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3 Modelling gene expression

Gene expression is fundamental to much of biology and modelling gene expression is fundamental
to much of systems biology. If we are interested in the average behaviour of a system, then
modelling gene expression usually requires modelling the average state of occupancy of the
promoter by transcription factors and RNA polymerase. We can use equations of chemical
reactions to describe binding of proteins to the promoter and to describe transcription and
translation.

Binding of proteins to the DNA is assumed to occur faster than transcription, translation,
and the degradation of both mRNAs and proteins so that each binding reaction is at equilibrium.
We will derive expressions for the promoter occupancy from the assumption of equilibrium of
DNA-binding reactions, but identical expressions can be written down directly using ideas from
statistical mechanics [9].

3.1 Modelling constitutive expression

A constitutively expressed gene is one that is unregulated and synthesizes mRNA at a constant
rate on average. The promoter therefore has two states: it can be either unbound or bound by
RNA polymerase. If Q denotes RNA polymerase and P0 is the unoccupied promoter then
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is the binding reaction of RNA polymerase to the promoter. P
Q
0 is the complex of the promoter

bound by RNA polymerase:

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

At equilibrium,
P

Q
0 = KQQP0 (3.1)

where, for example, Q here represents the numbers of molecules of Q, which can be converted
into a concentration [Q] by dividing both sides of the equations by the volume of the cell. KQ

is an association constant.
The number of molecules of the promoter do not change with these reactions — the pro-

moter only changes state — and, assuming n molecules of promoter, we can then write down a
conservation law:

P0 + P
Q
0 = n (3.2)

Using Eq 3.1, this conservation implies that

P0 + KQQP0 = n (3.3)

and so that
P0

n
=

1

1 + KQQ
(3.4)
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which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)

3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.6)

which has solution
[A] = [A]0e

�kt (3.7)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :

[A] = [A]0 · 2
�kt
log 2 . (3.8)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound

PQ
0

u�! PQ
0 + M

and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded

M
dM��! ;

then the rate equation for the mRNA M is

dM

dt
= uP

Q
0 � dMM (3.10)

and the half-life of mRNA is log(2)/dM .
Eqs 3.1 and 3.4 imply that Eq 3.10 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.11)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.
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Only the promoter state bound by RNAP initiates transcription
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which is the fraction of promoters that are not bound by RNA polymerase or, equivalently, the
fraction of time that the promoter is free.

Transcription occurs only when RNA polymerase is bound and is modelled as

dM

dt
= uP

Q
0 � dMM (3.5)

where RNA polymerase initiates transcription with a rate u and mRNA, M , is degraded with

first-order kinetics. The half-life of mRNA is log(2)/dM because e = 2
1

log 2 . Eqs 3.1 and 3.4 imply
that Eq 3.5 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.6)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.

Translation is usually modelled as a first-order process:

M �! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins, the equation for protein
dynamics is then

dP

dt
= vM � dP P (3.7)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.7, M is a function of time and obeys Eq 3.6.

Eqns. 3.6 and 3.7 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.8)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.

The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.9)
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The rate equation for mRNA M is
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and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1
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�kt
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The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.
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Transcription occurs only when RNA polymerase Q is bound
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and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
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Translation is modelled as a first-order process3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ;

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.14)
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3.1.3 Modelling translation
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promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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P0 + P
Q
0 + P1 = n (3.14)

26

rate of 
translation

reciprocal of 
the half-life 
of protein

The rate equation for protein P is



The complete model for a constitutive promoter is then:

3 Modelling gene expression

Gene expression is fundamental to much of biology and modelling gene expression is fundamental
to much of systems biology. If we are interested in the average behaviour of a system, then
modelling gene expression usually requires modelling the average state of occupancy of the
promoter by transcription factors and RNA polymerase. We can use equations of chemical
reactions to describe binding of proteins to the promoter and to describe transcription and
translation.

