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S1 Relating the different bivariate moments

It is simplest to calculate the raw moments from the experimental distribution, using

Mm,n(τ) =
∞∑

nx=0

∞∑
ny=0

nx
mny

npNem(nx, ny|τ) (S1)

To relate theoretical predictions with experimental results, we typically convert the empirical
moments to factorial cumulants because the factorial cumulants have simple expressions and we
can use these expressions to find initial parameters in our fitting routines. We will, however,
present formulas to allow moments to be converted in either direction, using the cumulants as
an intermediary step.

We note that the cumulants of the N -molecule distribution, Km,n, are N times the raw
moments of the single molecule distribution and that the factorial cumulants of the N -molecule
distribution, (K)m,n, are N times the factorial moments of the single molecule distribution.

The raw moments and the factorial moments of the single molecule distributions can be
related to each other through a sum over the Stirling numbers of the second kind, S2(m,n)
[1, 2], which allows us to express the cumulants in terms of the factorial cumulants:

Km,n =


∑m

p=1

∑n
q=1 S2(m, p)S2(n, q)(K)p,q m > 0 ; n > 0∑m

p=1 S2(m, p)(K)p,0 m > 0 ; n = 0∑n
q=1 S2(n, q)(K)0,q m = 0 ; n > 0

1 m = 0 ; n = 0

(S2)

To relate the factorial cumulants, (K)m,n, to the cumulants, Km,n, we need a Stirling number
of the first kind, s1(m,n):

(K)m,n =


∑m

p=1

∑n
q=1 s1(m, p)s1(n, q)Kp,q m > 0 ; n > 0∑m

p=1 s1(m, p)Kp,0 m > 0 ; n = 0∑n
q=1 s1(n, q)K0,q m = 0 ; n > 0

1 m = 0 ; n = 0

(S3)

To calculate the cumulants, Km,n, from the moments, Mm,n, we can derive a recursion
through repeated use of the Leibniz rule for higher order differentiation [2] on the moment
generating function, giving:

Mm,n =


∑m−1

p=0

∑n
q=0

(
m−1
p

)(
n
q

)
Mm−1−p,n−qKp+1,q m > 0∑n−1

q=0

(
n−1
q

)
M0,n−1−qK0,q+1 m = 0 ; n > 0

1 m = 0 ; n = 0.

(S4)
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Eq. S4 can be inverted, so we can also relate the cumulants, Km,n, to the moments, Mm,n:

Km,n =



Mm,n −
∑m−1

p=0

∑n−1
q=0

(
m−1
p

)(
n
q

)
Mm−1−p,n−qKp+1,q

−
∑m−2

p=0

(
m−1
p

)
Mm−1−p,0Kp+1,n m > 0 ; n > 0

Mm,0 −
∑m−1

p=1

(
m−1
p−1
)
Mm−p,0Kp,0 m > 0 ; n = 0

M0,n −
∑n−1

q=1

(
n−1
q−1
)
M0,n−qK0,q m = 0 ; n > 0

1 m = 0 ; n = 0

(S5)

Reiterating, we wish to convert the empirical raw moments into factorial cumulants so that
we can compare theoretical predictions with data. We do so using Eq. S1 to find Mm,n, Eq. S5
to find Km,n, and Eq. S3 to find (K)m,n.

The relations here are general and are also used to calculate the expected variance of each
moment using the moments of moments (Eq. 36and Sec. S9).

Finally, we note that the Stirling numbers are most easily calculated using recurrence rela-
tions [2]:

S2(p, k) = S2(p− 1, k − 1) + kS2(p− 1, k) (S6)

with S2(p, p) = 1 and S2(p, 1) = 1, and

s1(p, k) = (p− 1)s1(p− 1, k) + s1(p− 1, k − 1) (S7)

with s1(0, 0) = 1, s1(p, p) = 1, and s1(p, 0) = 0 for p > 0.

S2 Examples of sampling using analytical inversions of the fac-
torial cumulants
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Figure S1. There are many solutions that have energies low enough to be considered
within the experimental uncertainty of the data. Scatter plots of the energy of physically
valid solutions sampled from inverting the factorial cumulants for a simulation of a mixture of
monomers and dimers with N1 = 3, ε1 = 0.4, N2 = 2, and ε2 = 2ε1. Each blue dot represents
the energy corresponding to a sampled solution; the red asterisk shows the energy corresponding
to the actual parameters.

