Overview

Modelling biochemical reactions

Modelling gene expression

Positive feedback and bistability

Negative feedback and oscillations

I will use a signalling pathway as an example throughout

Modelling biochemical reactions

There are two fundamental types of reactions

The association rate is determined by two times:

time of reaction =
$$t_{\rm diff} + t_{\rm reac}$$

and so

$$\tilde{f} = (t_{\text{diff}} + t_{\text{reac}})^{-1}$$

The dissociation rate is determined by the lifetime of a molecule of C:

$$\tilde{b} = \frac{\log(2)}{\text{lifetime of } C}$$

Rate equations describe how number of molecules change with time

How do the numbers of molecules of, say, species C change with time?

Or

$$rac{N_C(t+dt)-N_C(t)}{dt}= ilde{f}N_AN_B- ilde{b}N_C$$
 and so

$$\frac{dN_C}{dt} = \tilde{f}N_A N_B - \tilde{b}N_C$$

Another example

$$\begin{array}{c}
A + B \stackrel{\tilde{f}}{\rightleftharpoons} C \\
\downarrow b \downarrow k \\
D + E \stackrel{\tilde{g}}{\rightleftharpoons} F
\end{array}$$

We now have

$$\frac{dN_C}{dt} = \tilde{f}N_A N_B - \tilde{b}N_C - kN_C$$

Each reaction that affects C has a corresponding term in the equation.

There is one positive term for the reaction that increases N_C and a negative term for each reaction that decreases N_C .

Interpreting the rates of first-order reactions

 $N \xrightarrow{k} M$

the half life is the time taken for the number of molecules to halve

How does k relate to the half-life of N?

The rate equation is

$$rac{dN}{dt} = -kN$$
 which implies $N = N_0 \, \mathrm{e}^{-kt}$ or $N = N_0 \, 2^{-\frac{kt}{\log 2}}$

$$e^{a} = \left(e^{\log 2}\right)^{\frac{a}{\log 2}}$$
$$= 2^{\frac{a}{\log 2}}$$

At the half-life, the number of molecules becomes $N_0/2$

$$N_0 2^{-1} = N_0 2^{-kt_{\frac{1}{2}}/\log 2}$$

so that

$$1 = \frac{kt_{\frac{1}{2}}}{\log 2} \qquad \text{or} \qquad k = \frac{\log 2}{t_{\frac{1}{2}}}$$

Defining concentrations

The molar concentration of C is defined as

$$[C] = \frac{N_C}{n_A V}$$

molar units are moles per litre

where N_C is the number of molecules of C, n_A is Avogadro's number, and V is the volume of the cell in litres.

$$n_A \simeq 6.02 \times 10^{23}$$
 1 mole

Note that
$$1\ell = 10^{-3} \text{m}^3$$

The rate equation for concentrations

Before we had

$$\frac{dN_C}{dt} = \tilde{f}N_A N_B - \tilde{b}N_C$$

If we divide this equation by n_AV

$$\frac{d}{dt} \cdot \frac{N_C}{n_A V} = \tilde{f} \frac{N_A}{n_a V} \cdot \frac{N_B}{n_a V} n_a V - \tilde{b} \frac{N_C}{n_A V}$$

and so using the definition of concentration

$$\frac{d[C]}{dt} = \tilde{f}n_A V[A][B] - \tilde{b}[C]$$

 $[C] = \frac{N_C}{n_A V}$

Defining macroscopic rates

$$f = \tilde{f} n_A V$$
$$b = \tilde{b}$$

then

$$\frac{d[C]}{dt} = f[A][B] - b[C]$$

Mesoscopic rates govern numbers of molecules, macroscopic rates govern concentrations

For associations, the *mesoscopic* rate depends on the cell's volume – in larger volumes, it takes longer for two molecules to associate – but the *macroscopic* rate does not

the volume terms cancel
$$b=\tilde{b}$$

For disassociations, the mesoscopic and macroscopic rates are the same – they are determined by the lifetime of molecules.

The difference between mesoscopic and macroscopic rates is important for running stochastic stimulations.

Dimerisation is the only tricky example

association rate: $f[T]^2$ disassociation rate: $b[T_2]$

An association reaction removes two molecules of T, a dissociation reaction creates two molecules of T

$$\frac{d[T]}{dt} = -2f[T]^2 + 2b[T_2]$$

An association reaction creates *one* molecule of T_2 , a dissociation reaction creates *one* molecule of T_2

$$\frac{d[T_2]}{dt} = f[T]^2 - b[T_2]$$

Molecules are conserved during dimerisation

An example

time | 10 0 0 | 1 | 6 | 2 | 8 | 1

each line shows the number of molecules after one reaction occurs

We have

$$\frac{d[T]}{dt} = -2f[T]^2 + 2b[T_2]$$

$$\frac{d[T_2]}{dt} = f[T]^2 - b[T_2]$$

and so

$$\frac{d[T]}{dt} + 2\frac{d[T_2]}{dt} = 0$$

implying

$$[T] + 2[T_2] = \text{constant}$$

the constant is determined by the initial numbers of monomers and dimers

Association reactions are limited by diffusion

$$f = \frac{n_A V}{t_{\text{diff}} + t_{\text{reac}}} < \frac{n_A V}{t_{\text{diff}}}$$

$$f = \tilde{f} n_A V$$

The fastest association reaction is one where the two molecules react the instant they come together and so is determined only by diffusion

and for molar concentrations

$$f ext{ (in M)} < f_{\text{max}} \times n_a \times 10^3$$

1 mole volume in litres

Association reactions have rates less than approximately 109 M⁻¹ s⁻¹

$$f ext{ (in M)} < f_{\text{max}} \times n_a \times 10^3$$

$$f_{\text{max}} = 4\pi Da$$

Assuming D is 1000 μ m² s⁻¹ (100 times faster than the typical diffusion of proteins)

$$f < 4\pi \times 10^{3} \times 10^{-12} \times 10^{-9} \times 6 \times 10^{23} \times 10^{3}$$

$$\simeq 7.5 \times 10^{9} \,\mathrm{M}^{-1} \mathrm{s}^{-1}.$$

What is the lowest possible concentration in a bacterium?

