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estimating numbers of intracellular 
molecules through analysing 
fluctuations in photobleaching
elco Bakker & peter S. Swain  *

The impact of fluorescence microscopy has been limited by the difficulties of expressing measurements 
of fluorescent proteins in numbers of molecules. Absolute numbers enable the integration of results 
from different laboratories, empower mathematical modelling, and are the bedrock for a quantitative, 
predictive biology. Here we propose an estimator to infer numbers of molecules from fluctuations in the 
photobleaching of proteins tagged with Green Fluorescent Protein. Performing experiments in budding 
yeast, we show that our estimates of numbers agree, within an order of magnitude, with published 
biochemical measurements, for all six proteins tested. The experiments we require are straightforward 
and use only a wide-field fluorescence microscope. As such, our approach has the potential to become 
standard for those practising quantitative fluorescence microscopy.

In fluorescence microscopy, converting measurements of fluorescence into numbers of molecules is a 
long-standing challenge1. This deficit limits our ability both to combine fluorescence measurements from dif-
ferent experiments and to apply quantitative analyses of time series that often must assume known numbers of 
proteins2–4.

Although fluorescence standards1 and the collection of techniques known as fluorescence fluctuation spec-
troscopy – the most well known of which are fluorescence correlation spectroscopy (FCS)5,6 and analysis of 
photon-counting histograms (PCH)7 – provide a solution, neither are yet commonly adopted to calibrate, for 
example, time-lapse imaging in cell and systems biology8.

Instead, fluctuation-based methods have been developed, such as those that measure fluctuations in the dis-
tribution of fluorescent proteins between daughter cells at cell division9–11. These approaches, however, have been 
applied mostly to bacteria, are unsuitable for non-dividing cells12, and do not straightforwardly extend to species 
that exhibit differences in size between mothers and daughters.

A second approach is to study fluctuations in stochastic processes of decay. Inhibiting translation and tran-
scription has allowed the fluorescence per molecule to be estimated in mammalian cells13, but the stability of flu-
orescent proteins can make these experiments time consuming. An alternative technique is to deliberately induce 
photobleaching14: the process by which fluorophores cease to fluoresce when continuously excited. This method 
has been applied in vitro15,16 and to bacteria17, but the analysis relies on photobleaching exhibiting an exponential 
decay14, which is expected for single molecules but not necessarily for the fluorescence of cells18.

Here we develop a method for estimating numbers from deliberately photo-bleached cells that works on 
the wide-field microscopes used for time-lapse imaging and requires no specialized equipment. We verify our 
approach using six different proteins tagged with Green Fluorescent Protein (GFP) in budding yeast. In all cases, 
our estimates of the numbers of molecules are within an order of magnitude of estimates made using biochemical 
techniques, such as quantitative Western blotting and mass spectrometry.

Before beginning, we remind the reader that fluctuation analyses work because the magnitude of fluctuations 
in fluorescence are determined not by the concentration of the fluorescent molecules but by their numbers. A 
fluorescent measurement, Y, is given by the product of the brightness per molecule, ν, and the number of fluores-
cent molecules, X, and is therefore agnostic to their individual values. If X varies with time, the magnitude of the 
fluctuations in the underlying biochemical process changing X, however, typically scale with the mean19: 

X E XVar[ ] [ ]∝ . Therefore the variance in the fluorescence, scales as Y E X E YVar[ ] [ ] [ ]2ν ν∝ =  because ν=Y X. 
For a given fluorescence (a given E Y[ ]), large fluctuations (large YVar[ ]) therefore imply a high value of ν and low 
numbers of molecules, and vice versa (Fig. 1).
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Results
photobleaching in vivo has more than one time scale. We obtained time series of photobleaching 
using budding yeast and GFP-tagged proteins20. Cells were fixed and photobleached in sustained illumination 
with fluorescence measurements taken every 10 seconds (Fig. 2 and Methods). We use fixed cells to remove com-
plications arising from cells synthesising and degrading proteins and from fluorescent proteins maturing during 
the 6 minutes or so of bleaching.

Our data is incompatible with earlier fluctuation-based methodologies (Methods) because it is not well 
described by a single exponential decay even after being corrected for autofluorescence (Fig. 2; left). First, the data 
for multiple cells shows systematic deviations from a single exponential and is better fit by a bi-exponential decay. 
Second, the decay rates of these two exponentials vary substantially between cells (Fig. 2; right). Multi-exponential 
photobleaching is common18 and can be caused by, for example, differing intracellular micro-environments21, 
molecular rotation22, and higher order interactions between excited fluorophores23. These phenomena can also 
cause heterogeneity in parameters between cells.