Sampling using Eqs. 61 – 62 shows that multiple values of N1, ε1, N2, and ε2 are consistent
with the data (Fig. S1). To restrict parameter space further, cPCH could be used (by taking
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Figure S2. By measuring ε1 a priori, there is a minimum in the energy as a function
of the parameter values. Scatter plots of the energy for physically valid samples for the same
data of Fig. S1.

advantage of the diffusion properties, there will be a reduced dependence on the fourth order
moments). Alternatively, another practical option is to use more control experiments. For
example, if we have a priori knowledge of the brightness of one of the species, ε1 say, then we
can sample N1, ε2, and N2 from Eqs. 61 – 62 using only empirical measurements of the first
three factorial cumulants (Fig. S2). There is now an energy well with its minimum near the true
values used in the simulations.
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S3 Spatial cPCH
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Figure S3. As immobile and mobile fluorophores show different decays in their joint
factorial cumulants, spatial cPCH can distinguish one from the other. Plots of the
higher order spatial factorial cumulants for a mobile (A) and an immobile species (B). Only the
diffusion coefficients have different values.
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Figure S4. Spatial cPCH can resolve two species with different diffusion coefficients.
Inference using a spatial cPCH fit of the factorial cumulants of simulated imaging data using two
sets of 25 frames each and with a quickly and a slowly diffusing species (ε1 = 31181 counts/s,
N1 = 1.2, D1 = 0.1 µm2/s, ε2 = 95452 counts/s, N2 = 0.6, and D2 = 200 µm2/s). The fitting
algorithm only considered τ up to 0.01 s and so was unable to resolve D1 because τ1 ≈ 0.176 s.
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S4 Comparing cPCH with PCH, FCA, and FCS
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Figure S5. cPCH can outperform alternative methods: a mixture of fluorophores,
with one species twice as bright as the other. We simulated data for 240 s and show the
ratios of the fit results to the true parameters (N1 = 8, ε1 = 48895 counts/s, τ1 = 175.7 µs,
N2 = 2, ε2 = 2ε1, and τ2 = 351.39 µs and a bin time of 10 µs).
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Figure S6. cPCH can out perform alternative methods: two dim species. Analysis
of data for a mixture of two dim species, with the brighter species outnumbering the dimmer
species, simulated for 210 s. The ratio of the fit results to the actual parameters are shown (N1

= 0.4, ε1 = 14669 counts/s, τ1 = 175.7 µs, N2 = 0.9, ε2 = 39116 counts/s, τ2 = 43.9 µs and a
bin time of T = 10 µs).

S5 Using cPCH to study ligand binding to a receptor with two
distinct binding sites

A challenging problem for FFS is to estimate the dissociation constants of binding of a ligand
to a receptor. For example, CFTR, a chloride channel that when mutated can give rise to cystic
fibrosis, binds ATP on two distinct binding sites, and the dissociation constants of binding for
either are unknown [3].

To demonstrate that the cPCH can in principle estimate these dissociation constants, we
will generalize and denote the free ligand as L, an unbound receptor as R, a receptor binding

5



ligand at one site as R01, a receptor binding ligand at the other site as R10, and a receptor
binding ligand at both sites as R11. We assume that the system is at equilibrium and that the
dissociation constant of each site is independent of the other — each is unchanged if the other
site is bound by ligand.

The ligand, but not the receptor, has a fluorescent tag, and consequently we cannot distin-
guish R01 and R10 by either fluorescence or diffusion and instead see an amalgamated state:
R1 = R01 +R10. If K01 = LR

R01
and K10 = LR

R10
are the dissociation constants for the two binding

states, then we see effective dissociation constants K∗1 = LR
R1

and K∗2 = LR1
R11

. As each reaction is
at equilibrium, we can show that

K∗1 =
(
K−101 +K−110

)−1
; K∗2 = K01 +K10 (S8)

and so

K01 =
1

2

(
K∗2 −

√
K∗2

2 − 4K∗1K
∗
2

)
K10 =

1

2

(
K∗2 +

√
K∗2

2 − 4K∗1K
∗
2

)
. (S9)

Therefore we can estimate K01 and K10 from the effective dissociation constants K∗1 and K∗2 .
Experimentally, we mix an initial amount of fluorescent ligand L0 with an initial amount

of the receptor R0, allow the system to equilibrate, and measure fluorescence. Without tagged
receptors, we must know R0 to estimate R from R0 = R+R1 +R11.

To validate the cPCH approach, we fit the factorial cumulants to simulated data. We assume
that γ3, γ4, and rA and zA, the beam-waist parameters of the observation volume, are known
so that the number of molecules of each species can be converted to concentrations. There are
two sets of species with different brightness: N1 consisting of the numbers of molecules of L and
R1, and N11 consisting of the number of molecules of R11. If R11 is twice as bright as R1, we
can solve for N1 and N11 in terms of the factorial cumulants:

N1

L0
= 2− γ21(K2)L0

γ2(K)1
2

N11

L0
=

γ1
2(K2)L0 − γ2(K)1

2

2γ2(K)1
2 (S10)

with ε, the brightness of the fluorescent ligand, satisfying

ε =
(K)1
γ1L0

. (S11)

We sample the factorial cumulants using their estimated variances (Methods) and then find
(K)11(τ), given by

(K)11(τ) = γ11
[
NLε

2g(τ |τL) + (N1 −NL)ε2g(τ |τR) +N11(2ε)
2g(τ |τR)

]
, (S12)

for a range of values of τL and τR, the diffusion times of the ligand and receptors (assuming that
the binding of ligand to the receptor does not change its diffusion), and NL, the equilibrium
numbers of free ligand. To start the nested sampling (Methods), we use values of NL, N1, N11,
ε, τL, and τR for which the energy of (K)11(τ) is at a minimum. If the initial concentration
of L0 is unknown, the first three factorial cumulants can be used to estimate N1, N11, and ε,
resulting, however, in larger uncertainties in the starting values for the nested sampling.
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S6 Triplet states, blinking and dark states

S6.1 Correcting cPCH for dark states

Triplet states, blinking, and other transient dark states can impact photon counts. Focusing
on triplet states – other dark states are analysed similarly, we assume that diffusion and triplet
effects are independent because they occur on different time scales (a few versus tens to hundreds
of micro-seconds) [4]. We will also assume that the probability of entering a triplet state is
independent the fluorophore’s position in the observation volume.

