¼
X1

k¼0

ð� 1Þ
k

nx!ny!k!

Xk

m¼0

k

m

 !

ðMÞnxþk� m;nyþmðtÞ: ð32Þ

Factorial cumulants for N molecules. For N molecules, the factorial cumulants provide

the simplest expressions:

ðKÞm;nðtÞ ¼ NGm;nðtÞ: ð33Þ

The factorial cumulants for the N molecule case are therefore the higher-order two-point

correlation function, Eq 5, multiplied by the average number of molecules N.

We can extend these results to w different species by noting that the logarithm of the gener-

ating function for the multiple molecule case, Eq 18, is the sum of the individual generating

functions weighted by their concentrations. We can therefore sum the factorial cumulants of

each individual species. For better comparison with experiment, we include a Poisson back-

ground noise of λA counts per bin in channel A and λB counts per bin in channel B by noting

that only the first factorial cumulant of a Poisson distribution is non-zero (and is identical to

Correlated photon-counting histograms
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the mean of the distribution). We find

ðKðwÞÞ
1;0
¼ lA þ

Xw

i¼1

Ni�Aig1;0

ðKðwÞÞ
0;1
¼ lB þ

Xw

i¼1

Ni�Big0;1

ð34Þ

and

ðKðwÞÞm;n ¼ gm;n
Xw

i¼1

Ni�Ai
m�Bi

nkm;nðt;DiÞ ð35Þ

for m, n> 1. Here κm,n and γm,n are defined in Eqs 10 and 11.

Further, we can derive recurrence relations to convert the factorial cumulants into cumu-

lants and raw moments, which is necessary for comparing theory with experimental results

(Sec. S1).

Moments of moments

The method of moments of moments is used to estimate the experimental uncertainty of

higher order factorial cumulants [11]. Rather than using k-statistics [27], we note that the vari-

ance of a random variable can be expressed as a Taylor series of its raw moments [33]. To first

order in Nd
−1 with Nd being the number of data points (typically on the order of 106), we can

write the variance of either the cumulant or factorial cumulant of interest, Xp,r, as

Var½Xp;r�sum
p
x;u¼0

Xr

y;v¼0

@Xp;r

@Mx;y

@Xp;r

@Mu;v
Cov½Mx;y;Mu;v� ð36Þ

where Cov[Mx,y, Mu,v] is the covariance of the two raw moments Mx,y and Mu,v and is given by

[33]

Cov½Mx;y;Mu;v� ¼
1

Nd
ðMxþu;yþv � Mx;yMu;vÞ: ð37Þ

Using the recurrence relations in Sec. S1, we can express the factorial cumulants in terms of

the raw moments and so evaluate the derivatives in Eq 36. We provide examples of variances

of the factorial cumulants in Sec. S9.

Finally, we note that we have assumed that the photon counts are independent of each

other, which is not true in practice, and a correction is required for the variance of the first fac-

torial cumulant [18].

Obtaining previous methods in fluorescence fluctuation spectroscopy

FCS. We can calculate an FCS curve from the moments of the cPCH distribution. The

normalized autocorrelation function of FCS is:

GFCSðtÞ ¼
E½nxðtÞnyðt þ tÞ�

E½nxðtÞ�E½nyðt þ tÞ�
ð38Þ

or

GFCSðtÞ ¼
M1;1ðtÞ

M1;0ðtÞM0;1ðtÞ
ð39Þ
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using the definitions of the raw moments of the cPCH distribution. Via the relations in Sec.

S1, we can also express Eq 38 in terms of the factorial cumulants:

GFCSðtÞ ¼ 1þ
ðKÞ

1;1
ðtÞ

ðKÞ
1;0
ðtÞðKÞ

0;1
ðtÞ

: ð40Þ

Fitting FCS curves requires the error at each point of the curve [34]. With cPCH, not only

do the analytical solutions to the factorial cumulants provide expressions for fitting, but also

the the variances calculated by the moments of moments technique estimate the errors. In

addition, we can include dead-time and afterpulsing effects in the cPCH distribution and so

also in the FCS curve [35].

Care is needed when τ = 0. Then nx = ny by definition because we are comparing each time

bin with itself: the empirical probability distribution p(nx, ny|τ = 0) will be zero everywhere

except along the diagonal where nx = ny, and the data are one (not two) dimensional.

For FCS, we therefore define

M1;1ðtÞ ¼

ðKÞ
1;1
ðtÞ þ ðKÞ

0;1
ðKÞ

1;0
t > 0

ðKÞ
1
þ ðKÞ

1

2
þ ðKÞ

2
t ¼ 0

8
<

:
ð41Þ

replacing the relationship for the joint moment by the equivalent relationship for the second

moment of a one dimensional distribution when τ = 0.

PCH. We can obtain a single-channel PCH at any τ by summing over all counts on one

of the two axes of the cPCH distribution, pN(nx, ny|τ), because pN(nx) = pN(nx|τ) and

pNðnxjtÞ ¼
P

ny
pNðnx; nyjtÞ.

For example, using the single-molecule probability distribution p1(nx, ny|τ) (Eq 3 in Eq 1):

p1ðnxÞ ¼
X1

ny¼0

p1ðnx; nyjtÞ

¼
X1

ny¼0

1

V

Z
IAðxÞ

nx e� IAðxÞ

nx!

IBðyÞ
nye� IBðyÞ

ny!

1

ð4pDtÞ
3
2

e�
ðy� xÞ2

4Dt dxdy

¼
1

V

Z
IAðxÞ

nx e� IAðxÞ

nx!
dx

ð42Þ

carrying out first the sum over ny and then the integral over y. This integral over x is the defini-

tion of the single-molecule probability distribution used in PCH [8].

Obtaining a PCH curve at any τ is useful: in cPCH, it can be beneficial to use larger bin

sizes T as τ increases to increase the signal-to-noise ratio, a common practice in FCS. Using Eq

42, it is therefore straightforward to obtain PCH curves at different bin sizes, p1(nx|T), increas-

ing the effective counts/bin to improve the signal statistics, following FIMDA [17, 19]. Using

several different T also provides additional constraints on the brightness in the fitting routines.

As in FIMDA, the effect of molecular diffusion during longer bin times on the cPCH distribu-

tions must also be included and will be discussed below. To calculate the theoretical p1(nx|T),

we can take diffusion into consideration during the bin time T by using Eq 51 for the factorial

moments in the single molecule series solution (Eq 32).

Correlated photon-counting histograms
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FCA. We can obtain the fluorescence cumulants used in FCA [11] by setting m (or n) to

zero in Eq 33:

ðKÞnðtÞ ¼ N�angn;0: ð43Þ

We note that the definition of γm,n in Eq 12 includes any differences in the size of volume

between the two channels so that (K)n,0(τ) will yield the same numerical value as (K)n from

FCA.