The concentration of 1 molecule is

$$\frac{1}{n_A V}$$

and the volume of a bacterium is 1µm³

$$\frac{1}{6\times10^{23}\times10^{-18}\times10^{3}}\simeq\frac{1}{10^{9}}$$
 Avogado volume litres

The lowest possible concentration is 1 nM

Steady state and equilibrium

A system is at *steady-state* when concentrations do not change with time – they are fixed, or steady

At steady-state

$$\frac{d[A]}{dt} = 0$$

We will often study systems at steady-state because their behaviour is then simpler.

Equilibrium is a special steady state where detailed balance holds

A system is in *detailed balance* if the rate of every forward reaction balances the rate of every backward reaction.

Consider

$$A + B \rightleftharpoons C$$

$$b_1 \rightleftharpoons C$$

$$\frac{d[C]}{dt} = f_1[A][B] - b_1[C] + f_2[D][E] - b_2[C]$$

$$D$$

$$+$$

$$E$$

At steady state

$$\frac{d[C]}{dt} = f_1[A][B] - b_1[C] + f_2[D][E] - b_2[C] = 0$$
$$f_1[A][B] + f_2[D][E] = b_1[C] + b_2[C]$$

At equilibrium

$$\frac{d[C]}{dt} = \overbrace{f_1[A][B] - b_1[C]}^{0} + \overbrace{f_2[D][E] - b_2[C]}^{0} = 0$$

$$f_1[A][B] = b_1[C]$$

$$f_2[D][E] = b_2[C]$$

Detailed balance means that the system is at a minimum of free energy and is in a "dead" state

We often model systems that can never equilibrate

$$\begin{array}{c}
A + B \rightleftharpoons C \\
\downarrow b_1 \downarrow k \downarrow \\
D \\
+ \\
E
\end{array}$$

we implicitly assume the free energy preventing a backward reaction, here ATP, is continually re-supplied

Now

$$\frac{d[C]}{dt} = f_1[A][B] - b_1[C] - k[C]$$

which is able to reach steady state but never equilibrium because the *k* reaction cannot be balanced.

We use detailed balance and conservations to find equilibrium concentrations

$$A + B \stackrel{f}{\rightleftharpoons} C$$

Detailed balance implies

$$f[A][B] = b[C]$$

or

$$[A][B] = K_{\text{eq}}[C].$$

$$K_{\rm eq} = rac{b}{f}$$

The rate equations are

$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -f[A][B] + b[C] = -\frac{d[C]}{dt}$$

and so we have two further equations

$$[A] + [C] = A_0$$
 $[B] + [C] = B_0$

Modelling signal transduction I.i

Signal (ligand) binding the receptor

$$[R] + [S] \stackrel{f}{\rightleftharpoons} [R^*]$$

and activated receptors activate a downstream protein A

$$[R^*] + [A] \xrightarrow{k} [R^*] + [A^*]$$

Modelling signal transduction I.ii

$$[R] + [S] \stackrel{f}{\rightleftharpoons} [R^*]$$

$$[R^*] + [A] \xrightarrow{k} [R^*] + [A^*]$$

The rate equations are

$$\frac{d[S]}{dt} = -f[R][S] + b[R^*]$$

$$\frac{d[R]}{dt} = -f[R][S] + b[R^*]$$

$$\frac{d[R^*]}{dt} = f[R][S] - b[R^*]$$

$$\frac{d[A]}{dt} = -k[A][R^*]$$

$$\frac{d[A^*]}{dt} = k[A][R^*]$$

notice that the number of receptors is conserved

$$\frac{d[R]}{dt} + \frac{d[R^*]}{dt} = 0$$

Modelling signal transduction I.iii

$$[R] + [S] \stackrel{f}{\rightleftharpoons} [R^*]$$

$$[R^*] + [A] \xrightarrow{k} [R^*] + [A^*]$$

We are interested in downstream effects – the rate of change of activated A.

Let's assume the binding of the receptor and signal is at equilibrium

$$f[R][S] \simeq b[R^*]$$

That the receptors are conserved means – for a constant R_0

$$R_0 = [R] + [R^*]$$

and so

$$[R^*] \simeq \frac{[S]R_0}{\frac{b}{f} + [S]}$$

Modelling signal transduction I.iv

$$[R] + [S] \stackrel{f}{\rightleftharpoons} [R^*]$$

$$[R^*] + [A] \xrightarrow{k} [R^*] + [A^*]$$

We are interested in downstream effects – activated A

$$\frac{d[A^*]}{dt} = k[A][R^*]$$

 $[R^*] \simeq \frac{[S]R_0}{\frac{b}{f} + [S]}$

and so

$$\frac{d[A^*]}{dt} \simeq \frac{k[S]R_0}{\frac{b}{f} + [S]}[A]$$

or

$$\frac{d[A^*]}{dt} \simeq \frac{k[S]R_0}{\frac{b}{f} + [S]} (A_0 - [A^*])$$

because the number of A molecules is also conserved