Binding of proteins to the DNA is assumed to occur faster than transcription, translation,
and the degradation of both mRNAs and proteins so that each binding reaction is at equilibrium.
We will derive expressions for the promoter occupancy from the assumption of equilibrium of
DNA-binding reactions, but identical expressions can be written down directly using ideas from
statistical mechanics [9].
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rate on average. The promoter therefore has two states: it can be either unbound or bound by
RNA polymerase. If Q denotes RNA polymerase and P0 is the unoccupied promoter then
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0

is the binding reaction of RNA polymerase to the promoter. P
Q
0 is the complex of the promoter

bound by RNA polymerase:
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At equilibrium,
P

Q
0 = KQQP0 (3.1)

where, for example, Q here represents the numbers of molecules of Q, which can be converted
into a concentration [Q] by dividing both sides of the equations by the volume of the cell. KQ

is an association constant.
The number of molecules of the promoter do not change with these reactions — the pro-

moter only changes state — and, assuming n molecules of promoter, we can then write down a
conservation law:

P0 + P
Q
0 = n (3.2)

Using Eq 3.1, this conservation implies that

P0 + KQQP0 = n (3.3)

and so that
P0

n
=

1

1 + KQQ
(3.4)
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which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)

3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.6)

which has solution
[A] = [A]0e

�kt (3.7)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :

[A] = [A]0 · 2
�kt
log 2 . (3.8)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound

PQ
0

u�! PQ
0 + M

and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded

M
dM��! ;

then the rate equation for the mRNA M is

dM

dt
= uP

Q
0 � dMM (3.10)

and the half-life of mRNA is log(2)/dM .
Eqs 3.1 and 3.4 imply that Eq 3.10 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.11)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.
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3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ;

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.14)
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can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then
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Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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which is the fraction of promoters that are not bound by RNA polymerase or, equivalently, the
fraction of time that the promoter is free.

Transcription occurs only when RNA polymerase is bound and is modelled as

dM

dt
= uP

Q
0 � dMM (3.5)

where RNA polymerase initiates transcription with a rate u and mRNA, M , is degraded with

first-order kinetics. The half-life of mRNA is log(2)/dM because e = 2
1

log 2 . Eqs 3.1 and 3.4 imply
that Eq 3.5 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.6)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.

Translation is usually modelled as a first-order process:

M �! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins, the equation for protein
dynamics is then

dP

dt
= vM � dP P (3.7)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.7, M is a function of time and obeys Eq 3.6.

Eqns. 3.6 and 3.7 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.8)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.

The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.9)
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The corresponding rate equation is
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and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound
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and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded
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then the rate equation for the mRNA M is
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3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
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the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then
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for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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Modelling repression by a single repressor competing with RNA 
polymerase for the promoter
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We assume that binding of all proteins at the promoter is at equilibrium
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and that the total number of promoters is conserved 
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The higher the number of repressors, the less RNAP binds to the 
promoter

The total number of promoters is conserved 

3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ?

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.14)

26

3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ?

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.14)

26

Using Eqs 3.13, this conservation implies that

P0 + KQQP0 + KRRP0 = n (3.15)

and so that
P0 =

n

1 + KQQ + KRR
(3.16)

which is number of promoters that are free and not bound by either the repressor or RNA
polymerase. From Eq 3.13, the number of promoters that are able to transcribe – have a bound
RNA polymerase – is

P
Q
0 =

nKQQ

1 + KQQ + KRR
. (3.17)

The rate equation describing transcription is then

dM

dt
= uP

Q
0 � dMM (3.18)

or, from Eq 3.17,
dM

dt
=

nuKQQ

1 + KQQ + KRR
� dMM. (3.19)

We are able to write Eq 3.19 as

dM

dt
=

⇣
nuKQQ
1+KQQ

⌘

1 +
⇣

KR
1+KQQ

⌘
R

� dMM (3.20)

which has the form of a Hill function in the concentration of repressor if the number of free RNA
polymerases is approximately constant.

We can further write
dM

dt
= umax

"
1

1 + R
K1

#
� dMM (3.21)

where the maximum rate of transcription is umax = nuKQQ
1+KQQ and the half-maximal number of

repressors is K1 = 1+KQQ
KR

. Note that both these quantities are functions of the numbers of free
RNA polymerase, Q.

Translation can again be modelled as a first-order process:

dP

dt
= vM � dP P (3.22)

where M satisfies Eq 3.21.

3.3 Activation by a single activator

The average rate of transcription can also be a Hill function with a Hill number of one if
transcription is controlled by the binding of a single activator. We can proceed as before and
consider the binding of activator, A, to the free promoter

P0 + A ��*)�� P1
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The model for gene expression from a repressed protein is then
Using Eqs 3.13, this conservation implies that
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and so that
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where the maximum rate of transcription is umax = nuKQQ
1+KQQ and the half-maximal number of

repressors is K1 = 1+KQQ
KR

. Note that both these quantities are functions of the numbers of free
RNA polymerase, Q.