Dual-color PCH. The dual-color PCH distribution is the dual-color cPCH distribution

with a zero time-shift:

pNðnx; nyÞ ¼ pNðnx; nyjt ¼ 0Þ: ð44Þ

Diffusion effects at large bin sizes

We have assumed that the binning time T is smaller than the diffusion time τd of the mole-

cules, but, as T increases towards τd, molecules can no longer be considered stationary in the

observation volume and will experience a range of intensities, I(x), changing the statistics of

the photon counts.

FIMDA and TIFCA. To allow larger T, we follow Fluorescence Intensity Multiple Distri-

bution Analysis (FIMDA) [17] and introduce a second order binning function B2(T, τd) so

that the factorial cumulants have the same form as Eqs 33 and 43, but with effective brightness

and concentration parameters. These effective parameters are:

��ðTÞ ¼ �oTB2ðT; tdÞ ; N�ðTÞ ¼
N

B2ðT; tdÞ
ð45Þ

where �o is the count rate of the fluorescent molecule per second rather than per bin time T,

and B2(T, τd) is [17]:

B2ðT; tdÞ ¼
4

a2b

bð1þ aÞ
ffiffiffiffiffiffiffiffiffiffiffi
1 � b
p atanh

ffiffiffiffiffiffiffiffiffiffiffi
1 � b

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ba
p

� 1Þ

ðbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ba
p

� 1Þ

� ��

þ1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ba
p

� ð46Þ

assuming a 3D Gaussian observation volume and with β = (ra/za)2 and α = T/τd.
Moment analysis was also extended to include binning effects using Time Integrated Facto-

rial Cumulant Analysis (TIFCA) [18]. All factorial cumulants above first-order are weighted

by a binning function of similar order, i.e.,

ðKÞnðTÞ ¼ Nð�oTÞ
nBnðT; tdÞgn ðTIFCAÞ: ð47Þ

which should be compared with Eq 43. Although the higher order binning functions in TIFCA

are exact, rather than the approximations used in FIMDA, binning functions with n> 2

require more complex numerical integration.

By comparing FIMDA’s approximation with the TIFCA results, we can show that FIMDA’s

approximation for the higher order binning functions is

BnðT; tdÞ � B2ðT; tdÞ
n� 1
: ð48Þ
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Replacing the concentration and brightness parameters in the factorial cumulant expres-

sions (Eq 43) with FIMDA’s effective concentration parameters, we find that

ðKÞnðTÞ ¼ N�ðTÞð��ðTÞÞngn
¼ Nð�oTÞ

nB2ðT; tdÞ
n� 1
gn ðFIMDAÞ:

ð49Þ

from which follows the approximation in Eq 48.

cPCH. Deriving a general equation for Bm,n(T, τd) is challenging, and we instead use FIM-

DA’s approximation (Eq 48). From Eq 32, the cPCH probability can be expressed as an infinite

series of the factorial moments (M)m,n(τ, T).

We separately consider the order for each channel: the first channel is of order m and the

second of order n, and binning is only required if the order of a given channel is either 2 or

higher. Each moment will then be scaled by its binning function Bm,n(T, τd). Although dual

color PCH [26] and TIFCA [27] (equivalent to cPCH when τ = 0) use a second order binning

function for K11(T), we have found that this approach applied to single color distributions

matches neither simulated nor experimental data for τ> 0.

For cPCH, we thus approximate the binning functions using Eq 48:

Bm;nðT; tdÞ �

B2ðT; tAÞ
m� 1
; n ¼ 0

B2ðT; tBÞ
n� 1
; m ¼ 0

B2ðT; tAÞ
m� 1B2ðT; tBÞ

n� 1
; m > 0 and n > 0

8
>>><

>>>:

ð50Þ

where the diffusion time for channel A, τA, is not necessarily the same as the diffusion time for

channel B, τB, because the two observation volumes may be of different sizes.

Using Eqs 31 and 9, we can now define the factorial moments in Eq 32 as

ðMÞm;nðt;TÞ ¼
VAB

V
ð�aoTÞ

m
ð�boTÞ

n
km;nðt; tdÞBm;nðT; tdÞgm;n ð51Þ

to include binning effects. Similarly, the factorial cumulants for a single species become

ðKÞm;nðt;TÞ ¼ Nð�aoTÞ
m
ð�boTÞ

n
km;nðt; tdÞBm;nðT; tdÞgm;n ð52Þ

from Eqs 9 and 33.

Extending to flow and images

We can extend cPCH to the study of images. Correlations between different regions of an

image should only occur if the same molecule has visited both regions. We focus on detectors

run in photon-counting mode and raster-scanned images. We therefore need to include the

probability of detecting the same molecule at two different positions at two different times.

This movement of the scanning laser is analogous to a directed flow and, similar to raster-

scanned image correlation spectroscopy [24, 36], we include a flow term in the diffusion part

of the correlation function (Eq 9). This change is the only one needed.

If there is a flow vx in the x-direction and vy in the y-direction, we can write the correlation

function as

Gm;nðtÞ ¼
1

VAB

Z

IAðxÞ
mIBðyÞ

n 1

ð4pDtÞ
3
2

e�
ðy� x� vtÞ2

4Dt dxdy ð53Þ

Correlated photon-counting histograms

PLOS ONE | https://doi.org/10.1371/journal.pone.0226063 December 30, 2019 12 / 31

https://doi.org/10.1371/journal.pone.0226063


or

Gm;nðtÞ ¼
VAB

V
�a

m�b
ngm;nSm;nðt; tdÞkm;nðt;DÞ ð54Þ

where κm,n(τ, D) is the diffusion term of Eq 10 and Sm,n(τ, D) describes the contribution from

flow:

Sm;nðt;DÞ ¼ exp �
2mnt2ðv2

x þ v2
yÞ

nrA2 þmrB2ð Þ 1þ 8mntD
nrA2þmrB2

� �

2

4

3

5 ð55Þ

assuming a 3D-Gaussian observation volume in each of the two channels.

The times τ that we can consider depend on the time taken by the laser to travel from one

pixel to another. To translate the distance between pixels into a time [24], we use the line-

retracing time, τL, the pixel dwell time, τp, the pixel size, δx by δy, and the number of pixels in a

line, Ly, so that vxτ = dxδx and vyτ = dyδy in Eq 55 for a pixel located dx pixels away in the hori-

zontal direction and dy pixels away in the vertical direction. The time for the laser to reach the

position dx in the current line is τpdx; the time for the laser to reach the position dy by scanning

the previous lines is τpLydy; and τLdy is the corresponding line-retracing time. Consequently, τ
in Eq 55 becomes τp(dx + Lydy) + τLdy.

With Eq 53 for Gm,n(τ), we can calculate the probabilities pN(nA, nB|dx, dy) and the associ-

ated moments as before (for example, using Eq 6). We note that for images of cell membranes,

2D diffusion is more appropriate, and Eqs 8, 10 and 11 should be replaced by their 2D

equivalents.

