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| will use a signalling pathway as an example throughout
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Modelling biochemical reactions



There are two fundamental types of reactions
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The association rate is determined by two times:

time of reaction = tqig + treac

and so

f — (tdiff + treac)_l

The dissociation rate is determined by the lifetime of a molecule of C:
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Rate equations describe how number of molecules
change with time
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How do the numbers of molecules of, say, species C change with time?

Ne(t +dt) = No(t) + fdtNoANg — bdt Ne
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Another example
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We now have

dNo - -
d—tc = fNoNg — bNc — kN¢

Each reaction that affects C has a corresponding term in the equation.
There is one positive term for the reaction that increases N¢ and a negative term for
each reaction that decreases Nc.



Interpreting the rates of first-order reactions
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How does k relate to the half-life of N ?

The rate equation is

dN . . ) —kt
" kN N = Nye
o k which implies 0

kt

At the half-life, the number of molecules becomes Ng/2

NO 2_1 _ NO 2—kt%/log2

so that

kt1 log 2
1=—2 or k= —5
log 2 t1
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the half life is the time taken
for the number of molecules
to halve
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Defining concentrations

The molar concentration of C is defined as

NC molar units are
_ moles per litre
nAV P

¢

where Ncis the number of molecules of C, na is Avogadro’s number, and Vis the
volume of the cell in litres.

nag >~ 6.02 X 1023 1 mole

Note that 1/ = 10 3m?



The rate equation for concentrations

Before we had
N, s .
dd—tc — fN4Ng — bN¢

If we divide this equation by naV

d Ng ~N4y Np - N¢

- . — . V- bh—=
dt nasV fnaV naVn naV

and so using the definition of concentration
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Defining macroscopic rates
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Mesoscopic rates govern numbers of molecules, macroscopic rates
govern concentrations

For associations, the mesoscopic rate depends on the cell’s volume — in larger
volumes, it takes longer for two molecules to associate — but the macroscopic
rate does not

the volume
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For disassociations, the mesoscopic and macroscopic rates are the same — they
are determined by the lifetime of molecules.

The difference between
mesoscopic and macroscopic
rates is important for running

stochastic stimulations.



Dimerisation is the only tricky example

‘ association rate: f[T]2
disassociation rate: b[T5]

T—FTéTQ
b

An association reaction removes two molecules of T, a dissociation reaction
creates two molecules of T

— = = —2f[T)? + 2b[T3]

An association reaction creates one molecule of Ty, a dissociation reaction
creates one molecule of T,




Molecules are conserved during dimerisation

An example
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each line shows the number of
molecules after one reaction occurs

the constant is determined by the initial
numbers of monomers and dimers



Association reactions are limited by diffusion

nAV nAV ~
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The fastest association reaction is one where the two molecules react the
instant they come together and so is determined only by diffusion

fmax — 41 Da from solving the diffusion equation
the sum of the molecules’ typical size of a
diffusion coefficients molecule

and for molar concentrations

f(in M) < fax X Mg X 10°

I\

1 mole volume in litres



Association reactions have rates less than approximately 107 M-1 s-1

f(in M) < frax X g x 10° fmax = 47 Da

Assuming D is 1000 pm< s-1 (100 times faster than the typical diffusion of proteins)

D in m2s~ ! Na
- % N AN~ A
f<drx10° x 1072 x 1077 x 6 x 10* x 10°

~75x%x10°M s,

a for £




What is the lowest possible concentration in a bacterium?

The concentration of 1 molecule is

1

nAV

and the volume of a bacterium is Tum3

1 1

Y

6 x 1023 x 1018 x 103 — 109

f ! f

Avogado volume litres

The lowest possible concentration is|1T nM




Steady state and equilibrium



A system is at steady-state when concentrations do not change with
time — they are fixed, or steady
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At steady-state d[A] We will often study systems at
— 0 steady-state because their

dt behaviour is then simpler.



Equilibrium is a special steady state where detailed balance holds

A system is in detailed balance if the rate of every forward reaction balances
the rate of every backward reaction.

Consider f1
A+B=
b1
H\WLQ %=f1[A][B]—b1[C]+f2[DHE]—52[C]
D
i
E
At steady state
L)~ AIAIB] ~ hC] + RID)E) ~ ba[C) = 0
filA][B] + f2|D][E] = b:[C] + b2 [C]
At equilibrium 0 0
% = F1[A][B] — b1 [C] + fo[ D][E] — bo[C] = O



Detailed balance means that the system is at a minimum of free

energy and is in a “dead” state

We often model systems that can never equilibrate

A + B é C ATP
b1 Lk (
D ADP
_I_
E
Now
d|C
2~ AIAIB -~ bilc] ~ kO

we implicitly assume the free energy
preventing a backward reaction, here
ATP, is continually re-supplied

which is able to reach steady state but never equilibrium because the k reaction

cannot be balanced.



We use detailed balance and conservations to find equilibrium
concentrations

A+BLC
b
Detailed balance implies
flAIIB] = b[C]
or :
[A][B] = Ke[C] Keq = 5
The rate equations are
d[A] d[B] d[C]
dat  dt —f1AllB] +0[C] = e

and so we have two further equations

Al +[C] = Ao |B] +[C] = B



Modelling signal transduction L.i
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and activated receptors activate a downstream protein A

R+ [A] & [R'] + [A"]



Modelling signal transduction L.ii
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The rate equations are
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notice that the number of receptors is
conserved
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Modelling signal transduction L.iii

|nput/05_\A [R] + [S] % [R*]
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We are interested in downstream effects — the rate of change of activated A.

Let’s assume the binding of the receptor and signal is at equilibrium

FIR][S] = b[ R
That the receptors are conserved means — for a constant Ro

Ry = |R] + [R7]

and so




Modelling signal transduction l.iv
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We are interested in downstream effects — activated A

receptor

d|A*]

o = kAR
and so )
d[;;] N ;[i]i%w
or
d[:;*] N l;[i]gc} (A — [A"])

because the number of A
molecules is also conserved