Translation can again be modelled as a first-order process:
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where M satisfies Eq 3.21.
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3.3 Activation by a single activator

The average rate of transcription can also be a Hill function with a Hill number of one if
transcription is controlled by the binding of a single activator. We can proceed as before and
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If the concentration of RNAP is constant 



Modelling activation by an activator recruiting RNA polymerase
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as well as the binding of RNA polymerase to the promoter when activator is already bound

P1 + Q ��*)�� PQ
1

and transcription only occurs from this state.
Assuming the number of promoters is conserved and that all reactions involving DNA binding

are at equilibrium, then
P1 = KAAP0 ; P

Q
1 = K

0
QQP1, (3.23)

where KA and K
0
Q are all association constants, and

P0 + P1 + P
Q
1 = n (3.24)

where n is the number of promoters.
Combining Eqs 3.23 and 3.24 implies that

P
Q
1

n
=

K
0
QKAAQ

1 + KAA + K 0
QKAAQ

(3.25)

for the fraction of time that the promoter is occupied by RNA polymerase. If u is the rate of
transcription when both polymerase and activator are bound then mRNAs obey

dM

dt
=

uK
0
QQKAA

1 + KAA + KAK 0
QQA

n � dMM (3.26)

with first-order degradation of mRNAs. We can re-write the average rate of transcription as a
function of only two parameters if Q is constant:

dM

dt
=

(nuK
0
QQ)KAA

1 + (1 + K 0
QQ)KAA

� dMM

= umax

"
A
K1

1 + A
K1

#
� dMM

(3.27)

with umax =
nuK0

QQ

1+K0
QQ and K

�1
1 = (1 + K

0
QQ)KA, and the average transcriptional rate is a Hill

function with a Hill number of one.
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Using Eqs 3.13, this conservation implies that

P0 + KQQP0 + KRRP0 = n (3.15)

and so that
P0 =

n

1 + KQQ + KRR
(3.16)

which is number of promoters that are free and not bound by either the repressor or RNA
polymerase. From Eq 3.13, the number of promoters that are able to transcribe – have a bound
RNA polymerase – is

P
Q
0 =

nKQQ

1 + KQQ + KRR
. (3.17)

The rate equation describing transcription is then

dM

dt
= uP

Q
0 � dMM (3.18)

or, from Eq 3.17,
dM

dt
=

nuKQQ

1 + KQQ + KRR
� dMM. (3.19)

We are able to write Eq 3.19 as

dM

dt
=

⇣
nuKQQ
1+KQQ

⌘

1 +
⇣

KR
1+KQQ

⌘
R

� dMM (3.20)

which has the form of a Hill function in the concentration of repressor if the number of free RNA
polymerases is approximately constant.

We can further write
dM

dt
= umax

"
1

1 + R
K1

#
� dMM (3.21)
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Translation can again be modelled as a first-order process:
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where M satisfies Eq 3.21.

3.3 Activation by a single activator

The average rate of transcription can also be a Hill function with a Hill number of one if
transcription is controlled by the binding of a single activator. We can proceed as before and
consider the binding of activator, A, to the free promoter
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with umax =
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QQ)KA, and the average transcriptional rate is a Hill

function with a Hill number of one.
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The rate equation for mRNA
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The formalism extends to more than one transcription factor

3.4 Activation by two activators

This approach can be extended to promoters that bind multiple transcription factors. For exam-
ple, consider a promoter that has binding sites for two activators and can initiate transcription
only when both binding sites are bound by activators. Denoting P00 as the free promoter, P10

and P01 as the promoter when one transcription factor is bound, and P11 as the promoter when
two transcription factors are bound, then we have

P00 + A ��*)�� P10 and P00 + A ��*)�� P01

and
P01 + A ��*)�� P11 and P10 + A ��*)�� P11

If these reactions are all at equilibrium, we can write

P10 = K10AP00 ; P01 = K01AP00 (3.28)

and
P11 = K̃10AP01 ; P11 = K̃01AP10 (3.29)

with K10, K01, K̃10, and K̃01 being association constants.