Triplet states and detector dead-time and afterpulsing

As with other methods in fluorescence fluctuation spectroscopy, cPCH can be modified to cor-

rect for non-ideal behaviour from fluorophores and detectors. We correct for triplet states and

fluorophore blinking following FCS [37] and FIMDA [17] (Sec. S6) and for detector dead-time

following Melnykov and Hall [16] (Sec. S7). For afterpulsing by the detector, we build on pre-

vious work [38], but develop corrections that include the probability of detecting an afterpulse

at a time τ after the detected photon (Sec. S8). This approach allows us to remove the increase

in amplitude due to afterpulsing commonly seen in FCS at small correlation times.

Methods

Simulations

We simulated both the diffusion of different species of fluorescent molecules through the

observation volume and the photon emission process using two different simulators.

Continuous space and discrete time. To simulate experiments when the binning time is

much less than the diffusion time, we developed a bespoke simulator in Matlab (Mathworks,

MA), which uses a discretized time but a continuous representation of space to better describe

the observation volume. Diffusion within time bins does not affect the signal statistics because

photons from all molecules are generated at the end of a time bin once their positions have

been updated. Given an initial concentration, the simulator randomly places molecules in a

box of x = 4μm by y = 4μm by z = 8μm with the laser focused at the box’s centre. At each Δt,
we sample the emitted photons for each molecule i in the observation volume from a Poisson

distribution with mean Ii(xi). We then independently update the x, y, and z positions of each

molecule using Gaussian random variables with variance 2DiΔt. The number of molecules in

the volume remains constant: if any of the molecules extend beyond the boundaries of the

Correlated photon-counting histograms
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simulation, they are wrapped to the other side of the simulated volume. We consider two

detection channels, with each species potentially having a different brightness in each channel.

Discrete space and continuous time. To simulate experiments when the binning time

approaches the diffusion time, we modified the reaction-diffusion simulator MesoRD [39].

Molecules can diffuse and fluoresce at any time, and so effects such as diffusion within a bin

time, saturation of the excited state, triplet states, detector dead-time, and detector after-pulses

can be explored. The simulator uses a discrete space, but continuous time representation. We

therefore discretize the intensity profile, and the extent of this discretization affects accuracy.

We split the simulation volume into two compartments: an inner compartment containing

the observation volume and an outer compartment for which the laser intensity is low. Each

compartment is further divided into thousands of subvolumes (cubes of 25-33 nm per side).

Each subvolume has a laser intensity dependent on its position relative to the center of the sim-

ulation volume. Following their concentrations, molecules are randomly distributed among

the subvolumes. Each species undergoes a set of molecular reactions, such as excitation to the

singlet state and relaxation to the ground state. Some reactions result in a photon being emit-

ted and measured in a specified detection channel if a random number generator produces a

number smaller than the channel’s detection efficiency. In the outer compartment, molecules

undergo a birth-death process, and the number of molecules in the simulation volume fluctu-

ates. Typically, data was recorded in arrival-time mode, with 50 ns resolution and with a simu-

lation time of 60 s. Several simulation runs (usually 5) are used.

We tested the quality of the simulations by fitting the data, similar to a calibration experi-

ment, to ensure that we obtained the correct concentrations, brightness values, diffusion

times, structure factor (s = zA/rA), and shape parameters (γ3, γ4).

Images. We extended our simulator to simulate photon detection using a raster-scanned

laser scanning microscope. For a Xμm by Yμm image, the simulation volume is a region of

x = 4Xμm by y = 4Yμm by z = 8μm. Molecules are placed randomly, and the laser is initially

positioned at the top left corner: the region (−X/2: X/2, −Y/2: Y/2, 0) of the simulation volume.

Each image is assigned xn by yn pixels. All pixels have a defined dwell time. At each dwell time,

we count photons from all molecules in the simulation volume with the point-spread function

centred at the current pixel. These photon counts are entered into the corresponding pixel of

the current image frame. The position of each molecule is then updated by diffusion, and the

laser moves to the next pixel. At the end of each line, the laser shifts to the next line, but the

molecules first have their positions updated over the line retracing time (although in multiple

steps with each step having the duration of the laser dwell time). Similarly, the molecules’ posi-

tions are updated over the frame retracing time at the end of each frame. The updates are also

performed in multiple steps to allow boundary conditions to be considered at each step (mole-

cules that have moved outside the simulation volume are wrapped to the other side).

Calculating the experimental cPCH

To extract parameters, we must fit the experimental data.

Formatting data for cPCH is straightforward if the data is binned using a single time bin,

T. For each τ, we construct a two-dimensional histogram with photon counts forming one axis

of the histogram and photon counts observed a time τ later forming the other. Systematically

considering all time bins separated by τ then allows us to fill the histogram’s bins. The empiri-

cal histogram of photon counts for cPCH, denoted p�Nðna; nbjt;TÞ, can then be converted to

the empirical probability distribution, pNem
ðna; nbjt;TÞ by normalizing so that its sum is unity.

This method can, however, become memory intensive at the smaller bin times of around 200

ns used in FCS.

Correlated photon-counting histograms
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Using arrival-time data. We use arrival-time data to apply cPCH for all the time ranges

employed in FCS. It is simplest to work with bin times that are integer multiples of the detec-

tor’s sampling time.

Given a list of photon arrival times t, we first convert the arrival times and the desired bin

time, Tk, into integer multiples of the sampling time, i.e. to ts and Ts
k. We then divide the inte-

ger arrival times by the integer bin time, rounding up to the closest integer, to give a list b,

which indicates in which bin time photons arrive. For example, if ts = {1, 2, 3, 6, 11, 17, 24, 46}

and Ts
k ¼ 10, then b = {1, 1, 1, 1, 2, 2, 3, 5}, indicating that there were 4 photons in the first bin

time, 2 in the second, 1 in the third, 0 in the fourth, and 1 in the fifth. Numerically, this formu-

lation allows the accumulation property of sparse matrices to be used to determine the total

photons detected per bin. For the above example, we have that the bins with positive counts

are b+ = {1, 2, 3, 5} with corresponding counts of total photons of {4, 2, 1, 1}. To find the bins

at time τ, we normalize τ by the bin time Tk to obtain τk. We define bþ
t

as bþ
t;i ¼ bþiþtk .

To determine p�Nðna; nbjt;TÞ, we first find p�Nðna > 0; nb > 0jt;TÞ by constructing a histo-

gram for all pairs of bins with non-zero photon counts from the intersection of b+ and bþ
t

,

with the first element of the pair, na, from b+ and the second element, nb, from bþ
t

. Second,

when na = 0 and nb> 0 and when na> 0 and nb = 0, we construct a histogram of the photon

counts for bins where b+ and bþ
t

do not intersect: for example bins that are in b+ but not in bþ
t

have na> 0 and nb = 0. Finally, for na = nb = 0, we count the number of bin pairs with zero

photon counts, which is the difference between the total number of bin pairs and the number

of bins with a positive photon count in at least one channel. The empirical probability is calcu-

lated by normalizing p�Nðnx; nyjt;TÞ by the total number of bin pairs.

