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Abstract

Eukaryotic genomes often encode multiple transporters for the same nutrient. For example,

budding yeast has 17 hexose transporters (HXTs), all of which potentially transport glucose.

Using mathematical modelling, we show that transporters that use either facilitated diffusion

or symport can have a rate-affinity tradeoff, where an increase in the maximal rate of trans-

port decreases the transporter’s apparent affinity. These changes affect the import flux non-

monotonically, and for a given concentration of extracellular nutrient there is one trans-

porter, characterised by its affinity, that has a higher import flux than any other. Through

encoding multiple transporters, cells can therefore mitigate the tradeoff by expressing those

transporters with higher affinities in lower concentrations of nutrients. We verify our predic-

tions using fluorescent tagging of seven HXT genes in budding yeast and follow their

expression over time in batch culture. Using the known affinities of the corresponding trans-

porters, we show that their regulation in glucose is broadly consistent with a rate-affinity

tradeoff: as glucose falls, the levels of the different transporters peak in an order that mostly

follows their affinity for glucose. More generally, evolution is constrained by tradeoffs. Our

findings indicate that one such tradeoff often occurs in the cellular transport of nutrients.

Author summary

From yeast to humans, cells often express multiple different types of transporters for the
same nutrient, and it is puzzling why a single high-affinity transporter is not expressed
instead. Here we initially use mathematical modelling to demonstrate that transporters
facilitating diffusion and those powered by the proton motive force can both exhibit a
rate-affinity tradeoff, for quite general conditions. A transporter with a higher affinity nec-
essarily has a lower rate, and vice versa. The tradeoff implies that there is a range of nutri-
ent concentrations for which a transporter, characterised by its affinity, has a higher
import flux than any other transporter with a different affinity. To mitigate the tradeoff,
genomes may therefore encode multiple different transporters, and cells that express each
transporter in the concentrations where it imports best will uptake nutrients at higher
rates. Consistently, we show that as cells of budding yeast consume glucose, they express
five types of hexose transporters in an order that follows the transporters’ affinities.
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Introduction

To grow and divide, cells must import nutrients, and genomes often encode several types of
transporters for the same nutrient. In the budding yeast Saccharomyces cerevisaie, for example,
multiple transporters may be the norm rather than the exception, particularly for essential
nutrients—there are two transporters for sulphate [1], five for phosphate [2], three for ammo-
nium [3], and remarkably up to 18 for glucose [4]. Similarly, the human genome encodes 14
transporters for glucose that, like yeast’s, use facilitated diffusion [5] and six more that are sym-
porters powered by the sodium motive force [6]. We also express at least six different phos-
phate transporters in the kidney [7].

It is puzzling why multiple transporters have been selected. Why not have one type of trans-
porter with a high affinity that imports as fast as possible? For nutrient sensing in budding
yeast, several explanations have been proposed.

One possibility is that by having a low and a high affinity transporter for a nutrient, cells are
better able to prepare for that nutrient becoming scarce [8]. As the nutrient’s availability falls,
cells use the drop in flux through the low affinity transporter as a warning to trigger expression
of the high affinity one. Cells therefore maintain intracellular nutrients long enough to be able
to launch a preparatory programme of gene expression before extracellular nutrients are
depleted [8].

Another possibility, at least for transporters using facilitated diffusion, is that levels of trans-
porters are regulated to reduce the efflux of valuable nutrients [9]. If the intracellular concen-
tration of a nutrient rises in a medium rich in the nutrient, then a high affinity transporter will
be bound by the nutrient both intracellularly and extracellularly and will no longer import. By
expressing a transporter with a lower affinity, cells will have a transporter that is not saturated
intracellularly, enabling import to continue and intracellular nutrient to accumulate [9]. In
yeast, intracellular concentrations of glucose can become high [10], but this argument may not
hold for active transporters, which should rarely export their substrate.

Perhaps the most general possibility is that the transporters have a rate-affinity tradeoff
[11]. Increasing a transporter’s maximal rate of import of a nutrient may necessarily decreases
its affinity for the nutrient. Such a tradeoff would support having more than two transporters
and may hold irrespective of the transport mechanism. Cells would encode multiple transport-
ers with different affinities to mitigate the tradeoff. Transporters with lower affinities and
higher rates would be expressed when nutrient concentrations are high, and transporters with
higher affinities and lower rates would be expressed when levels of nutrients are low.