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

Eqns. 3.28 and 3.29 form a thermodynamic cycle and so a relationship exists between the
equilibrium association constants

K̃10K01 = K̃01K10 (3.30)

because at equilibrium there should be nothing unique about the route taken to form P11, i.e.
whether the activator binds initially to either the first or the second binding site. Finally, RNA
polymerase can only bind to the promoter when both sites are bound by activators

P11 + Q ��*)�� PQ
11

and so
P

Q
11 = K

0
QQP11 (3.31)

at equilibrium, with Q being the number of free polymerases.
The number of promoters is conserved

P00 + P01 + P10 + P11 + P
Q
11 = n (3.32)
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Q
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The thermodynamic cycle restricts the equilibrium constants
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3.4 Activation by two activators

This approach can be extended to promoters that bind multiple transcription factors. For exam-
ple, consider a promoter that has binding sites for two activators and can initiate transcription
only when both binding sites are bound by activators. Denoting P00 as the free promoter, P10

and P01 as the promoter when one transcription factor is bound, and P11 as the promoter when
two transcription factors are bound, then we have

P00 + A ��*)�� P10 and P00 + A ��*)�� P01

and
P01 + A ��*)�� P11 and P10 + A ��*)�� P11

If these reactions are all at equilibrium, we can write

P10 = K10AP00 ; P01 = K01AP00 (3.28)

and
P11 = K̃10AP01 ; P11 = K̃01AP10 (3.29)

with K10, K01, K̃10, and K̃01 being association constants.
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Eqns. 3.28 and 3.29 form a thermodynamic cycle and so a relationship exists between the
equilibrium association constants

K01K̃10 = K10K̃01 (3.30)

because at equilibrium there should be nothing unique about the route taken to form P11, i.e.
whether the activator binds initially to either the first or the second binding site. Finally, RNA
polymerase can only bind to the promoter when both sites are bound by activators

P11 + Q ��*)�� PQ
11

and so
P

Q
11 = K

0
QQP11 (3.31)

at equilibrium, with Q being the number of free polymerases.
The number of promoters is conserved

P00 + P01 + P10 + P11 + P
Q
11 = n (3.32)
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We solve assuming equilibrium and a fixed number of promoters
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which implies that

P00 + K10AP00 + K01AP00 + K̃10K01A
2
P00 + K̃10K01K

0
QQA

2
P00 = n (3.33)

and so
P

Q
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n
=

K
0
QK̃10K01QA

2

1 + K10A + K01A + K̃10K01A
2 + K̃10K01K

0
QQA2

(3.34)

for the fraction of time the promoter is occupied by RNA polymerase.
Letting K̃10 = KiK10, with Ki greater than one and determined by the free energy of

interaction between both activators when bound at the promoter, then the number of mRNAs
obeys

dM

dt
=

unK
0
QQKiK10K01A

2

1 + K10A + K01A + KiK10K01A
2 + KiK10K01K

0
QQA2

� dMM (3.35)

with u being the rate of transcription from promoter state P
Q
11. The average rate of transcription

depends on three parameters if the number of free RNA polymerases is approximately constant

dM

dt
= umax

2

4
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K2
2

1 + A
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+ A2

K2
2

3

5 � dMM (3.36)

with umax =
unK0

QQ

1+K0
QQ , K

�1
1 = K01 + K10, and K

�2
2 = KiK10K01(1 + K

0
QQ), and has a maximum

Hill number of 2.

3.4.1 Multiple transcriptionally active states

We can extend this model by allowing RNAP to bind to the promoter in the absence of the
activators too:

P0 + Q ��*)�� PQ

with PQ = KQQP0. If u` is the rate of transcription from this state (such unregulated transcrip-
tion is sometimes called leakage), then Eq 3.35 becomes

dM

dt
= n

u`KQQ + uK
0
QQKiK10K01A

2

1 + KQQ + K10A + K01A + KiK10K01A
2 + KiK10K01K

0
QQA2

� dMM (3.37)

with a new KQQ term appearing in the numerator and the denominator because we are consid-
ering an additional state of the promoter that is transcriptionally active – the PQ state. If Q is
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giving

3.4 Activation by two activators

This approach can be extended to promoters that bind multiple transcription factors. For exam-
ple, consider a promoter that has binding sites for two activators and can initiate transcription
only when both binding sites are bound by activators. Denoting P00 as the free promoter, P10

and P01 as the promoter when one transcription factor is bound, and P11 as the promoter when
two transcription factors are bound, then we have

P00 + A ��*)�� P10 and P00 + A ��*)�� P01

and
P01 + A ��*)�� P11 and P10 + A ��*)�� P11

If these reactions are all at equilibrium, we can write

P10 = K10AP00 ; P01 = K01AP00 (3.28)

and
P11 = K̃10AP01 ; P11 = K̃01AP10 (3.29)

with K10, K01, K̃10, and K̃01 being association constants.
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RNAP
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Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

Eqns. 3.28 and 3.29 form a thermodynamic cycle and so a relationship exists between the
equilibrium association constants

K01K̃10 = K10K̃01 (3.30)

because at equilibrium there should be nothing unique about the route taken to form P11, i.e.
whether the activator binds initially to either the first or the second binding site. Finally, RNA
polymerase can only bind to the promoter when both sites are bound by activators