Figure 1. The magnitude of fluctuations is determined by numbers of molecules, which we illustrate by 
simulating stochastic exponential decay for both a small number of molecules in red and a large number in 
blue. By normalizing to the same starting value, these simulated time series show fluctuations of a different 
magnitude depending on their initial numbers of molecules. The mean behaviour is common (black line), 
but the data for low numbers of molecules (red) shows larger deviations from the mean than the data for high 
numbers of molecules (blue).

Figure 2. Photobleaching in vivo is not described by a homogeneous, single exponential decay. Left: The 
logarithm of the fluorescence of 5 cells of budding yeast expressing Pgk1-GFP and undergoing photobleaching 
do not all fall on a straight line as a function of time (c.f. Fig. 1). The data are shown as dots and the fits for 
double exponential decay as lines, which is modelled for fluorescence at time point i as = + + f a a ai

i i
0 1 1 2 2 

with constants a and e t
1

1= λ− Δ
  and = λ− Δe t

2
2

  for time scales λ and time Δt between measurements (here 
10 s). All data have been corrected for autofluorescence using wild-type cells that do not express GFP. Right: 
bleaching is heterogeneous across the population of cells. There is substantial cell-to-cell variation in the best-fit 
values for 1 and 2.
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A Bayesian approach systematically underestimates. We wish to infer from our data, ν, the factor 
that converts from fluorescence units to absolute numbers10. We follow an established Bayesian methodology for 
stochastic, chemical systems24, which uses the linear noise approximation19 to describe the dynamics of bleaching 
and a Kalman filter for the inference. Our model is general: each cell contains two pools of fluorescent molecules 
that bleach with their own time scale and measurement noise has a normal distribution but with a variance that is 
up to a quadratic function of the total number of fluorescent molecules (Methods). Using a Markov chain Monte 
Carlo scheme to sample the posterior distribution, the numbers of molecules we infer are, however, too small 
(Methods).

We conclude that our model of either bleaching or measurement noise is incorrect or that both are incorrect. 
Shortcomings in the bleaching model, for example, will generate discrepancies between the model’s behaviour 
and the cells’ actual behaviour that are correlated over time. We make the common assumption that the measure-
ment noise at each time point is independent, and so the algorithm will interpret any correlated error as coming 
from bleaching. The magnitude of the fluctuations in bleaching will correspondingly be overestimated and the 
number of molecules underestimated.

An estimator for the number of molecules. We therefore propose instead an estimator that is insensi-
tive to the details of the photobleaching. We motivate the estimator by first considering bleaching with a single 
rate constant, λ:

X X (1)bleached→
λ

Using the linear noise approximation19 and writing = λ−e t
  for the probability of a fluorophore remaining 

unbleached at the time t of interest, we can show (Methods) that from x0 molecules at =t 0

X xE[ ] (2)t 0= 

and that

X xVar[ ] (1 ) (3)t 0  = − .

Dividing Eq. 3 by x0
2 implies that the magnitude of these normalized fluctuations in X x/t 0 scale as x1/ 0 (Fig. 1).

Using Eq. 2, we can replace  in Eq. 3,

= −X X
x

x XVar[ ] E[ ]( E[ ])
(4)t

t
t

0
0

which holds for all t. If we ignore measurement noise then fluorescence Y Xν= , and multiplying Eq. 4 by ν2, 
assumed to be the same for each molecule, gives

= −Y Y
x

y YVar[ ] E[ ]
( E[ ])

(5)t
t

t
0

0

and so our estimator for x0 is

=
−

x
Y y Y

Y
E[ ]( E[ ])

Var[ ] (6)
t t

t
0

0ˆ

for any time >t 0. Given y0, YE[ ]t , YVar[ ]t , and no measurement noise, we can show that x0ˆ  is a maximum likeli-
hood estimator of x0 (Methods).

To gain intuition about when the estimator should be reliable, consider the extreme case where each molecules 
has its own brightness, νi, and bleaches with its own rate. This bleaching should be independent and if i is the 
probability of molecule i remaining unbleached at a time t, then

Y
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from Eqs 2 and 3. Letting measurement noise have variance, σe
2, then the measured variance YVar[ ]t  will be 

increased by e
2σ  above the value in Eqs 7, and 6 becomes

x̂
( )

(1 ) (8)
i i i j j j j

e i i i i
0 2 2

 

 

ν ν ν

σ ν
=

∑ ∑ −

+ ∑ −
.