Here, like others [9], we use mathematical modelling to determine if such rate-affinity tra-
deoffs are possible in principle, focusing on facilitated diffusion, but considering symporters
too. We show that both types of transport do exhibit a tradeoff for quite general conditions
and consequently that for multiple transporters, there is a range of concentrations of extracel-
lular substrates where one transporter performs better than any other. Using fluorescent pro-
teins to follow the levels of seven hexose transporters in budding yeast, we demonstrate that
the order of their peaks in expression as glucose falls from high to low concentrations is
broadly consistent with their measured affinities and a rate-affinity tradeoff.

Results

Facilitative transporters can have a rate-affinity tradeoff

Consider a transporter that uses facilitated diffusion (Fig 1A). Embedded in the plasma mem-
brane, its structure randomly fluctuates—facing inwards towards the cytoplasm, outwards
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towards the extracellular space, and then back again—and so it passively transports substrates
from high to low concentrations.

The transporter’s potential for a rate-affinity tradeoff may be understood intuitively using a
reaction coordinate diagram (Fig 1B) [13]. Its affinity is determined by the difference in free
energy between a substrate in solution and one bound to the transporter—the larger the free
energy difference, the higher is the affinity. Its rate of import is mainly determined by the dif-
ference in free energy between the substrate-bound form and the transition state as the trans-
porter changes to face the intracellular space—the larger the free energy difference, the lower
is the import rate, because the activation barrier is greater. Assuming that the time to cross this
barrier is substantially longer than the time for the substrate to unbind from the transporter
and enter the cytosol, then an increase in affinity necessarily decreases the rate.

It is straightforward to calculate the transporter’s steady-state flux [14]—a Michaelis-Men-
ten function of the difference between the extra- and intracellular concentrations of substrate.
Assuming that the membrane is sufficiently symmetrical that the rates of an unbound

Fig 1. Transport by facilitated diffusion can exhibit a rate-affinity tradeoff. A. Transport by facilitated diffusion is driven by thermal fluctuations
causing the transporter to re-orient continually to face either the extracellular space or the cytoplasm. We denote extra- and intracellular substrate as Se
and Si (yellow triangle), the association rate of extracellular substrate by fe and its dissociation rate by be, the association rate of intracellular substrate by
fi and its dissociation rate by bi, and the transporter’s rate of transitioning across the membrane by r0 when bound by substrate and r otherwise. B. The
rate-affinity tradeoff may be understood from a reaction coordinate diagram. High affinity transporters (green) necessarily have a lower rate than low
affinity transporters (purple). C. Randomly sampling be, fe, fi, and r à r0i à r0e (bi is given by Eq 3) reveals the tradeoff by plotting the median rate, via Eq
5, against the median affinity, via Eq 6. The shading shows the interquartile range. Here Se has a concentration of 10 mM, and Si is either 10−5 Se (blue)
or 10−2 Se (green inset). A larger Si worsens the tradeoff. D. For a given Se and Si, there is a transporter—characterised by its apparent KM and denoted
with a red dot—that maximises import. As Se increases so too does the optimal KM. We change KM by varying be and set Si = 10−5 Se, r = r0 = 104 s−1, fe =
106 mM−1 s−1 (diffusion-limited [12]), and fi = 10−3 fe. The flux is normalised by r. The optimal KM changes little if Si is increased. E. If cells have
multiple transporters that differ only in their Kd, then to maximise flux each should be expressed for a characteristic range of the extracellular and
intracellular concentrations of substrate. We consider three transporters with a Kd of either 0.01, 0.1, 1, or 10 mM, and be is calculated from this Kd
value. Shading shows the region where a particular transporter is optimal: each region is labelled by the corresponding Kd with darker colours
corresponding to lower values. Concentrations are in mM, and fe = 106 mM−1 s−1. For facilitative transporters, fi = fe/103. The regions are more
determined by Se alone if r is larger because the time available for a cytoplasmic substrate to bind the receptor is then reduced. Illustrative lines where Si
is proportional to Se are shown with red dashes. For the symporter, fi = fe/102, m = n = 1, zS = 0, Δψ = −100 mV, the extracellular pH is 5, the
intracellular pH is 7, and λ = 0.3 (Materials and methods).