P11 + Q ��*)�� PQ
11

and so
P

Q
11 = K

0
QQP11 (3.31)

at equilibrium, with Q being the number of free polymerases.
The number of promoters is conserved

P00 + P10 + P01 + P11 + P
Q
11 = n (3.32)
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is the average number of promoters occupied by RNA polymerase.
Letting K̃10 = KiK10, with Ki greater than one and determined by the free energy of
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with a new KQQ term appearing in the numerator and the denominator because we are consid-
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with u being the rate of transcription from promoter state P
Q
11. The average rate of transcription
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with a new KQQ term appearing in the numerator and the denominator because we are consid-
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30

Let RNAP bind without the activator too

3.4 Activation by two activators

This approach can be extended to promoters that bind multiple transcription factors. For exam-
ple, consider a promoter that has binding sites for two activators and can initiate transcription
only when both binding sites are bound by activators. Denoting P00 as the free promoter, P10

and P01 as the promoter when one transcription factor is bound, and P11 as the promoter when
two transcription factors are bound, then we have

P00 + A ��*)�� P10 and P00 + A ��*)�� P01

and
P01 + A ��*)�� P11 and P10 + A ��*)�� P11

If these reactions are all at equilibrium, we can write

P10 = K10AP00 ; P01 = K01AP00 (3.28)

and
P11 = K̃10AP01 ; P11 = K̃01AP10 (3.29)

with K10, K01, K̃10, and K̃01 being association constants.

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

Eqns. 3.28 and 3.29 form a thermodynamic cycle and so a relationship exists between the
equilibrium association constants

K01K̃10 = K10K̃01 (3.30)

because at equilibrium there should be nothing unique about the route taken to form P11, i.e.
whether the activator binds initially to either the first or the second binding site. Finally, RNA
polymerase can only bind to the promoter when both sites are bound by activators

P11 + Q ��*)�� PQ
11

and so
P

Q
11 = K

0
QQP11 (3.31)

at equilibrium, with Q being the number of free polymerases.
The number of promoters is conserved

P00 + P01 + P10 + P11 + P
Q
11 = n (3.32)

29

u

<latexit sha1_base64="3YZ3oezCb/16y77GRrBsgQpYgDw=">AAAB6HicdVBNS0JBFL3Pvsy+rJZthiRoJTMiqZsQ2rRUSBP0IfPGeTo574OZeYE8/AVtWhTRtp/Urn/TPDWoqAMXDufcy733eLEU2mD84eTW1jc2t/LbhZ3dvf2D4uFRV0eJYrzDIhmpnkc1lyLkHSOM5L1YcRp4kt9606vMv73nSosovDGzmLsBHYfCF4waK7WTYbGEyxhjQgjKCKldYEsajXqF1BHJLIsSrNAaFt8Ho4glAQ8Nk1TrPsGxcVOqjGCSzwuDRPOYsikd876lIQ24dtPFoXN0ZpUR8iNlKzRooX6fSGmg9SzwbGdAzUT/9jLxL6+fGL/upiKME8NDtlzkJxKZCGVfo5FQnBk5s4QyJeytiE2ooszYbAo2hK9P0f+kWymTarnRrpaal6s48nACp3AOBGrQhGtoQQcYcHiAJ3h27pxH58V5XbbmnNXMMfyA8/YJMV6NNw==</latexit>

u`

<latexit sha1_base64="FyI7DvH/ea0sOxJvRGFJ12y6AMQ=">AAAB7nicdVBNSwMxEJ31s9avqkcvwSJ4Kkkptr1IwYvHCvYD2qVk07QNzWaXJCuUpT/CiwdFvPp7vPlvzLYVVPTBwOO9GWbmBbEUxmL84a2tb2xubed28rt7+weHhaPjtokSzXiLRTLS3YAaLoXiLSus5N1YcxoGkneC6XXmd+65NiJSd3YWcz+kYyVGglHrpE4y6HMp84NCEZcwxoQQlBFSvcSO1Ou1MqkhklkORVihOSi894cRS0KuLJPUmB7BsfVTqq1gks/z/cTwmLIpHfOeo4qG3Pjp4tw5OnfKEI0i7UpZtFC/T6Q0NGYWBq4zpHZifnuZ+JfXS+yo5qdCxYnlii0XjRKJbISy39FQaM6snDlCmRbuVsQmVFNmXUJZCF+fov9Ju1wilVL9tlJsXK3iyMEpnMEFEKhCA26gCS1gMIUHeIJnL/YevRfvddm65q1mTuAHvLdPIpSPdQ==</latexit>

