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where we include a basal rate and, to make things simpler, assume that a second protein A

quickly binds the promoter once one binds, giving the denominator a term proportional to
protein A

2 as well as no term proportional to A — compare with Eq. 3.35. There is positive
feedback because more protein A increase the rate of transcription causing more protein A to
be synthesised. For translation, we again have Eq. 3.8,
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= vM � dAA. (5.27)

If the reactions controlling levels of mRNA are much faster than those controlling levels of
protein, we then approximate Eq. 5.26 as being at quasi-steady state: dM/dt = 0. Solving for
M , Eq. 5.27 then becomes
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Simplifying through re-scaling: To proceed, we will use re-scaling to reduce the number
of parameters. There are two natural scales in the system — a time scale set by 1/dA and a
concentration scale set by KA. We re-scale by these two variables to generate two dimensionless
ones, t̃ = dAt and Ã = A/KA. Dividing Eq. 5.28 by KA and by dA, we can write
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Reducing the number of parameters by rescaling

Rescale times by a time in the model and concentrations by a concentration in the model to give dimensionless 
units:
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If the reactions controlling levels of mRNA are much faster than those controlling levels of
protein, we then approximate Eq. 5.26 as being at quasi-steady state: dM/dt = 0. Solving for
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Simplifying through re-scaling: To proceed, we will use re-scaling to reduce the number
of parameters. There are two natural scales in the system — a time scale set by 1/dA and a
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� Ã. (5.31)

Comparing Eq. 5.31 and Eq. 5.28, the rescaling has decreased the number of parameters from
six to two.

Negative feedback: To include negative feedback on gene A, we will let protein A activate
gene B, and protein B repress gene A. No longer explicitly writing the tildes, but time is still in
units of 1/dA and concentration in units of KA, we can write [19]
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There are two simplifying assumptions. First, the binding sites of A and B are su�ciently far
apart on the promoter of gene A that the two proteins do not interact: the equivalent of Ki in
Eq. 3.38 is one so that the denominator factorises. Second, the rate of transcription of gene B
is simply proportional to A: we model transcription just as in Eq. 3.23, but impose A ⌧ K1.

Bistability for fixed B: Fixing B at a particular concentration is equivalent to changing the
value of ↵ in Eq. 5.32. At steady state, dA/dt = 0 and so

↵̃(b + A
2) = A(1 + A

2) (5.33)

where
↵̃ =

↵h
1 +

�
B
K

�2
i . (5.34)

Rearranging Eq. 5.33 gives
A

3
� ↵̃A

2 + A � ↵̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

x
n + an�1x

n�1 + an�2x
n�2 + · · · + a1x + a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of signs in the polynomial’s coe�cients moving from left to right [20]. Further, if there are N

changes of sign, the number of positive routes is either N or N � 2 or N � 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).

53

<latexit sha1_base64="SuaWzCWS9xE0ql1N/J/ChjexAdA="></latexit>

b =
ubasal

umax

<latexit sha1_base64="1ekbIX1ltq8mopQ8cr+iplLYTsI="></latexit>

↵ =
umaxv

dAdMKA

with

Two parameters instead of six!



Including both positive and negative feedback

built from negative feedback alone [17].

5.6.1 Understanding a dual feedback oscillator

To understand better the mechanics of a dual feedback oscillator, consider a two-gene exam-
ple: gene A is positively auto-regulated and activates a second gene B whose protein product
represses gene A’s transcription [19]. The auto-regulation generates positive feedback on gene
A’s expression; the repression through B generates negative feedback.

A

B

Positive feedback: Consider first the positive feedback. From Sec. 3.4, an equation describing
the transcription of gene A is

dM

dt
=

ubasal + umax
A2

K2
2

1 + A2

K2
A

� dMM (5.26)

where we include a basal rate and, to make things simpler, assume that a second protein A

quickly binds the promoter once one binds, giving the denominator a term proportional to
protein A

2 as well as no term proportional to A — compare with Eq. 3.35. There is positive
feedback because more protein A increase the rate of transcription causing more protein A to
be synthesised. For translation, we again have Eq. 3.8,

dA

dt
= vM � dAA. (5.27)

If the reactions controlling levels of mRNA are much faster than those controlling levels of
protein, we then approximate Eq. 5.26 as being at quasi-steady state: dM/dt = 0. Solving for
M , Eq. 5.27 then becomes

dA

dt
=

v

dM

2

4
ubasal + umax

A2

K2
A

1 + A2

K2
A

3

5 � dAA. (5.28)

Simplifying through re-scaling: To proceed, we will use re-scaling to reduce the number
of parameters. There are two natural scales in the system — a time scale set by 1/dA and a
concentration scale set by KA. We re-scale by these two variables to generate two dimensionless
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For a constant B, the positive feedback can generate bistability
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is simply proportional to A: we model transcription just as in Eq. 3.23, but impose A ⌧ K1.