https://doi.org/10.1371/journal.pcbi.1010060.g001
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transporter’s transitioning across it are similar in both directions, ri = re = r (Fig 1A), that the
substrate is uncharged so that r0i à r0e à r0 too for a bound transporter, and writing Se for extra-

cellular substrate, Si for intracellular substrate, ΔS = Se − Si, we find that

J à Kdrr0 DS

2ÖKd á SiÜ r Kd á
r0

fe

✓ ◆
á r0 Si á

r
fi

✓ ◆ �
á KdÖr á r0Ü á 2r0 Si á

r
fi

✓ ◆ �
DS

: Ö1Ü

Here fe and fi are the rates of association of substrate to the transporter and be and bi are the
rates of dissociation. The extracellular substrate’s dissociation constant of binding, Kd, is
defined as

Kd à
be
fe
: Ö2Ü

The rate constants are interdependent [14] and obey

be
fe
à bi

fi
Ö3Ü

so that transport is able to reach equilibrium when Se = Si. Without Eq 3, at least one of the
kinetic steps in Fig 1A must be thermodynamically driven through, for example, an effectively
irreversible reaction like hydrolysing ATP. We interpret Eq 3 to mean that bi is a dependent
parameter, which we eliminate from Eq 1.

Comparing Eq 1 with

J à kcatDS
KM á DS

Ö4Ü

we can characterise transport with an apparent kcat and KM, which depend on Si.
To clarify, and following others [15, 16], when we write KM we mean the apparent KM

defined by Eq 4. By affinity, we mean the apparent affinity—the reciprocal of this KM. The rate
at which a transporter works is its flux, J in Eq 1. The maximal rate, or maximal flux, is given
by kcat. The dissociation constant of the extracellular substrate binding to the transporter is Kd,
and KM and kcat are both functions of Kd and the rate constants in Eq 1, as well as Si.

When we vary a rate constant that determines transport, there is a physiologically relevant
rate-affinity tradeoff if two conditions are met: first, the partial derivatives of kcat and the affin-
ity, 1/KM, with respect to the rate constant should have opposite signs so that 1/KM decreases
when kcat increases and vice versa; second, the partial derivative of the import flux, J, with
respect to the rate constant should be non-monotonic. For example, if this partial derivative of
J is always positive, then even if there is a tradeoff, and increasing the rate constant decreases
the affinity, the resulting change in the flux is more than compensated by the corresponding
increase in kcat. Mutations increasing the rate constant will always be favoured, making the
tradeoff unimportant.

Performing this test—calculating the three partial derivatives and inspecting their signs—
with respect to each of the rate constants constituting J in Eq 1 and using be rather than Kd =
be/fe and r0i à r0e à r0, we find that no physiologically relevant tradeoff is possible through

changing fi, r, and r0, with the corresponding partial derivatives of J always being positive.
Physiologically relevant tradeoffs are possible through changing be and fe, the parameters
determining the extracellular binding of the substrate, but only if some of the rate constants
have their values constrained.
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Alternatively, if the transporter transitions across the membrane at the same rate regardless
of whether any substrate is bound or not so that r0 = r, implicitly assuming that the transport-
er’s structure does not substantially change when bound by substrate, then a physiologically
relevant tradeoff occurs for all non-zero values of the other rate constants when we vary be and
fe. When r0 = r

kcat à

1

2
Kdr

Kd á
r
fi
á Si

Ö5Ü

and

KM à ÖKd á SiÜ 1á

r
fe

Kd á
r
fi
á Si

0

B@

1

CA: Ö6Ü

We note that more intracellular substrate undermines import as expected [9], by both
decreasing kcat (Eq 5) and increasing KM (Eq 6). Differentiating Eqs 5 and 6, we find a rate-
affinity tradeoff for all parameters (Fig 1C), but, as before, this tradeoff is only physiologically
relevant if we vary be and fe—both of which determine the extracellular Kd. We can show that
kcat decreases with increasing fe while the affinity increases, and that kcat increases with increas-
ing be while the affinity decreases. The corresponding partial derivatives of J are non-mono-
tonic as required.

Characterising a transporter by its apparent KM, the tradeoff then implies that there is an
optimal transporter that maximises flux for given concentrations of extra- and intracellular
substrate. Lowering KM away from the optimal value—raising the affinity, should increase the
flux (Eq 4), but lowering KM also lowers kcat. Providing we change KM by varying be or fe, the
flux therefore decreases at sufficiently small KM. Raising KM away from the optimal value also
eventually decreases flux too because kcat saturates. Consequently, there is a KM that maximises
flux for each Se and Si (Fig 1D).

