Understanding a dual feedback oscillator
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Modelling positive feedback: auto-regulation of protein A on gene A
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Reducing the number of parameters by rescaling

Rescale times by a time in the model and concentrations by a concentration in the model to give dimensionless

units:
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Two parameters instead of six!




Including both positive and negative feedback
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For a constant B, the positive feedback can generate bistability

At steady state
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A bifurcation diagram
not a phase-plane plot.



The negative feedback via B should destabilise the system to
generate oscillations.

B should encourage A to move between the two branches of steady states
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If B's nullcline is between the two branches of steady states, B is destabilising

Krishna, Semsey, Jensen 2009
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With a slowly varying B, there is a limit cycle.

/" Relaxation oscillations:
/ Near the former low steady states,
1
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When B does not destabilise, the attractor is a steady state.
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Stochastic gene expression



All chemical reactions are affected by thermal fluctuations and so
are stochastic

A+B —C

1. Reactants diffuse to find each other in solution

2. They must overcome the energy barrier of the reaction

Both events are randomly affected by thermal fluctuations — collisions with other
molecules.

If the numbers of molecules are sufficiently large, then the mean number of
molecules, or more correctly the mode, approximately obeys the appropriate
chemical rate equations.



How should we quantify stochasticity?
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Noise is often defined as the coefficient of variation — the typical size of a
fluctuation relative to the mean:

, standard deviation
noise =

mean
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Stochasticity is more substantial at low numbers. Why?
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Why is stochasticity only substantial when typical numbers of
molecules are low?

As a reaction changes the number of molecules by one or
two, it is only when numbers are small that stochasticity — the
random timing of individual reactions — matters.




Stochasticity can be exploited: persister cells enable a population
to be both invasive and tolerant to drugs
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Stochasticity affects the reliability of biochemical networks by
affecting timing and is therefore regulated away

e.g. biological rhythms
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Stochasticity is generated during gene
expression: translation can occur in bursts



Probing Gene Expression in Live Cells,
One Protein Molecule at a Time

Ji Yu,** Jie Xiao,** Xiaojia Ren, Kaiqgin Lao,? X. Sunney Xie't

Following expression of a fluorescent membrane protein in bacteria over time.
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Yu et al., Science (2006)



Transcription can also occur in bursts



Real-Time Kinetics of Gene Activity
In Individual Bacteria

Ido Golding,"* Johan Paulsson,?® Scott M. Zawilski,' and Edward C. Cox'"*
Cell 123, 1025-1036, December 16, 2005
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Time course of MRNA numbers: mRNA is produced in bursts
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The most common model of gene expression has both bursts
in transcription and translation
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To perform stochastic simulations, we typically use the
Gillespie, or stochastic simulation, algorithm

Step 1: choose which reaction will occur

Step 2: choose when that reaction will occur




Example: an elementary model of gene expression

i1: %k A

2 ALy

probability of a reaction in time 0t
a1 6t = k’ 5t propensity of reaction |
a,2 5‘1‘; p— dA 5t propensity of reaction 2

probability of no reaction
Po(t +6t) = Po(t) |1 = (a1 +02)0t| hence Py ~ e=(rtoe)t
probability of a reaction i at time t + 0t

Pi(t)&f = Po(t)CLi5t

Gillespie, J Phys Chem 1977