Bistability for fixed B: Fixing B at a particular concentration is equivalent to changing the
value of ↵ in Eq. 5.32. At steady state, dA/dt = 0 and so

↵̃(b + A
2) = A(1 + A

2) (5.33)

where
↵̃ =

↵h
1 +

�
B
K

�2
i . (5.34)

Rearranging Eq. 5.33 gives
A

3
� ↵̃A

2 + A � ↵̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

x
n + an�1x

n�1 + an�2x
n�2 + · · · + a1x + a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of signs in the polynomial’s coe�cients moving from left to right [20]. Further, if there are N

changes of sign, the number of positive routes is either N or N � 2 or N � 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).
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Finally we will define ↵ = vumax
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Comparing Eq. 5.31 and Eq. 5.28, the rescaling has decreased the number of parameters from
six to two.

Negative feedback: To include negative feedback on gene A, we will let protein A activate
gene B, and protein B repress gene A. No longer explicitly writing the tildes, but time is still in
units of 1/dA and concentration in units of KA, we can write [19]

dA

dt
=

↵ [b + A
2]h

1 +
�

B
K

�2
i
[1 + A2]

� A

dB

dt
= A � dBB.

(5.32)

There are two simplifying assumptions. First, the binding sites of A and B are su�ciently far
apart on the promoter of gene A that the two proteins do not interact: the equivalent of Ki in
Eq. 3.38 is one so that the denominator factorises. Second, the rate of transcription of gene B
is simply proportional to A: we model transcription just as in Eq. 3.23, but impose A ⌧ K1.

Bistability for fixed B: Fixing B at a particular concentration is equivalent to changing the
value of ↵ in Eq. 5.32. At steady state, dA/dt = 0 and so

↵̃(b + A
2) = A(1 + A

2) (5.33)

where
↵̃ =

↵h
1 +

�
B
K

�2
i . (5.34)

Rearranging Eq. 5.33 gives
A

3
� ↵̃A

2 + A � ↵̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

x
n + an�1x

n�1 + an�2x
n�2 + · · · + a1x + a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of signs in the polynomial’s coe�cients moving from left to right [20]. Further, if there are N

changes of sign, the number of positive routes is either N or N � 2 or N � 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).
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Figure 14: For intermediate, fixed values of B, the positive feedback generates two stable steady-state

solutions for A. By changing B, we change ↵̃ and so the solutions of Eq. 5.35. Here ↵ = 50, b = 0.01,

K = 0.02, dB = 0.01, and  = 0.8dB.

A limit cycle when B is not fixed: How B causes oscillations by de-stabilising A is easiest
to understand when levels of B change slowly compared to levels of A [19]. Let dB ⌧ 1 in
Eq. 5.32 and let , which determines the time scale of B’s synthesis, be of the same size as dB:
 = O(dB). For example,  = 0.8dB in Fig. 14. Then B responds slowly to changes in A, which
moves quickly in comparison.

To generate oscillations in an anticlockwise direction around the bistable solutions in Fig. 14,
we wish B to destabilise A when A is at the lower limit of the left branch in Fig. 14. A will
then jump to the right branch. Similarly, B should also destabilise A when A reaches the upper
limit of the right branch so that A jumps back to the left one.

When A is at the left branch’s lower limit, the magnitude of the system’s negative feedback
should therefore be decreasing so that A’s rate of synthesis grows, favouring A moving to the
right branch with its higher levels of A. To have decreasing negative feedback, levels of B should
be falling so that there is less repression. Therefore we require dB/dt < 0 when A is at the left
branch’s lower limit.

When A is at the right branch’s upper limit, the system’s negative feedback should be
increasing so that A’s rate of synthesis diminishes, favouring A moving to the left branch with
its lower levels of A. Therefore we require dB/dt > 0 when A is at the right branch’s upper
limit so that levels of B are rising, generating more repression.

One way to impose these two conditions is to have the nullcline of B, when dB/dt = 0, pass
between the two bistable solutions (Fig. 15A). So, to the nullcline’s left, for smaller A, dB/dt < 0
from Eq. 5.32, and, to the nullcline’s right, for larger A, dB/dt > 0, as we require. The negative
feedback then destabilises the steady-state solutions, generating oscillations (Fig. 15A). If the
nullcline intercepts the bistable solutions, however, oscillations are lost (Fig. 15B).

When A is near the former low steady states, the system moves slowly. There positive feed-
back is weak, and A’s synthesis rate is only slowly increasing as B slowly decreases. Eventually
there is insu�cient B to repress gene A, and levels of A quickly increase through positive feed-
back with A spiking and moving near the former high steady states. The now slowly increasing
B and the high degradation rate of A quickly decrease levels of A. When levels are low enough
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dÃ

dt̃
=

v

dAdMKA

"
ubasal + umaxÃ
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Finally we will define ↵ = vumax
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and b = ubasal/umax giving
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Comparing Eq. 5.31 and Eq. 5.28, the rescaling has decreased the number of parameters from
six to two.

Negative feedback: To include negative feedback on gene A, we will let protein A activate
gene B, and protein B repress gene A. No longer explicitly writing the tildes, but time is still in
units of 1/dA and concentration in units of KA, we can write [19]

dA

dt
=

↵ [b + A
2]h

1 +
�

B
K

�2
i
[1 + A2]

� A

dB

dt
= A � dBB.