The νi and i for each molecule are unknown, and to proceed we assume that they are samples from a proba-
bility distribution, P( , )ν . Then 

ν∑i i i is an empirical estimate for νx E[ ]0  because there are x0 terms in the sum. 
We can write Eq. 8 as
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x x
1 (9)0

0ˆ =
+ 

where

 

 

Cov[ , ] Var[ ]

E[ ](E[ ] E[ ]) (10)
x

e
2

0
ν ν ν

ν ν ν
=

+ −

−

σ

after re-arranging. Equations 9 and 10 imply that x0ˆ  underestimates x0 if measurement noise is sufficiently large,

x
Cov[ , ] Var[ ]

(11)
e
2

0

σ
ν ν ν+ > 

and overestimates if both measurement noise is sufficiently small and  ν ν ν>Var[ ] Cov[ , ] such that  < 0.
For the estimates to be accurate, | | 1 , which holds if

σ
ν ν ν ν ν ν+ − − .

x
Cov[ , ] Var[ ] E[ ](E[ ] E[ ])

(12)
e
2

0
� � � � �

If σe is too large, the estimate of x0 fails.
If ν is homogeneous so that E[ ]ν ν=  for all molecules, then Eq. 12 simplifies to

σ
ν

− + .� � � �
xE[ ]

E[ ] E[ ] Var[ ]
(13)

e
2

2
0

2

We note that  >E[ ] E[ ]2  because < <0 1 . Equation 13 is most easily satisfied midway through the bleach-
ing when E[ ] 1/2 =  and the difference between E[ ] and E[ ]2

  is maximum.
If E[ ] =  for all molecules, then Eq. 12 simplifies to

xE[ ]
(E[ ] E[ ] ) 1 Var[ ]

E[ ] (14)
e
2

2
0

2
2� � �

σ
ν

ν
ν

−





−




.

Equation 14 implies that Eq. 6 fails if the variation in ν is so high that EVar[ ] [ ]2ν ν>  and again is most easily 
satisfied midway through the bleaching.

In summary, our estimator, Eq. 6, can work even in the completely heterogenous case where each molecule has 
its own brightness and rate of bleaching, but is more sensitive to variation in ν than in . Measurement noise if 
sufficiently high will cause underestimation and if too high will, as expected, undermine accuracy.

Using the estimator. After correcting for autofluorescence, flatfield (inhomogeneous illumination), and 
background (Methods), the data set comprises nr cells with a time series of nd fluorescence values for each cell. We 
initially analyze the cells one at a time. We consider the time series for the first cell as a collection of pairs of meas-
urements – y y( , )t0  – with one pair for each positive time point and apply Eq. 6 to each pair. To find E[Yt] and 
Var[Yt] in Eq. 6, we smooth the time series using a Gaussian process25. From the smoothed time series, we esti-
mate E[Yt] for all t as the mean of the Gaussian process. Given this mean, we estimate Var[Yt] at each t as 

−y Y( E[ ])t t
2. Equation 6 can then be used directly, and we obtain n 1d −  estimates of x0ˆ  for that cell. We repeat 

this process for all cells and therefore obtain n n( 1)r d −  estimates of x̂0 in total, which we pool. We take the mode 
of the resulting distribution as the best estimate for the number of molecules.

Comparison with biochemical estimates of protein numbers. To verify our method, we compare 
our results with biochemical measurements of the numbers of molecules. We selected six proteins from bud-
ding yeast that have a range of absolute numbers – Fus3, Hog1, Guk1, Def1, Gpm1, and Pgk1 – and subjected 
GFP-fusions of these proteins20 to a photobleaching analysis (Methods). We compare with a unified data set from 
19 separate biochemical experiments26, involving either mass spectrometry, GFP-tagging and microscopy, or 
TAP-tagging with immunoblotting.

For all proteins, there is an agreement within an order of magnitude between the two approaches (Fig. 3) 
showing that the measurement noise is not prohibitively large, at least for yeast.

Discussion
A challenge in quantitative fluorescence microscopy is converting measurements of fluorescence to absolute 
units. Absolute units enable the pooling of data from different laboratories and are needed both for models to fit 
single-cell data4 and to validate the values of fitted parameters27. As such, absolute units facilitate the long-term 
success of systems and synthetic biology28,29.

We have presented a fluctuation analysis to estimate numbers of fluorescent proteins by deliberately pho-
tobleaching cells on a wide-field fluorescence microscope. The method provides a straightforward calibration for 
time-lapse imaging.

Although our estimate is within an order of magnitude of the numbers estimated using biochemical methods, 
it is often an underestimate (Fig. 3). This behaviour is consistent with a sufficiently large measurement noise 
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(Eq. 11). Nevertheless, underestimation is countered by the estimate of Var[Yt] in Eq. 6. Using smoothing to 
find E[Yt] and so Var[Yt] as a function of time from a single time series can underestimate Var[Yt] because the 
smoothed data – the estimate of E[Yt] – will follow a sufficiently large fluctuation whereas the true mean will not. 
A too small Var[Yt] overestimates the numbers of molecules. In practice, the measurement noise appears suffi-
ciently high to disrupt large fluctuations so that our estimates of E[Yt] do approximate the true mean, but not too 
high to undermine using Eq. 6.