transcription rate

leakage rate

which implies that
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(3.34)

is the average number of promoters occupied by RNA polymerase.
Letting

K̃10 = KiK10 (3.35)

with Ki greater than one and determined by the free energy of interaction between both activa-
tors when bound at the promoter – Ki = e��Gint/kT , then the number of mRNAs obeys
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with u being the rate of transcription from promoter state P
Q
11. The average rate of transcription

depends on three parameters if the number of free RNA polymerases is approximately constant
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with umax =
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QQ), and has a maximum

Hill number of 2.

3.4.1 Multiple transcriptionally active states

We can extend this model by allowing RNAP to bind to the promoter in the absence of the
activators too:

P0 + Q ��*)�� PQ

with PQ = KQQP0. If u` is the rate of transcription from this state (such unregulated transcrip-
tion is sometimes called leakage), then Eq 3.35 becomes
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with a new KQQ term appearing in the numerator and the denominator because we are consid-
ering an additional state of the promoter that is transcriptionally active – the PQ state. If Q is
constant, we can simplify to write
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1+KQQ and with a basal rate of transcription
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1+KQQ . As before, umax =
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QQ . For the activators to be e�cient, RNAP should

prefer to bind to the promoter when the promoter is bound by the two activators (K 0
Q > KQ)

and that the rate of transcription should be highest from this promoter state (u > u`).

30

then

or

which implies that

P00 + K10AP00 + K01AP00 + K̃10K01A
2
P00 + K̃10K01K

0
QQA

2
P00 = n (3.33)

and so

P
Q
11 =

nK
0
QK̃10K01QA

2

1 + K10A + K01A + K̃10K01A
2 + K̃10K01K

0
QQA2

(3.34)

is the average number of promoters occupied by RNA polymerase.
Letting

K̃10 = KiK10 (3.35)

with Ki greater than one and determined by the free energy of interaction between both activa-
tors when bound at the promoter – Ki = e��Gint/kT , then the number of mRNAs obeys

dM

dt
=

unK
0
QQKiK10K01A

2

1 + K10A + K01A + KiK10K01A
2 + KiK10K01K

0
QQA2

� dMM (3.36)

with u being the rate of transcription from promoter state P
Q
11. The average rate of transcription

depends on three parameters if the number of free RNA polymerases is approximately constant

dM

dt
= umax

2

4
A2

K2
2

1 + A
K1

+ A2

K2
2

3

5 � dMM (3.37)

with umax =
unK0

QQ

1+K0
QQ , K

�1
1 = K01 + K10, and K

�2
2 = KiK10K01(1 + K

0
QQ), and has a maximum

Hill number of 2.
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We can extend this model by allowing RNAP to bind to the promoter in the absence of the
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with a new KQQ term appearing in the numerator and the denominator because we are consid-
ering an additional state of the promoter that is transcriptionally active – the PQ state. If Q is
constant, we can simplify to write
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with a new KQQ term appearing in the numerator and the denominator because we are consid-
ering an additional state of the promoter that is transcriptionally active – the PQ state. If Q is
constant, we can simplify to write
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with u being the rate of transcription from promoter state P
Q
11. The average rate of transcription

depends on three parameters if the number of free RNA polymerases is approximately constant
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with umax =
unK0

QQ

1+K0
QQ , K

�1
1 = K01 + K10, and K

�2
2 = KiK10K01(1 + K

0
QQ). The maximal Hill

number is two.
Note that if K̃10 = KiK10 then K̃01 = KiK01 because the energy of interaction between the

activators is the same in both cases. Note too that Eq. 3.26 is then satisfied, as expected.

3.4.1 Multiple transcriptionally active states

We can extend this model by allowing RNAP to bind to the promoter in the absence of the
activators too:

P0 + Q ��*)�� PQ

with PQ = KQQP0. If u` is the rate of transcription from this state — such unregulated
transcription is sometimes called leakage, then Eq. 3.32 becomes
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with a new KQQ term appearing in the numerator and the denominator because we are con-
sidering an extra state of the promoter that is transcriptionally active – the PQ state. If Q is
constant, we can simplify to write

dM
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=

ubasal + umax ⇥
A2
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2
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� dMM (3.35)

but now with K
�1
1 = K01+K10

1+KQQ and K
�2
2 = KiK10K01

1+K0
QQ

1+KQQ and with a basal rate of transcription

of ubasal = u`nKQQ
1+KQQ . As before, umax =

unK0
QQ

1+K0
QQ . For the activators to be e�cient, RNAP should

prefer to bind to the promoter when two activators have already bound, K
0
Q > KQ, and the rate

of transcription should be highest from this state, so that u > u`.