Considering, say, three transporters that differ only in their values of be, or equivalently in
Kd because Kd = be/fe, then each transporter will be optimal—having the greatest import flux
out of all three transporters—for a particular range of values of Se and Si (Fig 1E). A higher Se
favours transporters with higher Kd, and vice versa. From Eqs 5 and 6, a higher Se therefore
favours transporters with a lower affinity and a higher kcat. In this regime, transporters are
more likely to be saturated, working close to their maximal rate of kcat with the affinity little
affecting flux. A lower Se favours transporters with a higher affinity and lower kcat. Transport-
ers are likely to be far from saturated with the affinity strongly determining flux.

The behaviour in Fig 1D & 1E is distinct from the product inhibition suffered by facilitative
transporters for large concentrations of intracellular substrate [9]. If Si is proportional to Se so
that Si/Se is a constant fraction, then in the limit of sufficiently large Si, and so too of an even
larger Se, Eq 1 becomes

J ’ Kdr
2Si

1� Si
Se

✓ ◆
: Ö7Ü

The flux tends to zero as Si increases further even though Se> Si is also increasing. With a
large enough Si, any substrate molecule that dissociates from the transporter to enter the cyto-
plasm is almost always replaced by another cytoplasmic substrate before the transporter reori-
ents to face the extracellular space. This product inhibition will occur irrespective of whether
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or not there is a rate-affinity tradeoff. Setting Si to be proportional to Se corresponds to moving
along a line in Fig 1E that is parallel to the diagonal and intercepts the x-axis at negative values.
Although the ranges of Se for which each transporter is optimal alter along such a line com-
pared to when Si is negligible (x-axis), the order in which the different transporters become
optimal as Se changes remains the same.

To summarise, we find that transporters using facilitated diffusion always exhibit a rate-
affinity tradeoff if their rate of transitioning back and forth across the membrane is symmetric
and unchanged when bound by substrate. This tradeoff affects flux only if the maximal rate
and affinity are changed by varying the rate constants that determine the extracellular Kd, be
and fe. Flux increases monotonically with the other rate constants, fi and r, which we might
assume have values close to the maxima that selection allows.

Symporters can also have a rate-affinity tradeoff

Many transporters work not by facilitated diffusion but are powered by the proton motive
force across the plasma membrane. For example, in budding yeast, most phosphate [2] and
amino acid transporters [2, 17] are proton symporters. Despite being driven by the proton
motive force, we show that symporters too may have a rate-affinity tradeoff.

Symporters can be modelled as facilitative transporters [14] (Materials and methods). By
replacing the binding of the substrate in Fig 1A with the binding of m protons and n substrates
and assuming that the intermediate states with only some of the protons and substrates bound
are short-lived, then the steady-state flux of imported substrate becomes similar to Eq 1. The
rates r0 and b in Fig 1A now describe the transport rates of protons and substrates through the
symporter; the rate r determines a refractory period, where the symporter is temporarily
unable to transport.

As before, we define an apparent kcat and KM to describe the transport. Writing S for a sub-
strate molecule, we can rearrange the expression for the antiporter’s steady-state flux to have
the form

J à
kcatDSsym

KM á DSsym
Ö8Ü

where ΔSsym is

DSsym à e�uâHáäme Sne � âH
áämi Sni Ö9Ü

and

u à F
RT
Ömá nzSÜDc: Ö10Ü

Here Δψ denotes the plasma membrane potential, R is the ideal gas constant, T is temperature,
F is Faraday’s constant, and a substrate molecule has charge zS.

The apparent kcat and KM are

kcat à
r

1á eÖ1�lÜu á Ö1á euÜC Ö11Ü

and
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and for a constant λ with 0 λ 1 (Materials and methods). By calculating the derivatives of
Eqs 11 and 12 and of the flux, Eq 8, we can check for physiologically relevant tradeoffs when
any one of the parameters describing transport is varied.