The single molecule probability, p1(nx, ny, |τ), is then

p1(nx, ny, |τ) = p(A|τ)

∫ ∫
p1(nx, ny, x, y|τ)dxdy (S13)

where p(A|τ) is the probability of a single molecule being in the fluorescent state A at time τ ,

p(A|τ) = 1−R
(

1− e−
τ
τt

)
(S14)

with R being the triplet fraction, or average occupancy of the triplet state, and τt being the
triplet lifetime.

The expressions for the factorial cumulants and the cPCH probabilities therefore become
multiplied by p(A|τ), and the Ni for each species becomes multiplied by its fluorescent fraction:
1 − Ri. For example, the factorial cumulants for cPCH for a single species in a single-channel
experiment, Eq. 33 with Eq. 9, would become

(K)m,n = N(1−R)εA
m+nκm,n(τ,D)pm,n(A|τ)γm,n (S15)

with

pm,n(A|τ) =

{
1 for m = 0 or n = 0

p(A|τ) for m > 0 and n > 0
(S16)

so that the triplet probabilities p(A|τ) are not introduced into the one-dimensional moments
(m = 0 or n = 0).

The cPCH single-molecule probability, Eq. 6, can be written as

p1(nx, ny|τ) =
VPSFab
V

∞∑
k=0

(−1)k

nx!ny!k!

k∑
m=0

(
k

m

)
Gnx+k−m,ny+m(τ)pnx+k−m,ny+m(A|τ).

(S17)

S6.2 Binning with triplet states for cPCH

Dark states typically alter the binning functions if the bin time T approaches the relaxation
time of the dark state. Following FIMDA [5], we integrate over the triplet correlation function
rather than the diffusion correlation function to derive the binning function:

B2(T, τt) =
2

T 2

∫ T

t1

∫ t1

0
p(A|τ = t2 − t1)dt1dt2 (S18)

which can be written in terms of the triplet fraction R and the triplet relaxation time τt as

B2(T, τt) = 2

[(
e
− T
τt − 1

)
R
(τt
T

)2
+R

τt
T

+
1−R

2

]
. (S19)

Therefore, if the bin time T is much smaller than the triplet relaxation time τt, the binning
function approaches 1; if T � τt, the binning function approaches a minimum of 1−R.
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Assuming independence of diffusion and triplet effects, we can multiply Eq. S19 by the
FIMDA binning function, Eq. 46, so that Eq. 49 becomes

(K)n(T ) = N (εoT )n
(
B2(T, τd)B2(T, τt)

)n−1
γn (S20)

and Eq. 50 becomes

Bm,n(T, τd, τt) ≈


B2(T, τA)m−1B2(T, τt)

m−1, n = 0

B2(T, τB)n−1B2(T, τt)
n−1, m = 0

B2(T, τA)m−1B2(T, τB)n−1B2(T, τt)
m+n−2, m > 0 and n > 0

(S21)

with τd = τA for channel A and τd = τB for channel B.

S7 Corrections for detector dead-times

A common artefact of detectors is dead-time – the period of time after a detector detects a photon
during which it is unable to detect another, which can give underestimates of the number of
counts in a given time bin, at least at higher count rates.

For cPCH, we use an established method [6], which corrects the empirical probability dis-
tributions of photon counts, denoted p∗(nA, nB), for dead-time effects. Let the ratio of the
dead-time to the bin size, T , be τdead. First, we obtain p1(nA, nB) by

p1(nA, nB) = p∗(nA, nB)− τdead
[
nA(nA + 1)p∗(nA + 1, nB) + nB(nB + 1)p∗(nA, nB + 1)

−nA(nA − 1)p∗(nA, nB)− nB(nB − 1)p∗(nA, nB)

]
. (S22)

Second, we perform a further correction to give p2a(nA, nB) and p2b(nA, nB):

p2a(nA, nB) = p∗(nA, nB)− τdead
[
nA(nA + 1)p1(nA + 1, nB) + nB(nB + 1)p1(nA, nB + 1)

−nA(nA − 1)p1(nA, nB)− nB(nB − 1)p1(nA, nB)