Calculating the fit energy

We calculate the error of a particular model for a given set of parameters similarly to PCH [8]

and model each pair of photon counts {nx, ny} as a binomial experiment with a chance of suc-

cess of pN(nx, ny|τ) and a chance of failure of 1 − pN(nx, ny|τ).

Fitting the cPCH distribution. If Nd is the number of data points at a particular τ and a

particular nx and ny, the standard error, σp, for the estimate of p(nx, ny, τ) obeys

s2
pðnx; ny; tÞ ¼

1

Nd
� pNem

ðnx; nyjtÞ 1 � pNem
ðnx; nyjtÞ

h i

ð56Þ

where pNem
ðnx; nyjtÞ is the empirical probability distribution. We note that Eq 56 ignores any

correlations between different segments of the dataset.

Writing Lnx ;ny
ðtÞ as the total number of histogram entries observed at a given τ, we define

the fit energy—or loss function—for the cPCH distribution as

Ep ¼
1

P
t
Lnx ;ny
ðtÞ
�
X

t

X

nx ;ny

1

s2
p

ðpNðnx; nyjtÞ � pNem
ðnx; nyjtÞÞ

h i2

ð57Þ

where we have summed the normalized square error of each entry of the histograms over all τ.

If the model fits the data within the empirical variance, we expect the energy value to be close

to one.

Fitting the factorial cumulants. It is often more efficient to fit the factorial cumulants of

the data rather than use Eq 57. First, we find the moments Mm,n(τ) from the empirical cPCH

distribution using Mm;nðtÞ ¼
P

nx

P
ny
nmx n

n
ypNem
ðnx; nyjtÞ. Second, we convert these moments

into the cumulants and then into the factorial cumulants (Sec. S1). Third, we determine the

empirical variance of each measured factorial cumulant, s2
KðtÞ, using moments of moments
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(Eq 36). Specific expressions, which need only be calculated once per dataset, are in Sec. S9

and are in principle identical to those for dual color FCA and TIFCA [27].

Writing Lm,n(τ) now as the total number of moments used at each τ, the fit energy is

EK ¼
1

P
t
Lm;nðtÞ

�
X

t

X

m;n

1

s2
K

ðKÞm;nðtÞ � ðKÞm;nemðtÞ
h i2

ð58Þ

which is the sum squared error of each factorial cumulant for each τ normalized by the total

number of moments used.

Using analytical solutions for the factorial cumulants to sample parameter

space

To resolve two species by brightness alone using factorial cumulants, we need to find {N1, �1,

N2, and �2} that solve, within experimental error:

ðKÞn ¼ gnðN1�1
n þ N2�2

nÞ ð59Þ

from Eq 43. With no other information about our sample, we need to use all factorial cumu-

lants up to n = 4.

Eq 59 can be inverted. We find that

�1 ¼

"

� g2g3ðg1g4ðKÞ2ðKÞ3 � g2g3ðKÞ1ðKÞ4Þ �

(

g2
2g3

2 g1g4ðKÞ2ðKÞ3
�

� g2g3ðKÞ1ðKÞ4
�2
þ4g1g2g3g4ð� g1g3ðKÞ2

2
þ g2

2ðKÞ
1
ðKÞ

3
Þ�

g2g4ðKÞ3
2
� g3

2ðKÞ
2
ðKÞ

4

� �
)1

2
#

= 2g3g4 � g1g3ðKÞ2
2
þ g2

2ðKÞ
1
ðKÞ

3

� �� �

ð60Þ

with

�2 ¼
g1½�1g3ðKÞ2 � g2ðKÞ3�
g3½�1g2ðKÞ1 � g1ðKÞ2�

ð61Þ

and

N1 ¼ �
�2g2ðKÞ1 � g1ðKÞ2
�1ð�1 � �2Þg1g2

; N2 ¼
ðKÞ

1
� �1g1N1

�2g1

: ð62Þ

There is a single, unique solution because the two solutions are symmetric. Statistical errors

in the empirical factorial cumulants can result in non-physical (negative) values for these ana-

lytical solutions.

Nevertheless, the analytical solutions do provide an efficient method to sample brightness

and concentration values that are within the experimental error of the data. We use the

method of moments of moments to estimate the error (variance) for each factorial cumulant

in terms of the empirical raw moments following Eq 36. Once this variance is estimated and

assuming the empirical factorial cumulants obey a Gaussian distribution with a mean equal to

their empirical value and a variance given by Eq 36, we can resample each moment within the

expected experimental error and use Eqs 60 to 62 to estimate the corresponding values of the

parameters.

Not only do these samples speed up fitting by providing initial values for any optimization

algorithm but they also allow us to visualize both the parameter space and the ‘energy’
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landscape that the fitting algorithm explores (Sec. S2 and [35]). This visualization can indicate,

for example, that more data is needed to reduce the size of the relevant region of parameter

space (by reducing the error on the fourth factorial cumulant) or that cPCH should be used to

resolve the two species by their diffusion too.

The fitting algorithm

In fluorescence fluctuation spectroscopy, the fit energy is often minimized using algorithms

for nonlinear least-squares [8, 11, 28]. In our hands, such algorithms (Levenberg-Marquardt)

perform poorly for brightness analysis, including cPCH, probably because the parameter space

has multiple local minima.

Given the rugged energy landscape, we minimize the fit energy using nested sampling.

Nested sampling is a Markov chain Monte Carlo method where multiple sets of parameters

are simultaneously optimized, with the worst solutions being replaced at every iteration by

randomly perturbing another solution [40, 41].

Briefly (for more details see [35]), we:

1. Sample (typically 100) initial sets of parameters from empirical factorial cumulants using

the inverted solutions (Eqs 60–62);

2. Rank each set of parameters by its energy using Eq 58;

3. Record the parameter set with the highest (worst) energy and replace these parameters with

a randomly chosen copy of another parameter set;

4. Update the copied parameter set, one parameter at a time, using 20 iterations from an

update distribution (either a normal or, for the diffusion coefficient, log normal distribu-

tion). If the parameters are still within their bounds, always accept if the new energy is less

than Emin or otherwise accept using a Metropolis step;

5. Either decrease the step size for this parameter set by the exponential of the reciprocal of

the number of accepted steps if the number of accepted steps is greater than the number of

rejected steps or increase the step size by the exponential of the reciprocal of the number of

rejected steps if the number of rejected steps is greater than the number of accepted steps;

6. Remove and record the parameter set with the next highest energy and update this parame-

ter set using the steps above;

7. Terminate if the desired number of iterations has passed, the energy has decreased to a

specified value, or the parameters no longer change beyond a certain threshold.