We might expect an underestimation too because not all tagged proteins fluoresce. Considering the extreme 
case of a (long) maturation time of the fluorescent protein of 45 minutes and that its degradation is caused by 
growth with a (short) doubling time of 100 minutes30, then we expect the fluorescence at steady-state to be at least 

+ .1/45/(1/45 1/100) 0 7 of the total amount of protein. This fraction is, however, large enough that the order 
of magnitude of our estimate is unchanged and lies within the expected error (width of the blue distributions in 
Fig. 3).

It is surprising that more principled methods, such as Bayesian inference, work poorly (Methods). Although 
a single exponential decay does not describe photobleaching in yeast (Fig. 2), we know neither how many expo-
nential decays do nor even if exponential decay itself is correct. Further, both the brightness and time scales asso-
ciated with any exponentials may be the same for all cells in the population or specific to each cell. Compounding 
the uncertainty in the model of bleaching, there is no consensus on a model for the measurement noise for fluo-
rescence microscopes, which has been described as normal10, log-normal4, and with a variance that is a function 
of fluorescence31 (and Methods).

Measurements both in single cells and in absolute numbers are necessary to bring discoveries from different 
laboratories into one predictive framework. Our method of calibrating fluorescence measurements will help ena-
ble such a quantitative, single-cell biology.

Methods
Selecting proteins to study. When selecting proteins to test, we looked at three whole-proteome datasets 
of absolute numbers of protein obtained by quantitative Western blot32, mass spectrometry33, and fluorescence 
microscopy34. Proteins were selected that appeared in all three data sets. To obtain proteins whose levels would 
be robust to any stresses from our fixing procedure, we used a protein localisation atlas35 to select cytoplasmic 
proteins that showed no significant fold change under starvation and dithiothreitol- and peroxide-induced stress. 

Figure 3. A photobleaching analysis identifies numbers of molecules in agreement with biochemical 
measurements. We show the distribution comprising the estimates of x0 for all pairs of y0 and yt for >t 0 in blue 
and the distribution of results from 19 biochemical experiments in orange. The numbers of molecules range 
from approximately 103 (Fus3) to 106 (Pgk1). For all proteins, the mode of the two distributions are within an 
order of magnitude. Each cell was imaged 45 times in 10 s intervals, and the numbers of cells are as follows: 355 
for Fus3; 114 for Hog1; 239 for Def1; 310 for Guk1; 242 for Gpm1; and 311 for Pgk1.
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From these proteins, we selected four giving a broad range of levels: Def1, Guk1, Gpm1, and Pgk1. To these 
proteins we added Hog1 because of its regular study in our laboratory36 and Fus3 because of the availability of a 
measurement by fluorescence correlation spectroscopy (FCS)37. Taking a cytoplasmic concentration of 180 nM 
for Saccharomyces cerevisiae cells and a three times higher concentration for the nucleus37 along with cellular and 
nuclear volumes of 42 μl and 3 μl30, we estimate 5,200 molecules of Fus3 per cell from this FCS data.

During the course of our work, however, a comprehensive collection of whole-proteome data sets was pub-
lished26, and this data is the data we use for comparison. Our estimate for Fus3 from the FCS data is within the 
range of values reported in this data set.

Cell preparation. Cells from the open-reading-frame GFP collection20 were grown overnight in YEPD (2%) 
media past the diauxic lag, and 0.5 ml of this culture diluted in 5 ml of fresh media. After 5 hours and at an OD of 
0.5, the cells were fixed38.

Microscopy and image analysis. All experiments were performed on a Nikon Eclipse Ti inverted 
microscope, controlled with the Perfect Focus System and custom MATLAB scripts (Mathworks) written for 
Micromanager39. We used a 60X 1.2 NA water immersion objective (Nikon), and images were acquired using 
an Evolve camera (Photometrics) with a 512 × 512 sensor in CCD mode. Cells were adhered to slides using con-
canavalin A.

To photobleach, the GFP excitation LED was kept at full power for the duration of the experiment with cells 
imaged for fluorescence for 400 ms every 10 s. We repeated this procedure for multiple, isolated fields of view and 
for wild-type cells, which do not express GFP.

Given that we imaged fixed cells, cells were selected and segmented at the first time point from a bright-field 
image and whole-image registration used to propagate this outline to other times. Cells in the bright-field image 
were chosen by eye to be isolated, well focused, present for the whole experiment (i.e. not washed away), and in 
a region where the illumination intensity (taken from the flat field correction) was at least 80% of the median 
illumination. Selected cells were outlined based on the out-of-focus bright-field image using custom MATLAB 
scripts, and these outlines curated by hand.

Cell fluorescence was calculated as the sum of the values of the brightest 80% of the pixels within the cell 
boundary. This measure reduced the effect of movements of the stage. We discarded cells that displayed large 
systematic deviations (such as a sudden drop in fluorescence).