3.5 General regulation

There is a pattern in the expressions for the average rate of transcription, one expected from
statistical mechanics [12]. Each term in the denominator represents a possible state of the
promoter: we represent the free state by the number 1 and a bound state by the product of the
association constants for each binding event times the number of ways those binding events can
occur. Each term in the numerator represents a state of the promoter from which transcription
can occur. We multiply each of these terms by their rate of transcription and by the number of
promoters.

For example, consider a promoter with two binding sites for repressors where the binding
of a repressor to either site prevents the binding of RNA polymerase. The promoter then has
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From the states of the promoter, we are able to write the rate of 
transcription

3.5 General regulation

There is a general pattern in the expressions for the average rate of transcription and this pattern
is expected from statistical mechanics [9]. The denominator of the average rate of transcription
is a sum of terms with each term representing a possible state of the promoter: the free state of
the promoter is represented by the number 1 and a bound state is represented by the product of
the association constants for each binding event times the number of ways those binding events
can occur. The numerator of the average rate of transcription is a sum of similar terms but only
those terms that represent states of the promoter from which transcription can occur. Each of
these terms is multiplied by the rate of transcription from that state, and their sum is multiplied
by the number of promoters.

For example, consider a promoter with two binding sites for repressors where the binding
of a repressor to either site prevents the binding of RNA polymerase, then the promoter has
five states: free, bound by polymerase, one site bound by a repressor, the other site bound
by a repressor, and both sites bound by a repressor. The denominator of the average rate of
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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transcription is
1 + KQQ + K01R + K10R + K11R

2 (3.40)

and the numerator is
nu ⇥ KQQ (3.41)

The association constant K11 for two repressors binding simultaneously to the promoter should
be determined by the change in free energy of one repressor binding, the change in free energy of
another binding, and any free energy of interaction between the repressors once they are bound:
K11 = K01K10Ki. Therefore the number of mRNAs satisfies the rate equation:

dM

dt
= nu

KQQ

1 + KQQ + K01R + K10R + KiK10K01R
2

� dMM (3.42)

which we can write as

dM

dt
=

nuKQQ

1 + KQQ

"
1

1 + K01+K10
1+KQQ R + KiK10K01

1+KQQ R2

#
� dMM (3.43)

and has a maximum Hill number of two.

31

The denominator has one term for each state of the promoter; the numerator has 
one term for each transcriptionally active state of the promoter.

E.g., for a repressor



From the states of the promoter, we are able to write the rate of 
transcription

3.5 General regulation

There is a general pattern in the expressions for the average rate of transcription and this pattern
is expected from statistical mechanics [9]. The denominator of the average rate of transcription
is a sum of terms with each term representing a possible state of the promoter: the free state of
the promoter is represented by the number 1 and a bound state is represented by the product of
the association constants for each binding event times the number of ways those binding events
can occur. The numerator of the average rate of transcription is a sum of similar terms but only
those terms that represent states of the promoter from which transcription can occur. Each of
these terms is multiplied by the rate of transcription from that state, and their sum is multiplied
by the number of promoters.

For example, consider a promoter with two binding sites for repressors where the binding
of a repressor to either site prevents the binding of RNA polymerase, then the promoter has
five states: free, bound by polymerase, one site bound by a repressor, the other site bound
by a repressor, and both sites bound by a repressor. The denominator of the average rate of
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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activator
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P00
Q

transcription is
1 + KQQ + K01R + K10R + K11R

2 (3.40)

and the numerator is
nu ⇥ KQQ (3.41)

The association constant K11 for two repressors binding simultaneously to the promoter should
be determined by the change in free energy of one repressor binding, the change in free energy of
another binding, and any free energy of interaction between the repressors once they are bound:
K11 = K01K10Ki. Therefore the number of mRNAs satisfies the rate equation:

dM

dt
= nu

KQQ

1 + KQQ + K01R + K10R + KiK10K01R
2

� dMM (3.42)

which we can write as

dM

dt
=

nuKQQ

1 + KQQ

"
1

1 + K01+K10
1+KQQ R + KiK10K01

1+KQQ R2

#
� dMM (3.43)

and has a maximum Hill number of two.
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3.5 General regulation

There is a general pattern in the expressions for the average rate of transcription and this pattern
is expected from statistical mechanics [9]. The denominator of the average rate of transcription
is a sum of terms with each term representing a possible state of the promoter: the free state of
the promoter is represented by the number 1 and a bound state is represented by the product of
the association constants for each binding event times the number of ways those binding events
can occur. The numerator of the average rate of transcription is a sum of similar terms but only
those terms that represent states of the promoter from which transcription can occur. Each of
these terms is multiplied by the rate of transcription from that state, and their sum is multiplied
by the number of promoters.