Although the expressions for the derivatives are complicated preventing a complete analy-
sis, we find that it is possible to have physiologically relevant rate-affinity tradeoffs despite
transport being powered by the proton motive force. Although the symporter’s flux always
increases with increasing r or fi, there is such a tradeoff when fe changes and also when be
changes if fe� fi. This inequality favours import and so is likely to be obeyed by most nutrient
symporters. Even if substrate binding disfavours import, there is still a tradeoff when be
changes if u is sufficiently large and negative such that eu⌧ 1. Because Δψ is typically negative
[14], this condition is most likely met for positively charged substrates or requires multiple
protons to be co-transported with each negative substrate so that m> −nzS. In all these cases,
the derivative of the flux may be non-monotonic, implying that such a symporter, like a facili-
tative transporter, has particular extracellular conditions where its flux is maximal (Fig 1E).

Expression of hexose transporters is consistent with a rate-affinity tradeoff

Given these results, we considered glucose transport in budding yeast to determine if such a
tradeoff is consistent with the expression of yeast’s genes for hexose transporters. Although there
are 17 HXT genes, seven, encoded by HXT1–7, are thought to be most important for growth on
glucose [18]. Each transporter uses facilitated diffusion [19] and has a different apparent affinity
for glucose [16, 20], with their levels peaking at different glucose concentrations [21–26]. Focus-
ing on HXT1–7, we tagged these genes with Green Fluorescent Protein (GFP) and followed their
levels in cells over time using a microplate reader (Materials and methods).

For cells in 2% glucose, we observed that the transporters are mostly expressed sequentially
in time following their apparent affinity (Fig 2A). The low affinity transporters—Hxt1 and
then Hxt3—peak first when the concentration of glucose is highest, followed by the medium
affinity transporter Hxt4, and then the high affinity transporters Hxt6 and Hxt7, which peak as
glucose is exhausted. There are two exceptions: the medium affinity transporters Hxt2 and
Hxt5, but both are known to be atypical Hxts. Hxt2 is unusual because only its mRNA is
enriched in the buds that form when glucose is added to starving cells [27]. HXT5 is regulated
differently from the others [28, 29], and levels of the corresponding transporter are known to
decrease monotonically in glucose [30]. With our pre-growth on pyruvate, its behaviour is as
expected, with levels that are initially high and fall over time.

Transport of glucose by the Hxts is likely symmetric [20], as we assume in Eqs 5 and 6, and
the apparent KMs have been determined [16, 20]. We interpret these estimates to be at negligi-
ble intracellular glucose, which was not measured, because the strains used were generated
from the HXT-null mutant [31] and expressed only one of HXT1–7. These strains likely have
substantially reduced import because the transporters are normally co-expressed in the wild-
type strain (Fig 2A). This assumption, though, is for convenience, and our analysis would be
similar if intracellular glucose had been measured. The results hinge not on the intracellular
glucose but on the different characteristics of the transporters.

Assuming then negligible intracellular glucose for the measured KMs, we can use their val-
ues to find a relationship between the Kd of the corresponding transporters and the other rate
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Fig 2. Regulation of yeast’s hexose transporters is broadly consistent with transport having a rate-affinity
tradeoff. A. As glucose falls, the different HXTs are expressed in an order approximately determined by their KM. We
follow transporters tagged with GFP in batch culture with initially 2% (110 mM) glucose and show the mean
fluorescence per cell. The concentration of glucose falls as the culture’s optical density (OD) increases (dotted line) and
is near zero when the OD plateaus. The shaded regions indicate 95% confidence intervals found using bootstrapping
over five replicate experiments. B. Using the apparent KM and assuming that cells optimise import, we can predict the
order of expression of the HXTs in falling glucose. The main panel shows predicted import fluxes when intracellular
glucose is zero, with the upper bar indicating which transporter has the highest flux. For the inset, the concentration of
intracellular glucose is proportional to extracellular glucose (set at 20%), but the order of the optimal transporters in
falling glucose is unchanged (compare the maximal flux in the inset to the upper bar). Fluxes are normalised by r = 104
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constants, via Eq 6 with Si = 0. Fixing r and fi—flux increases monotonically with both and so
we assume they have the maximal values allowed by selection and are the same for each Hxt—
and further assuming, for simplicity, that fe is diffusion-limited, we can determine a Kd for
each transporter and so an apparent KM, kcat, and flux for non-zero intracellular glucose
(Fig 2B). As expected, transporters with a higher apparent KM have a higher Kd and a higher
kcat: Hxt1 with the smallest affinity has the highest kcat, and Hxt7 has the lowest.