(5.32)

There are two simplifying assumptions. First, the binding sites of A and B are su�ciently far
apart on the promoter of gene A that the two proteins do not interact: the equivalent of Ki in
Eq. 3.38 is one so that the denominator factorises. Second, the rate of transcription of gene B
is simply proportional to A: we model transcription just as in Eq. 3.23, but impose A ⌧ K1.

Bistability for fixed B: Fixing B at a particular concentration is equivalent to changing the
value of ↵ in Eq. 5.32. At steady state, dA/dt = 0 and so

↵̃(b + A
2) = A(1 + A

2) (5.33)

where
↵̃ =

↵h
1 +

�
B
K

�2
i . (5.34)

Rearranging Eq. 5.33 gives
A

3
� ↵̃A

2 + A � ↵̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

x
n + an�1x

n�1 + an�2x
n�2 + · · · + a1x + a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of signs in the polynomial’s coe�cients moving from left to right [20]. Further, if there are N

changes of sign, the number of positive routes is either N or N � 2 or N � 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).
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Figure 14: For intermediate, fixed values of B, the positive feedback generates two stable steady-state

solutions for A. By changing B, we change ↵̃ and so the solutions of Eq. 5.35. Here ↵ = 50, b = 0.01,

K = 0.02, dB = 0.01, and  = 0.8dB.

A limit cycle when B is not fixed: How B causes oscillations by de-stabilising A is easiest
to understand when levels of B change slowly compared to levels of A [19]. Let dB ⌧ 1 in
Eq. 5.32 and let , which determines the time scale of B’s synthesis, be of the same size as dB:
 = O(dB). For example,  = 0.8dB in Fig. 14. Then B responds slowly to changes in A, which
moves quickly in comparison.

To generate oscillations in an anticlockwise direction around the bistable solutions in Fig. 14,
we wish B to destabilise A when A is at the lower limit of the left branch in Fig. 14. A will
then jump to the right branch. Similarly, B should also destabilise A when A reaches the upper
limit of the right branch so that A jumps back to the left one.

When A is at the left branch’s lower limit, the magnitude of the system’s negative feedback
should therefore be decreasing so that A’s rate of synthesis grows, favouring A moving to the
right branch with its higher levels of A. To have decreasing negative feedback, levels of B should
be falling so that there is less repression. Therefore we require dB/dt < 0 when A is at the left
branch’s lower limit.

When A is at the right branch’s upper limit, the system’s negative feedback should be
increasing so that A’s rate of synthesis diminishes, favouring A moving to the left branch with
its lower levels of A. Therefore we require dB/dt > 0 when A is at the right branch’s upper
limit so that levels of B are rising, generating more repression.

One way to impose these two conditions is to have the nullcline of B, when dB/dt = 0, pass
between the two bistable solutions (Fig. 15A). So, to the nullcline’s left, for smaller A, dB/dt < 0
from Eq. 5.32, and, to the nullcline’s right, for larger A, dB/dt > 0, as we require. The negative
feedback then destabilises the steady-state solutions, generating oscillations (Fig. 15A). If the
nullcline intercepts the bistable solutions, however, oscillations are lost (Fig. 15B).

When A is near the former low steady states, the system moves slowly. There positive feed-
back is weak, and A’s synthesis rate is only slowly increasing as B slowly decreases. Eventually
there is insu�cient B to repress gene A, and levels of A quickly increase through positive feed-
back with A spiking and moving near the former high steady states. The now slowly increasing
B and the high degradation rate of A quickly decrease levels of A. When levels are low enough
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Comparing Eq. 5.31 and Eq. 5.28, the rescaling has decreased the number of parameters from
six to two.

Negative feedback: To include negative feedback on gene A, we will let protein A activate
gene B, and protein B repress gene A. No longer explicitly writing the tildes, but time is still in
units of 1/dA and concentration in units of KA, we can write [19]

dA

dt
=

↵ [b + A
2]h

1 +
�
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K

�2
i
[1 + A2]

� A

dB

dt
= A � dBB.

(5.32)

There are two simplifying assumptions. First, the binding sites of A and B are su�ciently far
apart on the promoter of gene A that the two proteins do not interact: the equivalent of Ki in
Eq. 3.38 is one so that the denominator factorises. Second, the rate of transcription of gene B
is simply proportional to A: we model transcription just as in Eq. 3.23, but impose A ⌧ K1.

Bistability for fixed B: Fixing B at a particular concentration is equivalent to changing the
value of ↵ in Eq. 5.32. At steady state, dA/dt = 0 and so

↵̃(b + A
2) = A(1 + A

2) (5.33)

where
↵̃ =

↵h
1 +

�
B
K

�2
i . (5.34)

Rearranging Eq. 5.33 gives
A

3
� ↵̃A

2 + A � ↵̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

x
n + an�1x

n�1 + an�2x
n�2 + · · · + a1x + a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of signs in the polynomial’s coe�cients moving from left to right [20]. Further, if there are N

changes of sign, the number of positive routes is either N or N � 2 or N � 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).
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to weaken the positive feedback and B is su�ciently high to repress gene A, A moves quickly
back to near the low steady states. The positive feedback is then again weak and the negative
feedback is strong because of the high levels of B. Levels of A change slowly once more.
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Figure 15: The negative feedback generates oscillations by destabilising the steady states. Here ↵ = 50,

b = 0.01, K = 0.02, and dB = 0.01, as before. A When  = 0.8dB, the nullcline of B passes between the

branches of stable steady states that exist when B is fixed. The negative feedback therefore encourages

A to jump from the left to the right branch when A and B are small and from the right to the left

branch when A and B are large. The systems oscillates. The inset shows the limit cycle generated by

the simulated time series in blue: with dB ⌧ 1, the oscillations are around the former steady states

generated by the positive feedback. B When  = 5dB, the nullcline of B does not pass between the

two branches. At the lower limit of the left branch, when A and B are both small, B is increasing and

so too is the magnitude of the negative feedback. A’s rate of synthesis is therefore falling, favouring A
remaining near the former steady state with its low values of A. There are no oscillations.