]
(S23)

and

p2b(nA, nB) = −
τ2dead

2

[
nA

2(nA + 1)(nA + 2)p∗(nA + 2, nB)−

nA(nA + 1)(2nA
2 − 2nA + 1)p∗(nA + 1, nB) +

nB
2(nB + 1)(nB + 2)p∗(nA, nB + 2)−

nB(nB + 1)(2nB
2 − 2nB + 1)p∗(nA, nB + 1) +

nA(nA − 1)3p∗(nA, nB) + nB(nB − 1)3p∗(nA, nB) +

2nAnB(nA + 1)(nB + 1)p∗(nA + 1, nB + 1) +

2nAnB(nA − 1)(nB − 1)p∗(nA, nB)−
2nAnB(nA + 1)(nB − 1)p∗(nA + 1, nB)−

2nAnB(nA − 1)(nB + 1)p∗(nA, nB + 1)

]
(S24)

so that our final corrected distribution, p(nA, nB), obeys

p(nA, nB) = p2a(nA, nB) + p2b(nA, nB). (S25)
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Figure S7. Dead-time corrections are necessary when dead-time is present. A nested
sampling fit to a MesoRD simulation employing a 50 ns dead-time: A) without or B) with
dead-time corrections. For this simulation, N1 = 0.213, ε1 = 88900 counts/s, and τ1 = 43.92
µs for species 1, and N2 = 0.213, ε2 = 177800 counts/s, and τ2 = 175.7 µs for species 2. The
maximum bin size is T = 3.2 µs and the detector dead-time was 50 ns.

We tested this approach using simulations and in this example we can resolve two different
species only if dead-time is corrected (Fig. S7). The MesoRD simulator was run with a bin size
of 50 ns in the mode where it reports both arrival times to the nearest 50 ns and the number
of photons that arrived within that 50 ns window. To mimic a detector with dead-time, we
ignored the number of photons detected within the 50 ns and treated each arrival time instead
as a single photon detection. We then used 2000 analytical solutions to the resampled factorial
cumulant equations as initial conditions to a nested sampling run with 200 objects to fit the
cPCH factorial cumulants both with and without correcting for dead-time.

S7.1 Verifying corrections for triplet effects and detector dead-time

We verified our corrections for triplet effects and the detector dead-time using simulations (Table
S1). Using MesoRD, we simulated a single species, and in addition to the usual parameters,
such as the brightness, concentration, and diffusion time, we also estimated the shape factors γ3
and γ4, the structure factor s, as well as the triplet fraction R and relaxation time τt.
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Parameter Actual Value Fit Value (fit/actual)* (fit/actual)* (fit/actual)**
Tmin = 200ns Tmin = 1µs Tmin = 1µs
Tmax = 3.2µs Tmax = 64µs Tmax = 64µs

N 0.085 0.084 ±0.0004 (0.988) (0.995) (1.147)
ε 97791 counts/s 97702 ±377 counts/s (0.999) (1.004) (0.867)
τd 43.924 µs 41.591 ± 1.131 µs (0.947) (1.030) (0.757)
s 1.9276 2.084 ± 0.130 (1.081) (0.943) (2.962)
γ3 0.192 0.199 ± 0.003 (1.037) (1.032) (0.998)
γ4 0.125 0.136 ±0.006 (1.090) (1.106) (1.035)
R 0.2 0.195 ±0.004 (0.973) (1.012) (1.008)
τt 3 µs 3.09 ± 0.19 µs (1.030) (1.066) (1.463)

Table S1. Summary of the simulated calibration results including dead-time effects,
triplet states, and binning effects. Both triplet and diffusive binning are necessary. In the
third column, the minimum bin size was T = 200 ns and the maximum was T = 3.2 µs. In the
fourth column, the minimum bin size was T = 1 µs and the maximum was T = 64 µs. * Both
diffusion and triplet binning included in the fit. ** Only diffusion binning included in the fit. R
denotes the triplet fraction; τt denotes the triplet relaxation time.

S8 Corrections for detector afterpulsing

Photon counting detectors have a low probability of generating an afterpulse after the detection
of a photon, which cannot be distinguished from a real photon and alters the statistics of the
detected light signal. A challenge in correcting for afterpulses is to correct for afterpulses that
originated in different time bins – the afterpulse occurs in a later time bin than the original
photon.

We will correct for afterpulsing by correcting the experimental distribution, rather than
modifying its analysis; however in the derivations, we provide equations to allow the theoretical
distributions to be corrected instead if desired.

S8.1 Afterpulsing for single channel data

Let p(n, k|q) be the probability of detecting n photons and k afterpulses if the probability of
generating an afterpulse is q, which obeys

p(n, k|q) = p(k|n, q)p(n) (S26)

where p(k|n, q) is the probability of detecting k afterpulses given that we detected n photons
and p(n) is the probability of detecting n photons without afterpulsing.

If each photon can only produce one afterpulse, the probability p(k|n, q) is given by the
binomial distribution:

p(k|n, q) = pbin(k|n, q) ≡
(
n

k

)
qk(1− q)n−k. (S27)

Experimentally, we measure the probability of detecting n pulses in total, p∗(n|q), some of which
may or may not be afterpulses:

p∗(n|q) =
n∑
k=0

p(n− k, k|q)

=
n∑
k=0

(
n− k
k

)
qk(1− q)n−2kp(n− k) (S28)
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To correct our distribution, we rearrange to find p(n), which by definition has no afterpulses:

p(n) =
p∗(n|q)−

∑n
k=1

(
n−k
k

)
qk(1− q)n−2kp(n− k)

(1− q)n
(S29)

Eq. S29 corrects a single channel distribution, but we need to extend this result to two channels
for cPCH.