From these fluxes, we are able to predict the order in which the transporters should be
expressed as extracellular glucose falls if the cell always favours the transporter that imports
best (Fig 2B bar). For each extracellular concentration of glucose, one Hxt is predicted to maxi-
mise the flux of imported glucose, and correspondingly each Hxt has a range of glucose con-
centrations where it should be optimal. Although the concentrations defining this range
depend on our choice of parameters, the order of expression as a function of the extracellular
glucose concentration does not. This order is broadly consistent with the observed peak of
each Hxt’s expression over time (Fig 2) and so with the Hxts exhibiting a rate-affinity tradeoff.

If intracellular glucose is proportional to extracellular glucose, we see that the flux peaks
and then decreases at sufficiently high extracellular glucose because of product inhibition
(Fig 2B inset) [9]. As expected (Fig 1E), this inhibition by intracellular glucose does not change
the predicted order of expression from when intracellular glucose is negligible (compare the
maximal flux of the inset with the upper bar in Fig 2B).

The HXT genes evolved by gene duplication [32], and from a phylogenetic comparison (Fig
2C), we find that the HXT genes arose from a gene related to HXT5 through multiple duplica-
tions. If the Hxts do have a rate-affinity tradeoff, then we might expect that the original trans-
porter’s fe and be were selected to maximise import for a particular range of glucose
concentrations. For a newly duplicated HXT gene, the fe and be of its transporter presumably
evolved to shift its optimal range into a new regime of glucose concentrations. Based on the
measured affinities for budding yeast, there is evidence of these transitions: four out of the five
duplication events (arrows in Fig 2C) likely led to a transporter with a broadly different
affinity.

Discussion

Using mathematical modelling, we have shown that both passive and active transport can have
a rate-affinity tradeoff and that this tradeoff favours the evolution of multiple transporters if
selection is for the rapid import of the transporters’ substrate. Once the gene of such a trans-
porter is duplicated, its Kd for substrate may evolve, changing the transporter’s rate and affinity
in opposite ways. If its affinity increases, the new transporter can generate a greater import
flux than the original transporter at sufficiently low concentrations of substrate because the
increase in affinity dominates the decrease in rate; if its affinity decreases, the transporter can
generate a greater import flux at sufficiently high substrate concentrations because the increase
in the rate dominates the decrease in affinity (Fig 2B). To increase their import of the substrate,
cells must further evolve regulation to ensure that as extracellular substrate changes flux is
mostly generated by the transporter that is best for the current concentration. For the HXT

s; fe is at the diffusion limit of 106 mM−1 s−1 [12]; fr = fe/103. C. A phylogenetic analysis suggests that the newly
duplicated HXT genes evolved affinities for novel ranges of glucose concentrations. We show the phylogenetic tree
based on 11 orthologous proteins for nine species of yeast. For each HXT gene, the vertical bars show those species
whose genome encodes that gene. HXT5 is likely the ancestor of all the HXTs because it is the only one present in all
nine species. The arrows show the likely origins of duplications. Based on the apparent affinities in S. cerevisiae, HXT5,
with medium affinity, gave rise to the high affinity HXT6/7 and to the low affinity HXT1. High affinity HXT6/7 gave
rise to the medium affinity HXT2 and HXT4. Very low affinity HXT1 gave rise to the low affinity HXT3.

https://doi.org/10.1371/journal.pcbi.1010060.g002
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genes in budding yeast, the result appears analogous to changing gears in a bicycle, with cells
seemingly matching the predominant type of transporter to the concentration of glucose avail-
able: the order of maximal expression of at least five HXT genes follows the order of their
affinities.

A rate-affinity tradeoff does not preclude other explanations for the existence of multiple
transporters. We expect that cells use changes in import flux as a warning signal [8] and favour
lower affinity facilitative transporters if intracellular concentrations of substrates become too
high [9]. Both of these explanations though emphasise sensing of intracellular rather than
extracellular nutrients—feedback rather than feedforward control—with its attendant delays.
At least for glucose, budding yeast do sense extracellular concentrations [4] and competition
for glucose is thought to be fierce [33], likely favouring a rapid response.

Further, cellular decision-making is complex [34], and if optimal, as we have assumed,
likely at best Pareto optimal, with multiple competing goals [35]. We know that cells express
proteins not only for current conditions but in anticipation of future events [36] and that cells
too hedge their bets, suffering an immediate loss in fitness for a potential gain in the future
[37]. Genes may also be pleiotropic with additional regulatory constraints. For example, some
of yeast’s hexose transporters bind galactose as well as glucose allowing cells to respond to the
ratio of the two sugars [38].