We can understand too some of the properties of the oscillations [19]. The di↵erence in time
scales describing A and B’s dynamics imposed by dB ⌧ 1, or if we remove the re-scaling by
dB ⌧ dA, generates relation oscillations. Levels of B change slowly, but levels of A spike when
A quickly moves from near the former low steady states to near the former high steady states.
The slow dynamics of B means that B principally determines the period, which increases as the
time scale associated with B increases — when dB decreases. The positive feedback determines
the amplitude of the oscillations through the values of A at the former steady states: the size of
the spikes in A is proportional to the distance between these steady states.
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dÃ

dt̃
=

v

dAdMKA

"
ubasal + umaxÃ
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Comparing Eq. 5.31 and Eq. 5.28, the rescaling has decreased the number of parameters from
six to two.

Negative feedback: To include negative feedback on gene A, we will let protein A activate
gene B, and protein B repress gene A. No longer explicitly writing the tildes, but time is still in
units of 1/dA and concentration in units of KA, we can write [19]
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(5.32)

There are two simplifying assumptions. First, the binding sites of A and B are su�ciently far
apart on the promoter of gene A that the two proteins do not interact: the equivalent of Ki in
Eq. 3.38 is one so that the denominator factorises. Second, the rate of transcription of gene B
is simply proportional to A: we model transcription just as in Eq. 3.23, but impose A ⌧ K1.

Bistability for fixed B: Fixing B at a particular concentration is equivalent to changing the
value of ↵ in Eq. 5.32. At steady state, dA/dt = 0 and so

↵̃(b + A
2) = A(1 + A

2) (5.33)

where
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↵h
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i . (5.34)

Rearranging Eq. 5.33 gives
A

3
� ↵̃A

2 + A � ↵̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

x
n + an�1x

n�1 + an�2x
n�2 + · · · + a1x + a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of signs in the polynomial’s coe�cients moving from left to right [20]. Further, if there are N

changes of sign, the number of positive routes is either N or N � 2 or N � 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).
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With a slowly varying B, there is a limit cycle.

to weaken the positive feedback and B is su�ciently high to repress gene A, A moves quickly
back to near the low steady states. The positive feedback is then again weak and the negative
feedback is strong because of the high levels of B. Levels of A change slowly once more.
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Figure 15: The negative feedback generates oscillations by destabilising the steady states. Here ↵ = 50,

b = 0.01, K = 0.02, and dB = 0.01, as before. A When  = 0.8dB, the nullcline of B passes between the

branches of stable steady states that exist when B is fixed. The negative feedback therefore encourages

A to jump from the left to the right branch when A and B are small and from the right to the left

branch when A and B are large. The systems oscillates. The inset shows the limit cycle generated by

the simulated time series in blue: with dB ⌧ 1, the oscillations are around the former steady states

generated by the positive feedback. B When  = 5dB, the nullcline of B does not pass between the

two branches. At the lower limit of the left branch, when A and B are both small, B is increasing and

so too is the magnitude of the negative feedback. A’s rate of synthesis is therefore falling, favouring A
remaining near the former steady state with its low values of A. There are no oscillations.

We can understand too some of the properties of the oscillations [19]. The di↵erence in time
scales describing A and B’s dynamics imposed by dB ⌧ 1, or if we remove the re-scaling by
dB ⌧ dA, generates relation oscillations. Levels of B change slowly, but levels of A spike when
A quickly moves from near the former low steady states to near the former high steady states.
The slow dynamics of B means that B principally determines the period, which increases as the
time scale associated with B increases — when dB decreases. The positive feedback determines
the amplitude of the oscillations through the values of A at the former steady states: the size of
the spikes in A is proportional to the distance between these steady states.
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Relaxation oscillations:  
Near the former low steady states, 
B’s slower lifetime drives the 
dynamics;  
near the former high steady states, 
A’s faster lifetime drives the 
dynamics.

to weaken the positive feedback and B is su�ciently high to repress gene A, A moves quickly
back to near the low steady states. The positive feedback is then again weak and the negative
feedback is strong because of the high levels of B. Levels of A change slowly once more.
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Figure 15: The negative feedback generates oscillations by destabilising the steady states. Here ↵ = 50,

b = 0.01, K = 0.02, and dB = 0.01, as before. A When  = 0.8dB, the nullcline of B passes between the

branches of stable steady states that exist when B is fixed. The negative feedback therefore encourages

A to jump from the left to the right branch when A and B are small and from the right to the left

branch when A and B are large. The systems oscillates. The inset shows the limit cycle generated by

the simulated time series in blue: with dB ⌧ 1, the oscillations are around the former steady states

generated by the positive feedback. B When  = 5dB, the nullcline of B does not pass between the

two branches. At the lower limit of the left branch, when A and B are both small, B is increasing and

so too is the magnitude of the negative feedback. A’s rate of synthesis is therefore falling, favouring A
remaining near the former steady state with its low values of A. There are no oscillations.