Correcting for flat field and background. Fluorescence images were corrected for both flat field and background. 
We obtained a flat-field image by flowing 0.001% fluorescein (by mass) through a microfluidic device40 and imag-
ing multiple positions over a time course. Any microfluidic features were ‘blotted out’ of the images, and the mod-
ified images averaged and normalised to a median of one. A correction was applied to the fluorescence images 
through an element-wise division by the flat field. To remove any background particular to a slide, we subtracted 
the average pixel fluorescence for a region of the image containing no cells from each pixel value. Fluorescence 
images were also registered to correct for drift in the field of view.

Correcting for autofluorescence. Cells were also corrected for autofluorescence. We corrected bleached wild-type 
cells for flat field and background, and their average value was subtracted from all fluorescent cells at each time 
point.

Inference fails assuming mono-exponential decay. Analysing the data using a previously proposed 
estimator14 and following the procedure of Kim et al.17, we find that numbers of proteins are underestimated by 
several orders of magnitude (the maximum number of molecules over all six proteins is approximately 150). This 
failure is because that method both uses a poor approximation to the mean behaviour of the photobleaching of 
individual cells (the means in our data are not well described by exponential decay with one time scale) and its 
sensitivity to the quality of the fit even when the photobleaching is a decay process with a single time scale.

A maximimum likelihood estimator for x0. If there is negligible measurement noise, the data comprises 
y0, μ=YE[ ] y, and YVar[ ] y

2σ= , and the likelihood of x0 is μ σ |P y x( , , )y y0
2

0 , which we denote , then we can write 
explicit expressions.

Using the rules of probability, and writing e t
 = λ−  for a particular λ and t,

 ∫

∫

∫

ν μ σ μ σ ν μ σ

ν μ σ

ν μ σ μ σ ν μ σ
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Assuming P( ) is uniform between 0 and 1, we can write
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d d d d y x

x P
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following Eqs 2 and 3.
We use the identity

a x x a( ) 1
(16)

δ ν
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δ
ν
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to evaluate the integrals.
First, we perform the integral over μx using the first delta function in μx
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where we have brought x y/0 0
2 into and y

2σ  out of the delta function.
For a uniform prior for ν (so that P y x( / )0 0  is constant), the likelihood, Eq. 20, is maximized when

x
y( )

(21)

y y

y
0

0
2

μ μ

σ
=

−

which is Eq. 6.

estimating e[Yt]. We smooth each cell’s time series, yt, to estimate its mean, YE[ ]t . To perform the smooth-
ing, we use a Gaussian process with a covariance given by a squared exponential function – 

θ θ′ = − − ′k x x x x( , ) exp[ ( ) /2]0 1
2  – and determine the hyperparameters for each cell by maximizing the marginal 

likelihood25. These hyperparameters are bounded a priori: θ< <10 103
0

14, θ< <−10 18
1 , and θ2, which controls 

the magnitude of the estimated measurement noise, being restricted to θ< <10 102
10. We use an implementa-

tion in Python41.
Using simulated data and normally distributed measurement noise, we find that there is an optimum range 

for the magnitude of the measurement noise. If measurement noise is too low, the estimated mean follows fluc-
tuations in the data and at times is closer to the data than the true mean. Therefore Var[Yt] in Eq. 6 is too small, 
and the estimate of x0 is too large. If measurement noise is too high, the estimated mean can sometimes be further 
from and sometimes closer to the data than the true mean, but the estimator in any case then underestimates 
(Eq. 9). For intermediate magnitudes of the measurement noise, Eq. 6 is accurate, and the measurement noise 
prevents fluctuations being long-lived and so corrects for bias in the estimate of E[Yt] and Var[Yt].

The estimator can perform poorly if the time scales of bleaching are shorter than the the duration of the 
experiment. Then, all the molecules are bleached at late times, and the resulting noisy data can undermine the 
estimate of E[Yt]. The low numbers of molecules also mean that the linear noise approximation and Eqs 2 and 3 
are potentially no longer valid.

Inference with an explicit model of bleaching and measurement noise. In general, given data 
y yY { , , }t t1= … , we wish to infer θ θ θ= { , }m e , where θm are the parameters for the biophysical model of the 

dynamics of the underlying numbers of proteins, x, and θe are the parameters for the distribution of the measure-
ment noise. The y variables are related to the x variables only through this measurement noise.
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The dynamics of the protein numbers, x, are determined by chemical reactions and can be described by a 
master equation for P tx( , ), the probability distribution of the state x at time t19. We use the linear noise approxi-
mation (first-order terms in an expansion of the master equation in the size of the system – the volume of a cell19). 
This approximation makes P tx( , ) a normal distribution if the initial distribution is either a normal or a delta 
function.