We use the average of each of the recorded parameters to find the best-fit values (after an

appropriate burn-in).

We adjusted the acceptance step to have an Emin (typically set to 2) to explore parameter

sets that are compatible with the data within the expected error rather than only lying in the

region with the lowest energy. Note that because parameter sets can have symmetric solutions

(by swapping the parameter sets for species 1 and 2), we enforced one parameter in one species

to be greater than or equal to the same parameter in the other.

Results

The shape of the cPCH distribution changes with the concentration, brightness, and diffusivity

of the fluorophores and with the time difference, τ, between the two detection channels

(Fig 1). Let τd be the time taken for a fluorophore to diffuse across the observation volume.

Correlated photon-counting histograms
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Then for small τ/τd, there is a strong correlation between counts in the τ = 0 channel and

counts in the time shifted channel (Fig 1B). Molecules have not had time to diffuse to a region

of different intensity, and correspondingly there is a higher probability of identical photon

counts in each channel. As the τ/τd ratio increases, the correlation between nx and ny counts

decreases, and the histogram becomes more symmetric.

FCS, moment analysis, and PCH are special cases of cPCH

From the same data, cPCH can recover the results of FCS [7], moment analysis [11], and PCH

[8, 9]. Similarly, scanning FCS [42, 43] and RICS [24, 36] can be considered special cases of

spatial cPCH. We generate a single point on an FCS curve from the joint first moment of the

cPCH distribution, M1,1(τ), normalized by the mean of each channel (Eq 39 and Fig 2a), and

the PCH distribution by summing over all the counts in either channel of the cPCH distribu-

tion (Eq 42 and Fig 2b). We can determine the factorial cumulants obtained using FCA by

Fig 1. cPCH distributions are sensitive to the concentration, brightness, and diffusion of the fluorophores with a higher probability of photon

counts near the nx = ny axis when τ< τd. A) cPCH distributions at different concentrations and brightnesses at τ = τd (the diffusion time, τd, is 45 μs).

B) cPCH distributions at different time shifts τ for a single species with a concentration of N = 25 molecules per confocal volume and a diffusion time of

τd = 45 μs. The axial-to-radial beam waist ratio is s = 5, and the time-shifted channel is from the same spectral channel as the time 0 channel. C) Spatial

cPCH distributions at different pixel separations (1, 5, and 25 horizontal pixels), using a diffusion coefficient of D = 100 μm2/s, a pixel size of δx = δy =

40 nm, a pixel dwell time of τp = 10 μs, and an image size of 512 × 512 pixels.

https://doi.org/10.1371/journal.pone.0226063.g001
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Fig 2. cPCH can recover the results of both FCS and PCH. A) Obtaining an FCS curve from cPCH data: a single point on an FCS curve, GFCS(τ), is calculated from the

normalized moments of the cPCH distribution, pN(nx, ny|τ) (parameters from Fig 1B). B) Obtaining a PCH distribution: summing over one of the channels of the cPCH

distribution gives the PCH (parameters are �a = 0.7, N = 6, τd = 50 μs, and s = 5, with a time shift of τ = 25 μs).

https://doi.org/10.1371/journal.pone.0226063.g002

Correlated photon-counting histograms
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setting either m or n to zero in the factorial cumulants (K)mn(τ) (Eq 33). Finally, the dual color

PCH is equivalent to the dual color cPCH distribution at τ = 0 (Eq 44).

Spatial cPCH

Extending FFS techniques to images enables the analysis of membrane-bound and immobile

proteins, and we compare the photon counts from one pixel in the image to those of another

in spatial cPCH. For raster-scanned images, these pixels are temporally separated by the time

the laser needs to move between the two. The probability of detecting a correlation between

photons from the first pixel and photons from the second pixel depends on the fluorescent

molecule being able to move from the first pixel to the second in this time. The probability

therefore depends on the distance between the two pixels, the size of the pixels, the molecule’s

diffusion, and the scan rate of the laser (Eq 54).

As in cPCH, the spatial cPCH distributions show higher probabilities along the nx = ny axis

at short correlation times (corresponding to short distances between pixels) because there is a

high probability that the molecules will occupy a region of similar intensity in the later pixel

(Fig 1C). As the distance between pixels increases, the molecules are no longer likely to be in

regions of similar intensity, and the distribution becomes more symmetric (for the single color

case). Like scanning FCS [44] and RICS [24, 36], spatial cPCH can be used to directly estimate

the diffusion coefficient, rather than the diffusion time. Using spatial cPCH, we can also mea-

sure the brightness of immobile molecules (S3 Fig) and so distinguish between the image’s

mobile and immobile fractions.

Validation using a single species

To validate cPCH, we simulated a single fluorescent species diffusing through a Gaussian

observation volume. To ensure that interpreting the analysis is unaffected by sampling errors,

we simulated a long (14 minute) experiment, but we emphasize that in practice cPCH requires

similar amounts of data as other FFS methods. We fit both the cPCH and the factorial cumu-

lants to the simulated data. Similar to a calibration measurement, we also estimate parameters

that characterize the observation volume (the shape factors γ3 and γ4 from Eq 11 with γm+n =

γm,n and the structure factor s = zA/rA from Eq 7).

Inference of both the factorial cumulants and the biophysical parameters is accurate

(Table 1). The minimum values of the fit energies are close to 1, which is similar to their values

evaluated with the true parameters. We therefore conclude that the approximations behind

cPCH adequately describe the behavior of the simulated fluorescent molecules.

Table 1. cPCH allows accurate inference of biophysical parameters from simulated data. Simulations are from Fig

3A with a bin time of T = 10 μs, and the best-fit values found using the factorial cumulants.

Parameter Actual value Estimated value (estimated/actual)

N 1 1.001 ± 0.002 (1.001)

� 0.24448 counts/bin 0.2442 ± 0.0004 counts/bin (0.998)

γ3 0.192 0.194 ± 0.002 (1.008)

γ4 0.125 0.146 ± 0.003 (1.167)

τd 175.7 μs 178 ± 2 μs (1.01)

s 1.928 1.82 ± 0.04 (0.94)

Energy type Energy using actual parameters Energy using fit parameters

EK 0.993 0.649

Ep 0.920 0.823

https://doi.org/10.1371/journal.pone.0226063.t001
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Correspondingly, the empirical factorial cumulants match those calculated from Eq 33 using

the inferred values of the parameters (Fig 3A). As expected, the higher order factorial cumu-

lants have more statistical uncertainty.

We note that we do not normalize the factorial cumulants (unlike in higher order correla-

tion analyses [16]) because we find that the un-normalized factorial cumulants have better sen-

sitivity to brightness, allow more cumulants to be fit, and permit the use of analytical solutions

to speed-up the fitting algorithm (Methods).