We can understand too some of the properties of the oscillations [19]. The di↵erence in time
scales describing A and B’s dynamics imposed by dB ⌧ 1, or if we remove the re-scaling by
dB ⌧ dA, generates relation oscillations. Levels of B change slowly, but levels of A spike when
A quickly moves from near the former low steady states to near the former high steady states.
The slow dynamics of B means that B principally determines the period, which increases as the
time scale associated with B increases — when dB decreases. The positive feedback determines
the amplitude of the oscillations through the values of A at the former steady states: the size of
the spikes in A is proportional to the distance between these steady states.
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When B does not destabilise, the attractor is a steady state.

to weaken the positive feedback and B is su�ciently high to repress gene A, A moves quickly
back to near the low steady states. The positive feedback is then again weak and the negative
feedback is strong because of the high levels of B. Levels of A change slowly once more.
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Figure 15: The negative feedback generates oscillations by destabilising the steady states. Here ↵ = 50,

b = 0.01, K = 0.02, and dB = 0.01, as before. A When  = 0.8dB, the nullcline of B passes between the

branches of stable steady states that exist when B is fixed. The negative feedback therefore encourages

A to jump from the left to the right branch when A and B are small and from the right to the left

branch when A and B are large. The systems oscillates. The inset shows the limit cycle generated by

the simulated time series in blue: with dB ⌧ 1, the oscillations are around the former steady states

generated by the positive feedback. B When  = 5dB, the nullcline of B does not pass between the

two branches. At the lower limit of the left branch, when A and B are both small, B is increasing and

so too is the magnitude of the negative feedback. A’s rate of synthesis is therefore falling, favouring A
remaining near the former steady state with its low values of A. There are no oscillations.

We can understand too some of the properties of the oscillations [19]. The di↵erence in time
scales describing A and B’s dynamics imposed by dB ⌧ 1, or if we remove the re-scaling by
dB ⌧ dA, generates relation oscillations. Levels of B change slowly, but levels of A spike when
A quickly moves from near the former low steady states to near the former high steady states.
The slow dynamics of B means that B principally determines the period, which increases as the
time scale associated with B increases — when dB decreases. The positive feedback determines
the amplitude of the oscillations through the values of A at the former steady states: the size of
the spikes in A is proportional to the distance between these steady states.
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to weaken the positive feedback and B is su�ciently high to repress gene A, A moves quickly
back to near the low steady states. The positive feedback is then again weak and the negative
feedback is strong because of the high levels of B. Levels of A change slowly once more.
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dB
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> 0

Figure 15: The negative feedback generates oscillations by destabilising the steady states. Here ↵ = 50,

b = 0.01, K = 0.02, and dB = 0.01, as before. A When  = 0.8dB, the nullcline of B passes between the

branches of stable steady states that exist when B is fixed. The negative feedback therefore encourages

A to jump from the left to the right branch when A and B are small and from the right to the left

branch when A and B are large. The systems oscillates. The inset shows the limit cycle generated by

the simulated time series in blue: with dB ⌧ 1, the oscillations are around the former steady states

generated by the positive feedback. B When  = 5dB, the nullcline of B does not pass between the

two branches. At the lower limit of the left branch, when A and B are both small, B is increasing and

so too is the magnitude of the negative feedback. A’s rate of synthesis is therefore falling, favouring A
remaining near the former steady state with its low values of A. There are no oscillations.

We can understand too some of the properties of the oscillations [19]. The di↵erence in time
scales describing A and B’s dynamics imposed by dB ⌧ 1, or if we remove the re-scaling by
dB ⌧ dA, generates relation oscillations. Levels of B change slowly, but levels of A spike when
A quickly moves from near the former low steady states to near the former high steady states.
The slow dynamics of B means that B principally determines the period, which increases as the
time scale associated with B increases — when dB decreases. The positive feedback determines
the amplitude of the oscillations through the values of A at the former steady states: the size of
the spikes in A is proportional to the distance between these steady states.
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Stochastic gene expression



All chemical reactions are affected by thermal fluctuations and so 
are stochastic

1. Reactants diffuse to find each other in solution 

Both events are randomly affected by thermal fluctuations – collisions with other 
molecules.

2. They must overcome the energy barrier of the reaction

A  +  B C

If the numbers of molecules are sufficiently large, then the mean number of 
molecules, or more correctly the mode, approximately obeys the appropriate 
chemical rate equations.



noise =
standard deviation

mean

How should we quantify stochasticity?

time  (sec)
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Noise is often defined as the coefficient of variation – the typical size of a 
fluctuation relative to the mean:



Stochasticity is more substantial at low numbers. Why?

time  (sec) time  (sec)
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mean 40 mean 10,000

noise = 0.16 noise = 0.01



As a reaction changes the number of molecules by one or 
two, it is only when numbers are small that stochasticity – the 
random timing of individual reactions – matters.  