If we let the stochiometric matrix be S and the hazards (propensities) be h and noting that x describes num-
bers of molecules not concentrations, then

μ Σ= P t t tx x( , ) ( ; ( ), ( )) (22)

where   denotes a normal distribution and μ(t), its mean, and t( )Σ , its covariance matrix, obey24

μ μ=
d
dt

tS h( , ) (23)
T

and

Σ Σ Σ= + +
d
dt

J J S HS (24)
T T

with J as the Jacobian:

∑ μ=
∂

∂
J

x
S h t( , )

(25)
ij

j k
ik k

and H as a matrix of zeros with th( , )μ  on the diagonal.
We let the biophysical model have two decay processes (Fig. 2). For each cell, indexed by j, there are two pools 

of fluorescence proteins, x j1,  and x j2, , which bleach at constant, but cell-dependent, rates, λ j1,  and λ j2, :

x x (26)j j1, 2,
j j1, 2,
∅ ∅

λ λ
⟶ ⟶

Equations 23 and 24 then give

μ = λ−x e (27)i j i j
t

, ,
(0) i j,

and

Σ = Σ + −

Σ = Σ

λ λ λ

λ λ

− − −

− +

xe e (1 e )

e (28)

ii j ii j
t t t

i j

j j
t

, ,
(0) 2

,
(0)

12, 12,
(0) ( )

i j i j i j

j j

, , ,

1, 2,

where initial values have superscripts of zero.
We use a measurement noise that depends on the numbers of fluorescence proteins giving a standard devia-

tion that scales with the mean. If y t( )j  is the measured fluorescence then

 ν

σ ν σ ν σ

∼ + +

+ + + +

y t y t x t x t f

x t x t x t x t

( ) ( ( ); [ ( ) ( )] ,

[ ( ) ( )] [ ( ) ( )] ) (29)

j j j j j

e j j e j j e

1, 2,

,0
2

1, 2, ,1
2 2

1, 2,
2

,2
2

for constant e i,σ  and any residual autofluorescence fj. This model does not have the positive skewness of log-normal 
noise and has support for negative fluorescence values, which we observe after correcting images for background 
fluorescence.

Linear noise and sequential data – a Kalman filter. We wish to infer θ given Yt. Bayes’s rule states:

P P PY Y( ) ( ) ( ) (30)t tθ θ θ| ∝ |

or, by using the rules of probability to factorize the likelihood,

∏θ θ θ| ∝ | .
=

−P P P yY Y( ) ( ) ( , )
(31)t

i

t

i i
1

1

We sequentially find each term in Eq. 31 by considering the dynamics of x from one time point to the next and 
then correcting that dynamics given the observed data24. Assume that at time point i 1−  the distribution 
P x Y( , )i i1 1 θ|− −  is normal with a known mean i 1

⁎μ −  and covariance matrix i 1Σ −
⁎ :

P x Y x( , ) ( ; , ) (32)i i i i i1 1 1 1 1
⁎ ⁎θ μ Σ| = .− − − − −

Using the linear noise approximation for the dynamics of x, we can, with Eq. 32 providing the initial condi-
tion, integrate Eqs 23 and 24 over one time interval to time point i to find μi and Σi and that
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θ μ Σ| = .−P x Y x( , ) ( ; , ) (33)i i i i i1 

We next wish to extend the conditioning in Eq. 33 to include the data point, yi, at time point i. To do so, note 
that

P P y
P y P

P y
P y P

x Y x Y
x Y x Y

Y
x x Y

( , ) ( , , )
( , , ) ( , )

( , )
( , ) ( , ) (34)

i i i i i

i i i i i

i i

i i i i

1

1 1

1

1

θ θ

θ θ

θ

θ θ

| = |

=
| |

|

∝ | |

−

− −

−

−

using Bayes’s rule, conditioning on −Yi 1 and θ, and assuming that the measurement noise only depends on the 
current value of x. If the measurement noise too has a normal distribution

P y yx Ux V( , ) ( ; , ) (35)θ| = 

with U being a constant projection matrix and V being a covariance matrix, then we can simplify Eq. 34 using the 
properties of normal distributions. We find that P x Y( , )i i θ|  is also normal with a mean μi

⁎ and a covariance Σi
⁎ 

that satisfy24

yU U U V U

U U U V U

( ) ( )

( ) ( ) (36)
i i i

T
i

T
i i

i i i
T

i
T

i

1

1

μ μ μΣ Σ

Σ Σ Σ Σ Σ

= + + −

= + + − .

−

−

⁎

⁎

The predictions of μi and Σi found from μ −i 1
⁎  and ⁎Σ −i 1 using the linear noise approximation are corrected to 

iμ ⁎ and ⁎
iΣ  because of the new data point and the measurement noise.