S8.2 Afterpulsing for two channels

Let the detectors for the two channels have afterpulsing probabilities of qA and qB. Afterpulses
in one detector are assumed to be uncorrelated with afterpulses in the other. We define the
probability of detecting nA counts in channel A and nB counts in channel B with kA afterpulses
in channel A and kB afterpulses in channel B as p(nA, nB, kA, kB|qA, qB). As before

p(nA, nB, kA, kB|qA, qB) = pbin(kA|nA, qB)pbin(kB|nB, qB)p(nA, nB). (S30)

and

p∗(nA, nB|qA, qB) =

nA∑
kA=0

nB∑
kB=0

pbin(kA|nA − kA, qA)pbin(kB|nB − kB, qB)p(nA − kA, nB − kB).

(S31)
Again, we solve for p(nA, nB)

p(nA, nB)(1− qA)nA(1− qB)nB = p∗(nA, nB|qA, qB)−
nA∑
kA=1

nB∑
kB=0

pbin(kA|nA − kA, qA)

×pbin(kB|nB − kB, qB)p(nA − kA, nB − kB)

+

nB∑
kB=1

(1− qA)nApbin(kB|nB − kB, qB)p(nA, nB − kB).

(S32)

Once the afterpulse probabilities qa and qb have been measured [7], Eq. S32 can in principle be
used to correct p∗(nA, nB|qA, qB) for afterpulses in the same time bin; however, modifications
to the theory are required if we wish to correct for afterpulses across bins.

S8.3 Afterpulsing in correlated time bins

The afterpulse probability q of a detector is the probability of obtaining an afterpulse, p(τ), at
any time τ , after the original photon detection. The afterpulse probability qT for a time bin of
duration T is qT =

∫ T
0 p(τ)dτ .

Consider p(nA, nB, kA, kB, kτ |τ, p(τ)) – the probability of detecting nA photons and kA af-
terpulses at time 0 and of detecting nB photons and both kB afterpulses at time τ , where the
afterpulses originate in this time bin, and kτ afterpulses that originated in time bin 0. Therefore
T < τ and qA = qB = qT because afterpulses can only occur in the same detector.

Factorizing this probability, assuming that afterpulses generated from different time bins are
independent of afterpulses generated within the same time bin:

p(nA, nB, kA, kB, kτ |τ, p(τ)) = p(kτ |nA, nB, p(τ), τ)p(kA, kB|nA, nB, qT )p(nA, nB|τ)

(S33)

where p(nA, nB|τ) is the cPCH distribution. The term p(kA, kB|nA, nB, qT ) can be decomposed
into binomial probabilities:

p(kA, kB|nA, nB, qT ) = pbin(kA|nA, qT )pbin(kB|nB, qT ). (S34)
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To relate Eq. S33 to the empirical distribution, p∗(na, nb|τ, p(τ)), we consider first

p∗(nA, nB, kτ |τ, p(τ)) =

nA∑
kA=0

nB∑
kB=0

p(kτ |nA, nB, p(τ), τ)pbin(kA|nA − kA, qT )

×pbin(kB|nB − kB, qT )p(nA − kA, nB − kB|τ) (S35)

To include afterpulsing across different time bins, we need to sum Eq. S35 over kτ . The kτ
afterpulses can only occur because of the nA − kA photons that occurred at time 0 in Eq. S35.
The probability of generating kτ afterpulses from nA − kA photons is binomial with probability
p(τ): pbin(kτ |nA − kA, p(τ)). A final complication is that the nB pulses at time τ are generated
not only from the kτ pulses but also from pulses generated within the time bin. Consequently,

p∗(nA, nB|τ, p(τ)) =

nA∑
kA=0

min{nA−kA,nB}∑
kτ=0

nB−kτ∑
kB=0

pbin(kτ |nA − kA, p(τ))

×pbin(kA|nA − kA, qT )pbin(kB|nB − kB − kτ , qT )

×p(nA − kA, nB − kB − kτ |τ). (S36)

As before, we rearrange to find p(nA, nB|τ):

p(nA, nB|τ)(1− qT )2nA+nB = p∗(nA, nB|τ, p(τ))

−
nA∑
kA=1

min{nA−kA,nB}∑
kτ=0

nB−kτ∑
kB=0

φ(kA, kτ , kB)

−
min{nA,nB}∑

kτ=1

nB−kτ∑
kB=0

φ(0, kτ , kB)−
nB∑
kB=1

φ(0, 0, kB)

(S37)

with

φ(kA, kτ , kB) = pbin(kτ |nA − kA, p(τ))pbin(kA|nA − kA, qT )

×pbin(kB|nB − kB − kτ , qT )p(nA − kA, nB − kB − kτ |τ). (S38)

Eq. S37 corrects for the effects of afterpulsing that extend beyond a particular time bin and so
can remove the large peak seen at short correlation times in empirical FCS curves. Nevertheless,
p(τ) must be known.