Why is stochasticity only substantial when typical numbers of 
molecules are low?



Stochasticity can be exploited: persister cells enable a population 
to be both invasive and tolerant to drugs

probability of 
being a 

persister is less 
than 10-5 

for E. coli

Lewis, Nat Rev Microbiol 2007



Stochasticity affects the reliability of biochemical networks by 
affecting timing and is therefore regulated away                                    

e.g. biological rhythms

deterministic stochastic

Elowitz & Leibler, Nature 2000 
Barkai & Leibler, Nature 2000



Stochasticity is generated during gene 
expression: translation can occur in bursts



perimentally measured this abundance to be
4.1 T 1.8 molecules per cell by counting the
molecules in È300 individual cells under the
microscope at the same time.

Lastly, the temporal spread of the expres-
sion bursts can be characterized from the auto-
correlation function of the fluctuation in protein
expression, C(2)(t) (Fig. 4C), averaged from 30
different cell lineages from 15 different movies.
The single exponential fit of C(2)(t) gives a decay
time constant of 7.0 T 2.5 min, corresponding to
the average spread of the stochastic arrival times
of fluorescent reporter proteins within a burst,
despite the fact that the polypeptides are gen-
erated within the short lifetime of an mRNA
(tmRNA 0 1.5 min). We show (SOM Text) that,
under the condition that there is one rate-limiting
step for the posttranslation assembly of the fusion
protein,

Cð2ÞðtÞ 0
!

sr
1 j r

"2#
1 þ k

s
expðjktÞ

$

ð2Þ

where s is the average rate of the expression burst
and k is the rate constant of Tsr-Venus assembly
process, consisting of transcription, translation,
folding, and chromophore maturation. The fitting
of Fig. 4C with Eq. 2 gives s 0 (29 T 8 min)j1,
in agreement with the average number of expres-
sion bursts per cell cycle of 1.2 T 0.3 (Fig. 4A);
r 0 0.7 T 0.1, consistent with the value of 0.8 T
0.1 determined from Fig. 4B; and 1/k 0 7.0 T
2.5 min, corresponding to the rate-limiting step
of the protein assembly process. Considering the
fast transcription (È45 bases/s) and translation
(È15 residues/s) rates, we tentatively assign 1/k
to the fluorophore maturation process (SOM
Text). Although we can only spatially resolve a
few molecules within an E. coli cell because
of the diffraction limit, the long spread of the
stochastic arrival times of Venus allows many
more protein molecules per expression burst to
be counted in several consecutive images.
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Fig. 4. Statistical analyses of the protein production time traces. (A) His-
togram (gray bars) of the number of expression events per cell cycle. The
data fit well to a Poisson distribution (solid line) with an average of 1.2
gene expression burst per cell cycle. (B) Distribution of the number of flu-
orescent protein molecules detected in each gene expression burst, which
follows a geometric distribution (solid line), giving a probability of ribosome

binding of 0.81 T 0.05 and an average number of molecules per burst of
4.2. (C) Autocorrelation function of the protein production time traces cal-
culated according to Eq. S9. The result is averaged from 30 individual cell
lineages because of the insufficient statistics of a single time trace. The
fitting to Eq. 2 (solid line) gives 1/k 0 7.0 T 2.5 min, which is attributed to
posttranslational assembly of the fluorescent fusion protein.

Fig. 3. Real-time monitoring of the expression of tsr-venus under the control of repressed lac promoter.
(A) Sequence of fluorescent images (yellow) overlaid with simultaneous DIC images (gray) of E. coli cells
expressing Tsr-Venus on agarose gel pad of M9 medium. The cell cycle is 55 T 10 min in a temperature-
controlled chamber on a microscope stage. The eight frames are from time-lapse fluorescence movie S1
taken over 195 min with 100-ms laser exposures (0.3 kW/cm2) every 3 min. An 1100-ms exposure is
applied after each image collection to photobleach the Venus fluorophores. (B) Time traces of the
expression of Tsr-Venus protein molecules (left) along three particular cell lineages (right) extracted from
the time-lapse fluorescence-DIC movie of (A). The time resolution is 3 min. The vertical axis is the number
of protein molecules newly synthesized during the last three minutes. The dotted lines mark the cell
division times. The time traces show that protein production occurs in random bursts, within which
variable numbers of protein molecules are generated. Each gene expression burst lasts È3 to 15 min.
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Probing Gene Expression in Live Cells,
One Protein Molecule at a Time
Ji Yu,1* Jie Xiao,1* Xiaojia Ren,1 Kaiqin Lao,2 X. Sunney Xie1†

We directly observed real-time production of single protein molecules in individual Escherichia
coli cells. A fusion protein of a fast-maturing yellow fluorescent protein (YFP) and a membrane-
targeting peptide was expressed under a repressed condition. The membrane-localized YFP can be
detected with single-molecule sensitivity. We found that the protein molecules are produced in
bursts, with each burst originating from a stochastically transcribed single messenger RNA
molecule, and that protein copy numbers in the bursts follow a geometric distribution. The
quantitative study of low-level gene expression demonstrates the potential of single-molecule
experiments in elucidating the workings of fundamental biological processes in living cells.