Fig 3. cPCH allows accurate inference of the factorial cumulants for single fluorescent species and mixtures of species with different rates of

diffusion. A) Fitting the factorial cumulants of the cPCH distribution gives strong agreement between the empirical factorial cumulants estimated from

simulated data and those calculated with the best-fit parameters (using Eq 33 and the parameters in Table 1). For the lower moments, the empirical and

estimated factorial cumulants overlap. B) Fitting the factorial cumulants of the spatial cPCH distribution gives similar strong agreement (crosses denote

the empirical factorial cumulants and the dashed lines show the fits). We consider a mixture of a slowly (D = 0.1 μm2/s) and a quickly (D = 200 μm2/s)

diffusing species.

https://doi.org/10.1371/journal.pone.0226063.g003
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To test spatial cPCH, we simulated molecules diffusing in a three dimensional box whose

centre was scanned with a simulated laser-scanning microscope. Tests using a single species

achieved similar accuracy to the results for regular cPCH (Table 2). The secondary peaks in

the factorial cumulants occur when slowly moving molecules are sampled again on subse-

quent lines of the image and can be seen in both the theoretical and simulation results

(Fig 3B).

Resolving different species using cPCH

cPCH is better able to resolve two fluorescent species than both PCH and FCA because

cPCH uses information on both diffusion and brightness. To determine the cPCH’s

ability to resolve, we simulated a mixture of two different species with the brightness of one

species three times that of the other. When the two species have different diffusion coeffi-

cients and different brightnesses, not only does cPCH outperform PCH and FCS (Fig 4A)

but also allows more accurate inference of all parameters. We see a similar improvement in

accuracy for a mixture of fluorophores with one species twice as bright as the other (S5 Fig).

When the two species have close diffusion coefficients but different brightnesses, cPCH per-

forms as well as PCH and FCA (Fig 4B), although also allowing inference of the diffusion

times.

cPCH performs at least as well as PCH and FCA in other tests too. We simulated a mixture

of two different species with the brightness of one species double that of the other. In this case,

both fluorophores are relatively dim, but the brighter fluorophore outnumbers the dimmer

fluorophore, a scenario that is challenging for FFS methods (S6 Fig). With cPCH, we could

resolve the concentration of the dimmer species, but with less precision than before. Neverthe-

less, cPCH outperforms PCH, FCA, and FCS (S6 Fig). We also determined the ability of spatial

cPCH to resolve two species (Fig 3B and S4 Fig), with similar performance.

Binning effects

It is sometimes necessary to use larger binning times to improve the signal to noise ratio when

the molecular brightness is low. By using larger binning times, however, the individual mole-

cules have time to diffuse to locations of different intensity within a bin time, and so diffusion

effects must be included in the analysis.

In cPCH, we apply the FIMDA binning approximation (Eq 48) to higher order binning

functions (Eqs 49 and 50). This approximation works well up to the third order binning func-

tion (Fig 5A). The greater statistical uncertainty in the measurements of the higher order

moments (we consider up to fourth order) mean that these moments receive less weight when

Table 2. Spatial cPCH can achieve similar accuracy as cPCH. The simulation has a duration of 25 frames and uses an

image size of 256 × 256 with a pixel size of δx = δy = 11.7 nm, a pixel dwell time τp of 10 μs, a line retracing time τL of 1

ms, and a frame retracing time of 5 ms.

Parameter Actual Value Fit Value (fit/actual)

N 0.6 0.599 (1.002)

� 1.1 counts/bin 1.102 counts/bin (0.999)

γ3 0.192 0.196 (1.018)

γ4 0.125 0.128 (1.025)

ro 265.1 nm 267.6 nm (1.010)

D 100 μm2/s 100.5 μm2/s (0.995)

s 1.93 1.78 (0.93)

https://doi.org/10.1371/journal.pone.0226063.t002
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fitting the factorial cumulants in cPCH, and the errors caused by the approximation have little

impact.

In simulations, including the binning functions improves both empirical estimates of

the factorial moments (Fig 5B) and inference of biophysical parameters (Fig 5C), even when

T< τd.

Resolving mixtures of species with multiple binding sites

Finally, we demonstrate that cPCH can work in a scenario where FCS, PCH, and FCA are all

unable to resolve the different species. Consider a receptor with two different binding sites,

each with its own affinity for a fluorescent ligand, and with the receptor diffusing slower than

the ligand. There are three different fluorescent species—unbound ligand (denoted L), recep-

tors with a single bound ligand (R1), and receptors with two bound ligands (R11)—and one

non-fluorescent species—unbound receptors (R). FCS cannot differentiate between the singly-

and doubly-bound receptors (R1 and R11) because their diffusion coefficients do not differ

(being determined by the more massive receptor); PCH and FCA cannot differentiate between

the unbound ligand and the singly-bound receptors (L and R1) because both have the same

fluorescence.

We simulated this system at equilibrium using an initial amount of ligand Lo and analyzed

the data using spatial cPCH. From the empirical histograms of spatial cPCH, we calculated

and then fit the factorial cumulants using a model with three fluorescent species (L, R1, and

R11; Sec. S5). The concentration of R can be estimated if R0, the initial concentration of free

receptor, is known, via R0 = R + R1 + R11.

Fig 4. If both brightness and diffusion can be used to resolve the two species, cPCH can both resolve different species better than PCH and FCA

and determine diffusion times. A) Inference from 60 s of simulated data of two different species showing the ratio of the estimated parameters to the

actual parameters when both brightness and diffusion differ between the two species. Parameters are: N1 = 8, �1 = 48895 counts/s, and τ1 = 87.85 μs for

species 1; N2 = 2, �2 = 146686 counts/s, and τ2 = 439.24 μs for species 2. The bin time is T = 10 μs. B) Results of inference from 75 s of simulated data

when only brightness substantially differs between the two species. Parameters are: N1 = 8, �1 = 48895 counts/s, and τ1 = 21.96 μs for species 1; N2 = 5,

�2 = 146686 counts/s, and τ2 = 25.16 μs for species 2. The bin time is T = 10 μs.

https://doi.org/10.1371/journal.pone.0226063.g004
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Spatial cPCH is able to accurately estimate all four concentrations, provided we use concen-

trations of ligand below the concentration at which R1, the singly bound receptors, reaches its

maximum (Fig 6A). At higher concentrations of ligand, the doubly-bound receptor, R11, and

free ligand, L, dominate the signal, and R1 is difficult to estimate. Errors in R1 propagate

through to errors in the estimates of R, and both errors affect estimates of the dissociation con-

stant K�
1
¼ LR

R1
(Fig 6B). An alternative is to directly estimating R using a dual-color assay. We

note that we could also use cPCH (rather than spatial cPCH) because both receptors and

Fig 5. cPCH also performs well for large binning times if approximations to the binning functions of TIFCA are used. A) Approximations of the

binning functions (the TIFCA approximation used in FIMDA—Eq 49) are accurate up to third order. We employ bin sizes that increase every 4 τ values

and range from T = 200 ns to T = 800 μs. B) Binning functions improve estimates of factorial cumulants. Factorial cumulants estimated empirically