To find p(τ), we modify an existing protocol to measure qT [7]. First, a control experiment
involving a Poisson-distributed light source is required – for example, focusing on a blank cov-
erslip. The count rate should be kept high enough to have reliable signal statistics, but low
enough to make any dead-time effects negligible. After a histogram of photon arrival times is
generated, we fit with an exponential distribution, appropriate for a Poisson-distributed light
source:

y(τ) = A0e
−τ/τa . (S39)

Second, we isolate the contribution from afterpulses by subtracting the exponential fit from the
empirical histogram (Fig. S8A), ignoring the region within the dead-time of the detector. If we
define the afterpulse histogram, x(τ), to be this difference between the empirical histogram, h(τ),
and the exponential fit, y(τ), so that x(τ) = h(τ) − y(τ), then the probability of afterpulsing,
p(τ), at time τ for a bin width of T can be estimated using

p(τ) =

∫ τ+T/2

0
x(τ)dτ −

∫ τ−T/2

0
x(τ)dτ. (S40)
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Figure S8. Correcting for afterpulses. Simulated calibration data used to estimate p(τ)
and a demonstration of the removal of afterpulsing effects between time bins for an afterpulse
probability q∗ = 0.01 and an average arrival time τap = 200 ns. A) Histograms of arrival times
and afterpulses. B) Fit to the measured p(τ). C) A comparison of the calculated FCS curves
for a 1 nM solution with a diffusion coefficient of 1 × 10−10 m2/s, with afterpulsing, without
afterpulsing, and with afterpulsing removed (using simulated data). The black dotted lines show
the FCS curves of the original data without afterpulsing; the green curves show the FCS curves
with afterpulsing added to the data; the dashed red curves show the afterpulse-corrected FCS
curve using the measured p(τ); and the blue curves show the afterpulse-corrected FCS curve
using the ideal p(τ).

This estimate of p(τ) can be noisy at larger values of τ . The afterpulsing probability is
expected to be approximately exponential [8], and we fit x(τ) to an exponential distribution to
improve the estimated p(τ). If τ∗ and q∗ are parameters from the fit, then

p(τ) =
q∗

τ∗

[∫ τ+T/2

0
e−

s
τ∗ ds−

∫ τ−T/2

0
e−

s
τ∗ ds

]
. (S41)
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The resulting p(τ) can be used in Eq. S37 (Fig. S8B).

S8.4 Verification of afterpulsing in correlated time bins

We verified Eq. S37 using simulations (Fig. S8C). Afterpulses were added to data generated in
MesoRD using a dead-time of 50 ns. For each detected photon, we generated an afterpulse with
a probability of q∗ with its arrival time after the detected photon chosen from an exponential
distribution with a rate τap = 200 ns. Afterpulses that occurred within the dead-time of the
detector were ignored. We obtained the p∗(na, nb|τ) distribution from the arrival times and
calculated its moments to find the FCS curve. Next, we simulated the experimental measurement
of p(τ) by using an exponential distribution for the arrival times to generate a Poisson-distributed
set of photon counts. Afterpulses were added, and the apparent p(τ) distribution found. With
this distribution, we corrected p∗(na, nb|τ) using Eq. S37 and obtained a corrected FCS curve
from its moments.
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S9 Expressions for the variance of the factorial cumulants

Following Eq. 36, we implemented the recurrence relations and the variance expressions in
Mathematica (Wolfram Research, Champaign, IL) and find, with Nd being the number of data
points (the number of bins used):

NdVar[(K)0,1] = (K)0,1 + (K)0,2 (S42)

NdVar[(K)1,1] = (K)1,1 + (K)21,1 + (K)1,2 + (K)0,1{(K)1,0 + (K)2,0}
+(K)0,2{(K)1,0 + (K)2,0}+ (K)2,1 + (K)2,2 (S43)

NdVar[(K)2,0] = 2(K)21,0 + 2(K)2,0 + 4(K)1,0(K)2,0 + 2(K)22,0 + 4(K)3,0 + (K)4,0 (S44)

NdVar[(K)3,0] = 6(K)31,0 + 18(K)21,0(K)2,0 + 54(K)22,0 + 6(K)32,0 + 6(K)3,0

+9(K)23,0 + 18(K)4,0 + 9(K)1,0

×
{

2(K)2,0 + 2(K)22,0 + 4(K)3,0 + (K)4,0

}
+

9(K)2,0(8(K)3,0 + (K)4,0) + 9(K)5,0 + (K)6,0 (S45)

NdVar[(K)2,1] = 4(K)1,0(K)1,1 + 4(K)21,1 + 4(K)1,0(K)21,1 + 4(K)1,0(K)1,2

+12(K)1,1(K)2,0 + 4(K)21,1(K)2,0 + 12(K)1,2(K)2,0 + 2(K)2,1

+4(K)1,0(K)2,1 + 16(K)1,1(K)2,1 + 4(K)2,0(K)2,1 + 5(K)22,1

+2(K)2,2 + 4(K)1,0(K)2,2 + 4(K)2,0(K)2,2 + 4(K)1,1(K)3,0

+4(K)1,2(K)3,0 + 4(K)3,1 + 4(K)1,1(K)3,1 + 4(K)3,2 +

(K)0,1

{
2(K)21,0 + 2(K)2,0 + 4(K)1,0(K)2,0 + 2(K)22,0 + 4(K)3,0

+(K)4,0

}
+ (K)0,2

{
2(K)21,0 + 2(K)2,0 + 4(K)1,0(K)2,0

+2(K)22,0 + 4(K)3,0 + (K)4,0

}
(K)4,1 + (K)4,2 (S46)