T
he central dogma of molecular biology
states that DNA is transcribed into mRNA,
which is then translated into protein. Ever

since the pioneering work on the lac operon (1),
our knowledge of gene expression has come
primarily from genetic and biochemical studies
(2–4) conducted with large populations of cells
and molecules. Recently, many in vitro single-
molecule experiments have probed real-time
dynamics and yielded valuable mechanistic
insights into macromolecules (5–8), including
transcriptional (9) and translational (10) ma-
chineries. In order to understand the workings
of these machineries in their physiological con-
texts, we set out to probe gene expression at the
single-molecule level by real-time monitoring of
protein production in live cells.

Gene expression is often stochastic (11–14),
because most genes exist at single or low copy
numbers in a cell. Some genes are expressed at
high levels and others at low levels. The mRNA
expression can now be tracked in a single cell
with single-molecule sensitivity (15, 16). The pro-
tein expression has been traditionally character-
ized by averages of cell populations, in which
stochasticity is masked. More information is
available from both the distribution of expres-
sion levels among a cell population (17–19)
and the temporal evolution of a single cell by
using fluorescent reporters (20). However, these
studies have been restricted to high expression
levels because of the low sensitivity for protein
detection, yet many important proteins are
produced at small copy numbers (21, 22). Here,
we demonstrate probing protein expression in
individual Escherichia coli cells under the control
of a repressed lac promotor, one molecule at a
time (23).

The most popular reporters for monitoring
gene expression in live cells are green fluores-
cent protein (GFP) and its derivatives, such as
yellow fluorescent protein (YFP) (24–26). We
use a YFP variant, Venus, as the reporter be-

cause of its short maturation time (27). How-
ever, it is difficult to image a single GFP or YFP
molecule in cytoplasm, because its fluorescence
signal spreads to the entire cytoplasm by fast
diffusion during the image acquisition time and
is overwhelmed by cellular autofluorescence.
On the other hand, single YFP fusion protein
molecules on cell membranes can be detected
(28, 29) because their diffusion is slowed. There-
fore, we designed a fusion protein consisting of
Venus and a membrane protein, Tsr, as the re-
porter for monitoring lac promoter activity. A
well-studied methylation-dependent chemotax-
is receptor protein (MCP) (30), Tsr contains
two transmembrane domains and is fused to
the N terminus of Venus.

We constructed an E. coli strain SX4 in
which a single copy of the chimeric gene tsr-
venus was incorporated into the E. coli chro-
mosome, replacing the native lacZ gene. The
endogenous tsr gene of E. coli was left intact.

Because the tsr gene is highly expressed (30), a
small amount of exogenous Tsr-Venus poses
minimal perturbation to cells_ normal functions.
Western assay of induced SX4 cells showed the
presence of Venus only in the membrane fraction
and not in the cytoplasmic fraction, suggesting
efficient membrane localization of Tsr-Venus.
We also compared the levels of induced expres-
sion of Tsr-Venus and Venus in two strains, both
under the control of the lac promoter ESupporting
Online Material (SOM) Text and fig. S1^. No
notable difference was observed, indicating that
the introduction of the tsr sequence does not
change the yield of Venus production, which is
not the case for many other membrane-targeting
sequences that we tested.

We first show the ability to detect single
Tsr-Venus fluorescent protein molecules ex-
pressed in SX4 cells (Fig. 1). Figure 1A shows
two diffraction-limited fluorescent spots Efull
width at half maximum (FWHM) È 300 nm^ in
the left cell. A line cross section of the fluores-
cence image along the cells_ long axes shows
the signal distinctly above the cells_ autofluo-
rescence background (Fig. 1C). We attribute each
fluorescent peak to an individual Tsr-Venus mol-
ecule on the basis of abrupt disappearance of the
signal upon photobleaching, which is charac-
teristic of single molecules. Figure 1D shows
such a photobleaching time trace. Had the signal
arisen from multiple molecules, its disappearance
would be in multiple steps. In addition, the fluo-
rescence intensity of each peak is consistent with
in vitro measurements of purified single Venus
molecules (fig. S2).

A sketch of our live-cell experiment is shown
in Fig. 2. Upon an infrequent and spontaneous

1Department of Chemistry and Chemical Biology, Harvard
University, Cambridge, MA 02138, USA. 2Applied Bio-
systems, Foster City, CA 94404, USA.

*These authors contributed equally to this work.
†To whom correspondence should be addressed. E-mail:
xie@chemistry.harvard.edu

Fig. 1. Single-molecule detection of a fluorescent fusion protein, Tsr-Venus, in live E. coli cells. (A)
Fluorescence and (B) DIC images of two E. coli cells (strain SX4) expressing Tsr-Venus. Two single
fusion protein molecules were detected as diffraction-limited fluorescent spots (FWHM at È300 nm)
in the left cell. The fluorescence image is taken with 514-nm laser excitation and a 100-ms exposure
time at 0.3 kW/cm2. (C) Line cross section of the fluorescence signal along long axes of the two E. coli
cells. a.u., arbitrary units. (D) Fluorescence time trace of a single Tsr-Venus molecule in an E. coli cell,
showing abrupt photobleaching (40-ms exposure at 0.5 kW/cm2).
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perimentally measured this abundance to be
4.1 T 1.8 molecules per cell by counting the
molecules in È300 individual cells under the
microscope at the same time.