(solid lines) from a single species simulated with a diffusion time of τd = 175.7 μs are compared with the corresponding analytical results (dashed lines

from Eq 33). The black vertical line indicates the τ(s) at which the binning time exceeds the diffusion time across the observation volume. Binning

functions are used to improve the estimate of (K)31 but are not required for (K)11. C) The binning approximations improve inference of biophysical

parameters. We simulated the diffusion of two low brightness species for 3 minutes, each at 5 nM with �1 = 17780 counts/s and �2 = 35560 counts/s and

with the diffusion time of the second species four times slower than the first (43.92 μs), and then used cPCH to infer parameters. For a bin time of

T = 3.2 μs (much less than the shortest diffusion time of the two species) giving only 0.057 and 0.114 counts/bin, inference is correspondingly poor. For

T = 40 μs giving 0.711 and 1.422 counts/bin, inference is only accurate if we use the binning approximation.

https://doi.org/10.1371/journal.pone.0226063.g005
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ligand are freely diffusing. If receptors are confined to a membrane, spatial cPCH is the pre-

ferred technique.

If either FCS or PCH are used instead of cPCH, estimates of the different concentrations

would have to be deduced from the overall behaviour of the fluctuations in fluorescence as a

function of concentration, making the task more difficult [45].

Fig 6. Spatial cPCH can be used to estimate the dissociation constants in a receptor-ligand system with two different binding sites on the receptor

and a fluorescent ligand. A) Spatial cPCH can accurately estimate concentrations if the concentration of the doubly-labeled receptor R11 is lower than

that of the singly-bound receptor R1. The actual concentrations are indicated with crosses and the estimated concentrations are indicated by the open

squares. The initial concentration of receptors is R0 = 10 nM. We specified the (apparent) dissociation constants for the singly and doubly bound

receptors as K�
1
¼ 2 nM and K�

2
¼ 12 nM and find the actual dissociation constants from Eq S9. These apparent dissociation constants arise because we

cannot distinguish using either fluorescence or diffusion which site the ligand has bound on a receptor that has bound only one ligand (Sec. S5). The

simulation employed a laser dwell time of 10 μs with images of 512 × 512 pixels and an image size of 4 μm by 4 μm, so that the pixel size is just under 12

nm. The line retracing time is 1 ms and the frame retracing time is 50 ms. We generated 2 sets of data with 25 images each for all of the concentrations

used, except for the lowest initial value of ligand, which used 1 set of 70 images. B) The apparent dissociation constants (K�
1
¼ LR=R1 ¼ 2 nM and

K�
2
¼ LR=R11 ¼ 12 nM) can be estimated using the measured concentrations provided the concentration of singly labeled receptors R1 is greater than

the concentration of doubly labeled receptors R11.

https://doi.org/10.1371/journal.pone.0226063.g006
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Discussion

We have introduced cPCH, which unifies several FFS techniques (FCS, PCH, and FCA) to

resolve different molecular species through both their brightness and diffusion. PCH and

dual-color PCH are special cases of the cPCH distribution; FCS and FCA are special cases of

the moments of the cPCH distribution.

Although data can be fit to the cPCH distribution, we usually find fitting its factorial cumu-

lants to be more computationally efficient. Using simulated data, we have shown that the facto-

rial cumulants can resolve multiple species at higher concentrations than analyses using the

distributions [35]. Nevertheless, there are situations where the distribution can be useful, such

as correcting for dead-time and afterpulsing (Sec. S7, S8 and [35]) and determining the shape

parameters γ1 and γ2 [31]. Further, it is straightforward to sample from the discrete probability

distributions providing a convenient method to generate empirical distributions of the photon

counts at a given τ and T for testing statistical properties of the cPCH distributions, numerical

implementations, etc.

In addition, we have developed a novel fitting algorithm based on a Markov chain Monte

Carlo scheme for nested sampling. To improve the algorithm’s efficiency, we select initial

parameters by inverting and sampling from the analytical solutions to the factorial cumulants

(using theoretical expressions for the variance of each moment for the sampling). With this

method, we can visualize the parameter space and initialize optimization algorithms in the rel-

evant regions of parameter space.

We show that cPCH resolves two differently diffusing species. cPCH reduces the uncer-

tainty in fitting if the two species have different diffusion and brightness and performs as well

as both PCH and moment analysis when the two species differ only in their brightness. For

example, resolving two different species by brightness alone is challenging because fourth

order moments are required, which are difficult to estimate. cPCH circumvents this problem

by also being sensitive to differences in diffusion for which only second-order moments are

needed. As PCH and FCS are special cases of cPCH, we can also always choose to use one of

these techniques instead of cPCH without having to reformat the data.

Our work is related to that of Melnykov et al. [16]. Their expressions for the higher-order

factorial cumulants, although derived differently, correspond to the factorial cumulants of the

cPCH distribution. Nevertheless, they normalize these bivariate expressions by the univariate

factorial cumulants to allow better comparison with FCS. Our un-normalized factorial cumu-

lants allow us both to more efficiently explore parameter space by exploiting the analytical

solutions for the univariate factorial cumulants during fitting and to constrain the diffusion

time if we apply a series of bin sizes up to those large relative to the diffusion time (following

FIMDA [46] and TIFCA [18]).

Abdollah-Nia et al. have recently employed normalized higher-order FCS to study reaction

kinetics [47, 48]. They show that by normalizing the higher order factorial cumulants of the

reacting system with those of a non-reacting system, the effects of diffusion and the illumina-

tion profile can be removed, isolating the reaction kinetics. This method is potentially powerful

for studying reaction kinetics, but for species with similar diffusion. We have focused on

resolving different species based on differences in their brightness and diffusion and have

demonstrated cPCH with a ligand-binding system with two distinct binding sites, where the

ligand and receptor diffuse differently. Such a system would be unamenable to the analysis of

Abdollah-Nia et al.

Another recent development is 2D fluorescence lifetime correlation spectroscopy

(2DFLCS), which differentiates molecules based on their diffusion and fluorescence lifetimes

and can analyse molecular conformations on the microsecond scale [49–51]. Although similar
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to cPCH because 2DFLCS uses histograms of the fluorescence lifetimes of photons detected at

a time τ apart, it, unlike cPCH, requires a setup for time-correlated single-photon counting.

Indeed, cPCH is able to differentiate molecules based on their brightness even if their fluores-

cence lifetimes are identical, as expected, for example, for fluorescent oligomers. As Fluores-

cence Intensity and Lifetime Distribution Analysis (FILDA) combines fluorescence lifetime

analysis with photon counting histograms [52], we expect that cPCH could be combined with

2DFLCS to allow molecules to be differentiated by fluorescence lifetime, brightness, and

diffusion.