NdVar[(K)1,2] = 4(K)0,3(K)1,0 + (K)0,4(K)1,0 + 4(K)0,3(K)1,1 + 4(K)21,1

+2(K)1,2 + 16(K)1,1(K)1,2 + 5(K)21,2 + 4(K)1,3 + 4(K)1,1(K)1,3

+(K)1,4 + 4(K)0,3(K)2,0 + (K)0,4(K)2,0 + 2(K)20,1((K)1,0

+(K)2,0) + 2(K)20,2((K)1,0 + (K)2,0) + 4(K)0,3(K)2,1 + 2(K)2,2

+4(K)0,1

{
(K)1,1 + (K)21,1 + (K)1,2 + (K)0,2((K)1,0 + (K)2,0)

+(K)2,1 + (K)2,2

}
+ 2(K)0,2

{
(K)1,0 + 6(K)1,1 + 2(K)21,1

+2(K)1,2 + (K)2,0 + 6(K)2,1 + 2(K)2,2

}
+ 4(K)2,3 + (K)2,4 (S47)
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NdVar[(K)2,2] =

8(K)0,3(K)21,0 + 2(K)0,4(K)21,0 + 16(K)0,3(K)1,0(K)1,1 + 8(K)21,1 + 16(K)1,0(K)21,1

+48(K)31,1 + 4(K)41,1 + 8(K)1,0(K)1,2 + 48(K)1,1(K)1,2 + 64(K)1,0(K)1,1(K)1,2

+64(K)21,1(K)1,2 + 12(K)21,2 + 20(K)1,0(K)21,2 + 16(K)1,0(K)1,3

+16(K)1,1(K)1,3 + 16(K)1,0(K)1,1(K)1,3 + 4(K)1,0(K)1,4 + 8(K)0,3(K)2,0

+2(K)0,4(K)2,0 + 16(K)0,3(K)1,0(K)2,0 + 4(K)0,4(K)1,0(K)2,0

+32(K)0,3(K)1,1(K)2,0 + 16(K)21,1(K)2,0 + 24(K)1,2(K)2,0 + 64(K)1,1(K)1,2(K)2,0

+20(K)21,2(K)2,0 + 48(K)1,3(K)2,0 + 16(K)1,1(K)1,3(K)2,0 + 12(K)1,4(K)2,0

+8(K)0,3(K)22,0 + 2(K)0,4(K)22,0 + 8(K)0,3(K)2,1 + 16(K)0,3(K)1,0(K)2,1

+48(K)1,1(K)2,1 + 64(K)21,1(K)2,1 + 144(K)1,2(K)2,1 + 64(K)1,1(K)1,2(K)2,1

+48(K)1,3(K)2,1 + 16(K)0,3(K)2,0(K)2,1 + 12(K)22,1 + 4(K)2,2 + 8(K)1,0(K)2,2

+112(K)1,1(K)2,2 + 20(K)21,1(K)2,2 + 64(K)1,2(K)2,2 + 8(K)2,0(K)2,2

+64(K)2,1(K)2,2 + 17(K)22,2 + 8(K)2,3 + 16(K)1,0(K)2,3 + 32(K)1,1(K)2,3

+16(K)2,0(K)2,3 + 20(K)2,1(K)2,3 + 2(K)2,4 + 4(K)1,0(K)2,4 + 4(K)2,0(K)2,4

+16(K)0,3(K)3,0 + 4(K)0,4(K)3,0 + 8(K)0,3(K)1,1(K)3,0 + 8(K)1,2(K)3,0

+16(K)1,3(K)3,0 + 4(K)1,4(K)3,0 + 16(K)0,3(K)3,1 + 16(K)1,1(K)3,1

+48(K)1,2(K)3,1 + 16(K)1,3(K)3,1 + 8(K)3,2 + 32(K)1,1(K)3,2 + 20(K)1,2(K)3,2

+16(K)3,3 + 8(K)1,1(K)3,3 + 4(K)3,4 + 4(K)0,3(K)4,0 + (K)0,4(K)4,0

+2(K)20,1

{
2(K)21,0 + 2(K)2,0 + 4(K)1,0(K)2,0 + 2(K)22,0 + 4(K)3,0 + (K)4,0

}
+2(K)20,2

{
2(K)21,0 + 2(K)2,0 + 4(K)1,0(K)2,0 + 2(K)22,0 + 4(K)3,0 + (K)4,0

}
+4(K)0,3(K)4,1 + 2(K)4,2 + 4(K)0,1

{
4(K)21,1 + 12(K)1,1(K)2,0 + 4(K)21,1(K)2,0

+12(K)1,2(K)2,0 + 2(K)2,1 + 16(K)1,1(K)2,1 + 4(K)2,0(K)2,1 + 5(K)22,1 + 2(K)2,2

+4(K)2,0(K)2,2 + 4(K)1,0

{
(K)1,1 + (K)21,1 + (K)1,2 + (K)2,1 + (K)2,2

}