Lastly, the temporal spread of the expres-
sion bursts can be characterized from the auto-
correlation function of the fluctuation in protein
expression, C(2)(t) (Fig. 4C), averaged from 30
different cell lineages from 15 different movies.
The single exponential fit of C(2)(t) gives a decay
time constant of 7.0 T 2.5 min, corresponding to
the average spread of the stochastic arrival times
of fluorescent reporter proteins within a burst,
despite the fact that the polypeptides are gen-
erated within the short lifetime of an mRNA
(tmRNA 0 1.5 min). We show (SOM Text) that,
under the condition that there is one rate-limiting
step for the posttranslation assembly of the fusion
protein,

Cð2ÞðtÞ 0
!

sr
1 j r

"2#
1 þ k

s
expðjktÞ

$

ð2Þ

where s is the average rate of the expression burst
and k is the rate constant of Tsr-Venus assembly
process, consisting of transcription, translation,
folding, and chromophore maturation. The fitting
of Fig. 4C with Eq. 2 gives s 0 (29 T 8 min)j1,
in agreement with the average number of expres-
sion bursts per cell cycle of 1.2 T 0.3 (Fig. 4A);
r 0 0.7 T 0.1, consistent with the value of 0.8 T
0.1 determined from Fig. 4B; and 1/k 0 7.0 T
2.5 min, corresponding to the rate-limiting step
of the protein assembly process. Considering the
fast transcription (È45 bases/s) and translation
(È15 residues/s) rates, we tentatively assign 1/k
to the fluorophore maturation process (SOM
Text). Although we can only spatially resolve a
few molecules within an E. coli cell because
of the diffraction limit, the long spread of the
stochastic arrival times of Venus allows many
more protein molecules per expression burst to
be counted in several consecutive images.
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Fig. 4. Statistical analyses of the protein production time traces. (A) His-
togram (gray bars) of the number of expression events per cell cycle. The
data fit well to a Poisson distribution (solid line) with an average of 1.2
gene expression burst per cell cycle. (B) Distribution of the number of flu-
orescent protein molecules detected in each gene expression burst, which
follows a geometric distribution (solid line), giving a probability of ribosome

binding of 0.81 T 0.05 and an average number of molecules per burst of
4.2. (C) Autocorrelation function of the protein production time traces cal-
culated according to Eq. S9. The result is averaged from 30 individual cell
lineages because of the insufficient statistics of a single time trace. The
fitting to Eq. 2 (solid line) gives 1/k 0 7.0 T 2.5 min, which is attributed to
posttranslational assembly of the fluorescent fusion protein.

Fig. 3. Real-time monitoring of the expression of tsr-venus under the control of repressed lac promoter.
(A) Sequence of fluorescent images (yellow) overlaid with simultaneous DIC images (gray) of E. coli cells
expressing Tsr-Venus on agarose gel pad of M9 medium. The cell cycle is 55 T 10 min in a temperature-
controlled chamber on a microscope stage. The eight frames are from time-lapse fluorescence movie S1
taken over 195 min with 100-ms laser exposures (0.3 kW/cm2) every 3 min. An 1100-ms exposure is
applied after each image collection to photobleach the Venus fluorophores. (B) Time traces of the
expression of Tsr-Venus protein molecules (left) along three particular cell lineages (right) extracted from
the time-lapse fluorescence-DIC movie of (A). The time resolution is 3 min. The vertical axis is the number
of protein molecules newly synthesized during the last three minutes. The dotted lines mark the cell
division times. The time traces show that protein production occurs in random bursts, within which
variable numbers of protein molecules are generated. Each gene expression burst lasts È3 to 15 min.
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Following expression of a fluorescent membrane protein in bacteria over time.

Occasionally, one mRNA is 
transcribed. Bursts of 

translated  
protein.



Yu et al., Science (2006) 



Transcription can also occur in bursts



Red: protein
Green spots: mRNA

scale bar: 1 μm



Time course of mRNA numbers: mRNA is produced in bursts

time (min)

mRNA
mRNA of  
sister cell

piecewise 
linear fit

smoothed version of red 
data



The most common model of gene expression has both bursts 
in transcription and translation

d1

mRNA Protein

d0

v0 v1

+

k0

k1

Inactive
promoter

Active
promoter

Kaern et al., Nat Rev Genetics 2005



To perform stochastic simulations, we typically use the 
Gillespie, or stochastic simulation, algorithm

Step 1: choose which reaction will occur 

Step 2: choose when that reaction will occur



δt

a1δt = k δt

t + δt

Pi(t)δt = P0(t)aiδt

a2δt = dA δt

P0(t + �t) = P0(t)
�
1� (a1 + a2)�t

⇥

Example: an elementary model of gene expression

probability of a reaction in time

probability of no reaction

hence

probability of a reaction i at time

A

A

Gillespie, J Phys Chem 1977

propensity of reaction 1

propensity of reaction 2
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P0 ∼ 2−(a1+a2)t