Evolution is limited by constraints, and identifying these constraints illuminates our under-
standing of biology. Here we have argued that one such constraint is likely to be a rate-affinity
tradeoff in the cellular transport of nutrients.

Materials and methods

Differentiation

All derivatives were calculated using Mathematica (Wolfram Research). Notebooks are avail-
able at https://swainlab.bio.ed.ac.uk and as S1 Notebook (facilitative transport) and S2 Note-
book (symport).

Sampling

To generate Fig 1C, we sample uniformly in log space assuming 0.1< be< 109 s−1, 103 < fe, fi
< 109 M−1 s−1, and 0.1 < r< 107 s−1. Eq 3 gives bi.

Interdependencies between the rate constants of a symporter

Cells maintain an electrical potential difference across their plasma membranes [14], and
because protons and potentially the substrate are charged, the rate at which protons and sub-
strates cross the membrane through the symporter cannot be the same in both directions. Let
T 0e denote a symporter with its n protons and m substrates at the extracellular space, and T 0i
denote the same symporter with its protons and substrates at the intracellular space. We can
represent transport across the membrane by the reaction

T 0eÑ
r0e

r0i
T 0i ; Ö14Ü

which has a ΔG of

DG à �RT log
T 0e
T 0i

✓ ◆
á FÖmá nzSÜDc: Ö15Ü

The substrate has charge zS so that m + nzS is the total charge transported.
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Once we include the effects of both Δψ and any differences in concentration, this transport
step should be able to reach equilibrium. Then the reaction’s ΔG is zero implying

T 0e
T 0i
à eu Ö16Ü

where u is defined in Eq 10.
The reaction should also obey detailed balance

T 0e
T 0i
à r0i

r0e
: Ö17Ü

Together Eqs 16 and 17 imply that

r0i
r0e
à eu; Ö18Ü

so that the difference in rates is determined by the charges of the transported molecules and
Δψ (Eq 10).

To interpret Eq 18, it is helpful to re-parameterise the rates in Eq 18 in terms of r, which
determines the symporter’s refractory time (Fig 1A). For some constant λ, where 0 λ 1,
we can write

r0i à relu ; r0e à re�Ö1�lÜu; Ö19Ü

which ensures Eq 18 holds. The plasma membrane potential is typically negative [14], and a
negative Δψ should favour the import of positive charge. If the total charge, m + nzS, bound to
the symporter is positive, then u< 0, and Eq 19 implies that r0i < r and r0e > r, as expected.

There are further interdependencies between the rates. Considering now the transport reac-
tion as a whole

mHáe á nSe Ñ mHái á nSi; Ö20Ü

its ΔG is

DG à �RT log
âHáäme âSä

n
e

âHáämi âSä
n
i

✓ ◆
á FÖmá nzSÜDc: Ö21Ü

Again, this reaction should have the potential to equilibrate. At equilibrium, ΔG is zero,
implying

âHáäme âSä
n
e

âHáämi âSä
n
i
à eu Ö22Ü

and detailed balance holds so that

feâHáä
m
e âSä

n
e r0ebiri à berefiâHáä

m
i âSä

n
i r0i: Ö23Ü

Using Eq 22, Eq 23 becomes

berefir0i
fer0ebiri

à eu Ö24Ü
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or

berefi
febiri

à 1 Ö25Ü

because of Eq 18. Setting ri = re = r, Eq 25 recovers Eq 3.
With these constraints—Eqs 18 and 25, the symporter’s import flux of substrate S can be

determined at steady state [14].

Measured affinities of the Hxts

We use average values for the reported values of the KMs (Table 1).

Measuring HXT-GFP in budding yeast

Strains. To generate HXT-GFP strains, we made individual tags of HXT genes via PCR-
based integration of constructs [39]. We chose yEGFP as the fluorophore following previous
work [24]. For C-terminal tagging, we obtained plasmids pKT128 [40] from Addgene. We
amplified the fluorescent marker cassettes by PCR, transformed the PCR product into yeast,
and tested positive colonies by PCR and sequencing.

All strains (Table 2) are derived from strain BY4741 (a derivative of S288C).
Media. We used SC medium (0.2% yeast nitrogen base with 0.5% ammonium sulphate)

supplemented with 2% pyruvate for pre-culture. We used low fluorescence SC medium, which
is the same as SC medium except riboflavin and folic acid have been removed from the yeast
nitrogen base, supplemented with 2% glucose for growth in plate readers.