+4(K)1,1(K)3,0 + 4(K)1,2(K)3,0 + 4(K)3,1 + 4(K)1,1(K)3,1 + 4(K)3,2

+(K)0,2

{
2(K)21,0 + 2(K)2,0 + 4(K)1,0(K)2,0 + 2(K)22,0 + 4(K)3,0 + (K)4,0

}
+(K)4,1 + (K)4,2

}
+ 2(K)0,2

{
2(K)21,0 + 2(K)2,0 + 24(K)1,2(K)2,0 + 2(K)22,0

+8(K)21,1(1 + (K)2,0) + 12(K)2,1 + 24(K)2,0(K)2,1 + 10(K)22,1 + 4(K)2,2

+8(K)2,0(K)2,2 + 4(K)1,0

{
6(K)1,1 + 2(K)21,1 + 2(K)1,2 + (K)2,0 + 6(K)2,1

+2(K)2,2

}
+ 4(K)3,0 + 8(K)1,2(K)3,0 + 24(K)3,1 + 8(K)1,1(7(K)2,0 + 4(K)2,1

+2(K)3,0 + (K)3,1) + 8(K)3,2 + (K)4,0 + 6(K)4,1 + 2(K)4,2

}
+ 4(K)4,3

+(K)4,4 (S48)
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NdVar[(K)1,3] = 6(K)0,3(K)1,0 + 9(K)20,3(K)1,0 + 18(K)0,4(K)1,0 + 9(K)0,5(K)1,0 +

(K)0,6(K)1,0 + 72(K)0,3(K)1,1 + 45(K)0,4(K)1,1 + 6(K)0,5(K)1,1 +

72(K)0,3(K)21,1 + 9(K)0,4(K)21,1 + 90(K)0,3(K)1,2 + 15(K)0,4(K)1,2 +

36(K)1,1(K)1,2 + 54(K)0,3(K)1,1(K)1,2 + 108(K)21,2 + 6(K)1,3 +

18(K)0,3(K)1,3 + 108(K)1,1(K)1,3 + 162(K)1,2(K)1,3 + 19(K)21,3 +

18(K)1,4 + 54(K)1,1(K)1,4 + 24(K)1,2(K)1,4 + 9(K)1,5 + 6(K)1,1(K)1,5 +

(K)1,6 + 6(K)0,3(K)2,0 + 9(K)20,3(K)2,0 + 18(K)0,4(K)2,0 + 9(K)0,5(K)2,0 +

(K)0,6(K)2,0 + 6(K)30,1((K)1,0 + (K)2,0) + 6(K)30,2((K)1,0 + (K)2,0) +

72(K)0,3(K)2,1 + 45(K)0,4(K)2,1 + 6(K)0,5(K)2,1 + 90(K)0,3(K)2,2 +

15(K)0,4(K)2,2 + 18(K)20,1

{
(K)1,1 + (K)21,1 + (K)1,2 + (K)0,2

{
(K)1,0 +

(K)2,0

}
+ (K)2,1 + (K)2,2

}
+ 18(K)20,2

{
3(K)1,0 + 5(K)1,1 + (K)21,1 +

(K)1,2 + 3(K)2,0 + 5(K)2,1 + (K)2,2

}
+ 6(K)2,3 + 18(K)0,3(K)2,3 +

18(K)2,4 + 9(K)0,1

{
(K)0,4(K)1,0 + 4(K)21,1 + 2(K)1,2 + 16(K)1,1(K)1,2 +

5(K)21,2 + 4(K)1,3 + 4(K)1,1(K)1,3 + (K)1,4 + (K)0,4(K)2,0 +

2(K)20,2((K)1,0 + (K)2,0) + 4(K)0,3((K)1,0 + (K)1,1 + (K)2,0 + (K)2,1) +

2(K)2,2 + 2(K)0,2

{
(K)1,0 + 6(K)1,1 + 2(K)21,1 + 2(K)1,2 + (K)2,0 +

6(K)2,1 + 2(K)2,2

}
+ 4(K)2,3 + (K)2,4

}
+ 9(K)0,2

{
2(K)1,1 + 14(K)21,1 +

12(K)1,2 + 28(K)1,1(K)1,2 + 5(K)21,2 + 8(K)1,3 + 4(K)1,1(K)1,3 + (K)1,4 +

(K)0,4((K)1,0 + (K)2,0) + 2(K)2,1 + 4(K)0,3

{
2(K)1,0 + (K)1,1 + 2(K)2,0 +

(K)2,1

}
+ 12(K)2,2 + 8(K)2,3 + (K)2,4

}
+ 9(K)2,5 + (K)2,6 (S49)

The variance Var[(K)3,1] can be found by exchanging the indices in the factorial cumulants
((K)m,n becomes (K)n,m).
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