The factors in Eq. 31, P y Y( , )i i 1 θ| −  obey

∫θ θ θ| = | |− −P y d P y PY x x x Y( , ) ( , ) ( , ) (37)i i i i i i i1 1

and are therefore the normalizing factors for Eq. 34, satisfying

P y yY U U U V( , ) ( ; , ) (38)i i i i i
T

1 µ Σ| θ = + .− 

Hence from a normal prior distribution for x1, θ|P x( )1 , we use Eq. 38 to find θ|P y( )1 , the first term in the fac-
torization of the likelihood (Eq. 31) and Eq. 36 to find P yx( , )1 1 θ| , the starting normal distribution in Eq. 32 for the 
sequential inference.

To specialize the algorithm to photobleaching, the matrices in Eq. 35 are ν ν=U [ ] and σ=V e
2, a constant. 

We subtract the autofluorescence, fj, from each data point before applying the Kalman filter. The Kalman update, 
Eq. 36, can result in unphysical, negative components of μ, which we set to zero.

We must specify a prior P x( )m1 θ|  to begin the inference scheme. To do so, we introduce two parameters: x0, 
which is the total amount of fluorescent protein at t 0= , and α, which is the partitioning of this fluorescent pro-
tein between the two pools. We infer both these parameters. For the Kalman filter, we require that P x( )m1 θ|  be a 
normal distribution, but we wish to start x1 at a known value and so use

μ α
α= 


− 


Σ = 






.

⁎ ⁎x 1 and 0 0
0 0 (39)1 0 1

so that the normal distribution approximates a delta function.

Extending to state-dependent measurement noise. The variance of the measurement noise of Eq. 29 
depends on x, but our inference scheme assumes a constant variance (Eq. 35). We therefore approximate Eq. 29 
by replacing the explicit dependence of the variance on x by its expected value given −Yj 1:



σ σ σ

σ σ σ

σ μ σ μ μ σΣ

| ∼ + + +

+ + +

= + + + +

| −







y y x f

y f

y f

x U Ux Ux

Ux Ux Ux

Ux U U U

( ; , ( ) )

( ; , E [ ( ) ])

( ; , ( ) ) (40)

j j j j j e j e j e

j j j e j e j e

j j j e j e j j j e

x Y

,0
2

,1
2

,2
2

,0
2

,1
2

,2
2

,0
2

,1
2 T T

,2
2

j j 1

The usual update in the Kalman filter, Eq. 36, can then be used.

Sampling the posterior probability. To sample from P Y( )tθ|  in Eq. 30 we use both optimization and a 
Markov chain Monte Carlo method.

We distinguish between heterogenous parameters, which are specific to each cell (λ1, λ2, f, x0 and α), and 
homogeneous parameters, which have the same values for all cells (the σe,i and ν). The homogenous parameters 
and x0 have scale-free priors: for example, P( ) 1/ν ν= . The heterogenous parameters other than x0 have flat pri-
ors. All priors are proper and bounded to physical values. To ensure the expected behaviour is dependent only on 
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the heterogeneous parameters and to improve the mixing of the Markov chain, we propose the combination νx0, 
referred to as y0, rather than x0.

To generate samples from the posterior, we use a Metropolis-within-Gibbs scheme42 with the heterogeneous 
parameters updated separately from the homogeneous parameters. We employ adaptive parallel tempering to 
accelerate mixing in the Gibbs sampler43, which performs well on benchmark biochemical models44. Specifically, 
we use 10 chains with their temperatures chosen adaptively. Parameters are proposed independently, with λ1, λ2, 
f and α proposed from normal distributions and y0, the ei

σ , and ν proposed from log-normal distributions. We 
adaptively select the scales for the proposal distributions for the heterogeneous and homogeneous parameters.

To start the Monte Carlo method, we try to find parameters that maximize the likelihood θ|P Y( )t . We use a 
nested optimisation scheme45:

 1. We find starting values for the heterogeneous parameters by fitting a bi-exponential decay to each cell’s 
time series.

 2. All parameters, including the heterogenous parameters, are then fitted for each cell, independently of all 
other cells, using a particle swarm.

 3. We create an initial parameter set for the homogenous parameters by taking the median of the homogene-
ous parameters from the individual fits of Step 2.

 4. We perform iterative optimisation: first optimising the homogeneous parameters with the heterogeneous 
parameters fixed then vice versa until a maximum is reached. Each individual optimisation uses Matlab’s 
fmincon.

 5. To provide diverse starting points for the chains, half of our chains are initialised at the parameter values 
found in Step 4 and the other half are initialised from optima found by performing the iterative optimisa-
tion of Step 4 from random parameters rather than from those found in Step 3.