Preparing the cultures. We used 2% pyruvate for pre-culture to avoid any glucose-depen-
dent effects because cells are then respiring and performing gluconeogenesis. We incubated

Table 1. Reported values for the apparent KM, the inverse of the affinity, in mM for all Hxts known to be used for growth in glucose. Hxt5, which has distinct regula-
tion [28, 29], has a KM of 10 mM [28].

Transporter Methodology Average

countertransport [20] initial uptake [20] 5 mM [16] 100 mM [16]

Hxt1 107 129 90 110 109

Hxt2 2.9 4.6 1.5 10 4.75

Hxt3 28.6 34.2 55 55 43.2

Hxt4 6.2 6.2 9.3 9.4 7.8

Hxt6 0.9 1.4 2.5 2.5 1.8

Hxt7 1.3 1.9 1.1 2.1 1.6

https://doi.org/10.1371/journal.pcbi.1010060.t001

Table 2. HXT-GFP strains.

Strain ID In-text description Genotype

SL229 BY4741 MATa, his3Δ1, leu2Δ0, ura3Δ0, met15Δ0

SL498 HXT1-GFP SL229 HXT1-yEGFP::HIS

SL480 HXT2-GFP SL229 HXT2-yEGFP::HIS

SL485 HXT3-GFP SL229 HXT3-yEGFP::HIS

SL409 HXT4-GFP SL229 HXT4-yEGFP::HIS

SL487 HXT5-GFP SL229 HXT5-yEGFP::HIS

SL488 HXT6-GFP SL229 HXT6-yEGFP::HIS

SL566 HXT7-GFP SL229 HXT7-yEGFP::HIS

https://doi.org/10.1371/journal.pcbi.1010060.t002
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such pyruvate cultures for 48 hours, then diluted and grew cells in fresh medium for another
24 hours, and then, again, diluting and growing in fresh medium for 4 hours to reactivate
growth.

Measuring OD and fluorescence. We measured optical density and fluorescence in 96
well microplates (Thermo-Fisher) with 200 μl of cell culture using a Tecan M200 plate reader.

Analysis and correction of data. We corrected the OD for its non-linear dependence on
the number of cells [41] and fluorescence for autofluorescence [42]. We report the mean fluo-
rescence per cell—the corrected fluorescence divided by the corrected OD. All analysis was
performed using the omniplate Python module (available from https://swainlab.bio.ed.ac.
uk/software/omniplate and https://pypi.org).

Phylogenetic analysis

We created the species tree (Fig 2C) using a concatenation analysis for Candida albicans
SC5314, Cyberlindnera jadinii NRRL Y-1542 (Phaffomycetaceae), Hanseniaspora valbyensis
NRRL Y-1626 (Saccharomycodaceae), Lachancea thermotolerans CBS 6340, Eremothecium gos-
sypii ATCC 10895, Kluyveromyces lactis CBS 2359, Torulaspora delbrueckii CBS 1146, Zygosac-
charomyces rouxii CBS 732, and Saccharomyces cerevisiae S288C.

The concatenated sequence was generated using the following proteins, given with the
AYbRAH ortholog group in parentheses [43]: Acc1 (FOG02004), Gcn20 (FOG02142),
Nup192 (FOG03980), Spb1 (FOG06740), Nup84 (FOG07647), Sec21 (FOG08792), Pom152
(FOG10187), Kap104 (FOG13237), Rpn6 (FOG13362), Rpn1 (FOG13820), and Vps17
(FOG15237). We chose these proteins as they have a strong phylogenetic signal, aligned the
sequences with MAFFT—using the default parameters and 10 maximum iterations [44], and
reconstructed the phylogenetic tree with IQTree—using the default parameters and 1,000
bootstrap replicates [45]. We estimated divergence times using treePL [46], calibrated with 235
million years of divergence between Candida albicans and Saccharomyces cerevisiae [47].

We used AYbRAH [43] and the Yeast Gene Order Browser [48] to determine the presence
or absence of the hexose transporters orthologs in the taxonomic lineages. Phylogenetic trees
were created with Evolview version 2 [49].

Supporting information

S1 Notebook. Mathematica notebook for model of facilitative transport.
(NB)

S2 Notebook. Mathematica notebook for model of symport.
(NB)
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