For example, consider a promoter with two binding sites for repressors where the binding
of a repressor to either site prevents the binding of RNA polymerase, then the promoter has
five states: free, bound by polymerase, one site bound by a repressor, the other site bound
by a repressor, and both sites bound by a repressor. The denominator of the average rate of
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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transcription is
1 + KQQ + K01R + K10R + K11R

2 (3.40)

and the numerator is
nu ⇥ KQQ (3.41)

The association constant K11 for two repressors binding simultaneously to the promoter should
be determined by the change in free energy of one repressor binding, the change in free energy of
another binding, and any free energy of interaction between the repressors once they are bound:
K11 = K01K10Ki. Therefore the number of mRNAs satisfies the rate equation:

dM

dt
= nu

KQQ

1 + KQQ + K01R + K10R + KiK10K01R
2

� dMM (3.42)

which we can write as

dM

dt
=

nuKQQ

1 + KQQ

"
1

1 + K01+K10
1+KQQ R + KiK10K01

1+KQQ R2

#
� dMM (3.43)

and has a maximum Hill number of two.
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The denominator has one term for each state of the promoter; the numerator has 
one term for each transcriptionally active state of the promoter.
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Modelling signal transduction V

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.

3

3.6 Modelling signal transduction V

We can now add to the model of Sec 2.11 , the expression of the reporter gene in Fig. 1, which
is expressed through the action of C

⇤.
The nuclear entry and exit of C

⇤ can be written as a chemical reaction:

C⇤ fn�*)�
bn

C⇤
n

which, if at equilibrium, implies that

[C⇤
n] =

fn

bn
[C⇤]. (3.44)

Making the simplest assumption that C
⇤
n is an activator that binds to a single binding site

on the reporter gene, G, then the mRNA of G, mG, satisfies (following Eq 3.27)

d[mG]

dt
= uG

[C⇤
n]

KC⇤

1 + [C⇤
n]

KC⇤

� dm[mG] (3.45)

with a maximum transcription rate of uG and a degradation rate dm of the mRNA. The protein
G, itself, obeys (following Eq 3.22)

d[G]

dt
= v[mG] � dG[G] (3.46)

for translation rate v and degradation rate dG of protein G.
Eqs 2.79 with Eqs 3.44 and 3.45 are the complete model of the pathway of Fig. 1 from the

input S to the output G.
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Assume that C* is an activator with a single binding site on G’s promoter

mRNA

protein

We will proceed as before and consider the binding of activator, A, to the free promoter

P0 + A ��*)�� P1

as well as the binding of RNA polymerase to the promoter when activator is already bound

P1 + Q ��*)�� PQ
1

and transcription only occurs from this state.P0

P1

P0
Q

RNAP

repressor

P0

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

P00

P01

P10

P11

P00
Q

Assuming the number of promoters is conserved and that all reactions involving DNA binding
are at equilibrium, then

P1 = KAAP0 ; P
Q
1 = K

0
QQP1, (3.23)

where KA and K
0
Q are all association constants, and

P0 + P1 + P
Q
1 = n (3.24)

where n is the number of promoters.
Combining Eqs 3.23 and 3.24 implies that

P
Q
1 =

nK
0
QKAAQ

1 + KAA + K 0
QKAAQ

(3.25)

for the average number of promoters occupied by RNA polymerase. If u is the rate of transcrip-
tion when both polymerase and activator are bound then mRNAs obey

dM

dt
=

uK
0
QQKAA

1 + KAA + KAK 0
QQA

n � dMM (3.26)

with first-order degradation of mRNAs. We can re-write the average rate of transcription as a
function of only two parameters if Q is constant:

dM

dt
=

(nuK
0
QQ)KAA

1 + (1 + K 0
QQ)KAA

� dMM

= umax

"
A
K1

1 + A
K1

#
� dMM

(3.27)

with umax =
nuK0

QQ

1+K0
QQ and K

�1
1 = (1 + K

0
QQ)KA, and the average transcriptional rate is a Hill

function with a Hill number of one.
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