Estimating the expected numbers of proteins. Given a sample of parameters from the posterior distri-
bution P Y( )θ| , and a fluorescence measurement y, we would like to find the posterior distribution of the number 
of proteins, x:

P x y d P x y P y P yY Y( , ) ( , ) ( , ) ( ) (41)∫ θ θ θ| = | | .

Figure 4. Inference with two heterogeneous decay processes and measurement noise systematically 
underestimates the numbers of molecules. We show the distribution of protein numbers estimated from the 
data and our inference of ν in blue and the distribution of results from 19 biochemical experiments in orange.
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We assume that the measurement y does not change the posterior probability of θ (because there is substan-
tially more data in Y): P y PY Y( , ) ( )θ θ| | . Ignoring P(y), which is independent of x, we have

∫ θ θ θ| ∝ | | .P x y d P x y PY Y( , ) ( , ) ( ) (42)

By Bayes’s rule

P x y P y x P x
P y x

( , ) ( , ) ( )
( , ) (43)

θ θ
θ

| ∝ |
∝ |

assuming a constant prior, P(x). We approximate νx by y in Eq. 29 so that

θ σ σ σ

ν
σ σ σ

ν

| ∝ + + +

=





− + + 




∼P x y y y f y y

x y f y y
( , ) ( ; , ( ) )

; ,
( )

(44)

e e e

e e e

,0
2

,1
2

,2
2

,0
2

,1
2

,2
2

2





normalizing over x and using the properties of normal distributions. We use Eq. 44 to evaluate Eq. 42 as an aver-
age over the Monte Carlo samples generated from θ|P Y( ) on a grid of x values.

To extent these results to measurements of fluorescence over a population of cells where we are interested in 
the distribution of = ∑x x N/i , we can use that the distribution of a sum of independent normal variables is also 
normal with a mean equal to the sum of the means of the variables in the sum and with a variance equal to the 
sum of the variances19. Equation 44 then becomes

P x x y f y y
N

x y

y, )( ( ; , )

( )
(45)

e e e,0
2

,1
2 2

,2
2

2¯ ¯ ¯ ¯

¯ ¯


θ
ν

σ σ σ

ν

δ
ν

| =
− + +

−



if σ N/e i,
2  and f y/  are sufficiently small. Using a kernel density representation for |P x y Y( , ), with kernel 

K x x x x( , ) log ( ; , )K σ′ = ′  and σ = −10K
2 2, we can write that

P x dx K x x P x

d dx K x x x y P

d K x y P
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′ ′


 ′ −



 |

=






 |

using Eqs 42 and 45. We evaluate the integral in Eq. 46 using the Monte Carlo samples of P Y( )ν| .

Combining estimates from different experimental replicates. Writing    = …{ } { , }N1 2  as the 
set of data from all replicates, we wish to sample from θ|P( { }). We note that the datasets are conditionally inde-
pendent given θ so that

∏

∏

θ θ θ

θ
θ

θ
θ

θ

| ∝ |

∝
|

= ∏ |
.−

P P P

P P
P
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N
i

i i
N 1

 





We approximate the θ|P( )i  in Eq. 47 with kernel density estimates. If θ θ…{ , }i i M,1 ,  is the set of parameter 
samples from the posterior P( )iθ|  obtained from our Monte Carlo method, then

P
M

K( )
1 ( , )

(48)
i

j

M

i j
1

, ∑θ θ θ|
=

where the kernel functions are isotropic log normal distributions with variance σK
2 as before. In principle, these 

kernel density estimates allow Eq. 47 to be evaluated at any θ; in practice, we use a Metropolis algorithm to sample 
θ to overcome the dimensionality of the parameter space.

Results
Our results give a lower bound on the number of molecules (Fig. 4). Note that here we ignore the first five time 
points of each time series because these points can have unexpectedly large fluctuations.
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Modelling measurement noise. To determine the importance of the different contributions to Eq. 29, we 
used an informative log-normal prior for the parameter ν with its mode equal to the median of the value of ν 
estimated from the biochemical data on numbers and its empirical standard deviation equal to half of their inter-
quartile range. Repeating the inference with this prior, we find that 19 2ν = .  (interquartile range: 19.0 to 19.5), 

136 6e ,0σ = .  (interquartile range: 135.1 to 138.5), σ = .1 31e ,1  (interquartile range: 1.29 to 1.32), and 0 0027e ,2σ = .  
(interquartile range: 0.0027 to 0.0028).

These results imply that the term proportional to the number of molecules in the variance of the measurement 
noise dominates the constant term. For all the proteins studied, the linear term (proportional to e ,1σ  in Eq. 29) is 
at least an order of magnitude larger that the constant term (σe ,0), and the quadratic term (proportional to σe ,2) 
dominates for proteins with high numbers (Gpm1 and Pgk1).

Data availability
Data generated in this work is available at https://doi.org/10.7488/ds/2594.
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