With a simple modification, cPCH can be extended to the study of images. Spatial cPCH,

like RICS [24] and scanning FCS [44], but unlike FCS and cPCH, is able to directly estimate

the diffusion coefficient of the fluorophores (rather than their diffusion time, which depends

on both the diffusion coefficient and the beam waist parameter rA). Knowing diffusion coeffi-

cients is useful for calibrating optical systems and for studying fluorescent dyes and proteins.

Although we have focused on raster scanning, the derivation of spatial cPCH would apply

too to scanning FCS and directed flow. By scanning the laser over a range of positions, spatial

cPCH is also able to sample more molecules in a shorter period of time. Spatial cPCH can

therefore be used to quantify the concentrations of immobile fluorophores—a challenge for

FCS and cPCH because such fluorophores quickly photobleach with a stationary illumination

profile and only produce photon counts that are Poisson-distributed. Future work could

include the thickness profile of cells by using z-scanning [53].

Both cPCH and spatial cPCH require photon-counting detectors. Spatial intensity distribu-

tion analysis (SpIDA) [25] is an extension of brightness analysis to images, but employs a cali-

bration method to allow the use of analog photomultiplier tubes. Spatial cPCH can also be

extended to analog detectors [35].

We have used simulations to verify cPCH and spatial cPCH, but, in practice, detectors

often introduce artefacts because of dead-time and afterpulsing, and experiments can be

undermined by triplet states and blinking of fluorophores. The theory of cPCH and spatial

cPCH can include such effects (Secs. S6-8). Although we assume a 3D Gaussian observation

volume (a similar assumption was made in TIFCA [18] and higher-order FCS [16] and ade-

quately describes diffusion but not the shape parameters of the observation volume), our deri-

vation is general, and it is possible to use the shape parameters of a Gaussian-Lorentzian

observation volume for γm,n and use numerical correlation functions for Gm,n(τ, τd). In our

simulated calibration, we optimized the shape parameters γ3 and γ4.

cPCH is valid for both single-channel and dual-color analysis. The combined use of two

colour channels and information on diffusion can substantially increase accuracy in resolving

multiple species by further reducing the requirement for the third and fourth order moments

and by causing the joint factorial cumulants to be determined by only interacting species

(labeled with a fluorophore from each channel). We therefore expect dual-color cPCH to be

the natural choice for studies that consider interactions between labelled molecular species.

In summary, we anticipate that cPCH and spatial cPCH will become powerful techniques

for quantitative, single-cell biology.

Supporting information

S1 Fig. There are many solutions that have energies low enough to be considered within

the experimental uncertainty of the data. Scatter plots of the energy of physically valid solu-

tions sampled from inverting the factorial cumulants for a simulation of a mixture of mono-

mers and dimers with N1 = 3, �1 = 0.4, N2 = 2, and �2 = 2�1. Each blue dot represents the

energy corresponding to a sampled solution; the red asterisk shows the energy corresponding
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to the actual parameters.

(EPS)

S2 Fig. By measuring �1 a priori, there is a minimum in the energy as a function of the

parameter values. Scatter plots of the energy for physically valid samples for the same data of

S1 Fig.

(EPS)

S3 Fig. As immobile and mobile fluorophores show different decays in their joint factorial

cumulants, spatial cPCH can distinguish one from the other. Plots of the higher order spa-

tial factorial cumulants for a mobile (A) and an immobile species (B). Only the diffusion coeffi-

cients have different values.

(EPS)

S4 Fig. Spatial cPCH can resolve two species with different diffusion coefficients. Inference

using a spatial cPCH fit of the factorial cumulants of simulated imaging data using two sets of

25 frames each and with a quickly and a slowly diffusing species (�1 = 31181 counts/s, N1 = 1.2,

D1 = 0.1 μm2/s, �2 = 95452 counts/s, N2 = 0.6, and D2 = 200 μm2/s). The fitting algorithm only

considered τ up to 0.01 s and so was unable to resolve D1 because τ1� 0.176 s.

(EPS)

S5 Fig. cPCH can outperform alternative methods: A mixture of fluorophores, with one

species twice as bright as the other. We simulated data for 240 s and show the ratios of the fit

results to the true parameters (N1 = 8, �1 = 48895 counts/s, τ1 = 175.7 μs, N2 = 2, �2 = 2�1, and

τ2 = 351.39 μs and a bin time of 10 μs).

(EPS)

S6 Fig. cPCH can out perform alternative methods: Two dim species. Analysis of data for a

mixture of two dim species, with the brighter species outnumbering the dimmer species, simu-

lated for 210 s. The ratio of the fit results to the actual parameters are shown (N1 = 0.4, �1 =

14669 counts/s, τ1 = 175.7 μs, N2 = 0.9, �2 = 39116 counts/s, τ2 = 43.9 μs and a bin time of

T = 10 μs).

(EPS)

S7 Fig. Dead-time corrections are necessary when dead-time is present. A nested sampling

fit to a MesoRD simulation employing a 50 ns dead-time: A) without or B) with dead-time

corrections. For this simulation, N1 = 0.213, �1 = 88900 counts/s, and τ1 = 43.92 μs for species

1, and N2 = 0.213, �2 = 177800 counts/s, and τ2 = 175.7 μs for species 2. The maximum bin size

is T = 3.2 μs and the detector dead-time was 50 ns.

(EPS)

S8 Fig. Correcting for afterpulses. Simulated calibration data used to estimate p(τ) and a

demonstration of the removal of afterpulsing effects between time bins for an afterpulse proba-

bility q� = 0.01 and an average arrival time τap = 200 ns. A) Histograms of arrival times and

afterpulses. B) Fit to the measured p(τ). C) A comparison of the calculated FCS curves for a 1

nM solution with a diffusion coefficient of 1 × 10−10 m2/s, with afterpulsing, without afterpul-

sing, and with afterpulsing removed (using simulated data). The black dotted lines show the

FCS curves of the original data without afterpulsing; the green curves show the FCS curves

with afterpulsing added to the data; the dashed red curves show the afterpulse-corrected FCS

curve using the measured p(τ); and the blue curves show the afterpulse-corrected FCS curve

using the ideal p(τ).

(EPS)

Correlated photon-counting histograms

PLOS ONE | https://doi.org/10.1371/journal.pone.0226063 December 30, 2019 28 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0226063.s008
https://doi.org/10.1371/journal.pone.0226063


S1 Table. Summary of the simulated calibration results including dead-time effects, triplet

states, and binning effects. Both triplet and diffusive binning are necessary. In the third col-

umn, the minimum bin size was T = 200 ns and the maximum was T = 3.2 μs. In the fourth

column, the minimum bin size was T = 1 μs and the maximum was T = 64 μs. � Both diffusion

and triplet binning included in the fit. �� Only diffusion binning included in the fit. R denotes

the triplet fraction; τt denotes the triplet relaxation time.

(PDF)
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