Concepts from non-linear dynamics are used to
understand the behaviour of biological systems



The dynamics of biochemical networks are non-linear

Non-linear : the magnitude of an output is not proportionally related to the
magnitude of the input
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There are two ways we specify a dynamical system

System parameters specify the properties of the system, eg temperature,
kinetic rates for reacting species such as the Vimax and K for enzyme
reactions, system volume

Initial conditions specify the initial values of all components of the system that
evolve with time, e.g. initial concentrations of all proteins in a biochemical
network



Dynamical systems ultimately tend to attractors

After an initial transient, a dynamical system settles into a long-term behaviour
that the system will maintain if undisturbed.

The system has reached an attractor.
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A steady-state attractor is a common one

Components of the system eventually no longer change with time: they are steady.
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Different initial conditions give the same steady-state behaviour.



The components of a system oscillate at a limit cycle
attractor

After some initial behaviour, the system eventually oscillates.
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From different initial conditions, the system reaches the limit cycle and
oscillates with the same frequency and amplitude.
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The time taken to reach the limit cycle is different for different initial conditions.



Strange attractors give chaotic dynamics

Chaos is aperiodic, long-term behaviour in a deterministic system that exhibits
sensitive dependence on initial conditions.
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For a limit cycle, there is no sensitive dependence on initial conditions and the
dynamics from two similar initial conditions remain closely related.
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For a strange attractor, there is sensitive dependence on initial conditions, and the
dynamics from two similar initial conditions become distinct.
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A phase diagram shows the dynamics of a system by plotting the concentration
of one system component against another.
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A limit cycle appears as a circle in the phase diagram.
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A bistable system has two steady-state attractors
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The system tends to either steady-state A or steady-state B depending on the initial
conditions.

State A has the white basin of attraction: state B has the blue one.



A biturcation is a qualitative change in the behaviour of a
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Example: before the bifurcation, a system goes to steady-state; after the bifurcation, the
system oscillates

Hopf bifurcation
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There are multiple different types of bifurcation.



Positive feedback and bistability in MAP kinase pathways
generates memory



Positive feedback is a requirement for bistability

Positive feedback is a “runaway” process, where an effect enhances itself.
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If an increase in the output of the system increases the output of the system
still further, then the system has positive feedback.



Bistability underlies the maturation of frog oocytes.
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Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 10078-10083, September 1996
Biochemistry

Ultrasensitivity in the mitogen-activated protein kinase cascade

CHI-YING F. HUANG AND JAMES E. FERRELL, JR.T

Requiring two phosphorylations to
become active and distributive
phosphorylation generates an
ultrasensitive response that becomes
steeper with each step of the
cascade.
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Ultrasensitivity does increase down the MAPK cascade
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MAPK-P

We need to look at single cells to see switching
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Positive feedback is also present and is required for
bistable, or “all-or-none”, behaviour

positive feedback
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The p42 MAP kinase becomes more active as levels of progesterone increase.
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With an On and an Oft state possible for the same level of
progesterone, the system has memory
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With strong feedback, the memory can become

permanent
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By modelling Mos only, we are able to describe the
bistability
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The positive feedback is described with a Hill function.



We use a graphical construction to find the steady-
state solutions

The system is at steady state when the activation rate of Mos equals its
Inactivation rate.
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There are three steady-state solutions.



The long-term behaviour will depend on the initial
conditions
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Ultrasensitivity in the positive feedback is necessary
for bistability
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When n=1 and the cascade of kinases is not ultrasensitive, there is only one
steady state.



By changing the concentration of pheromone, the

system undergoes a bifurcation
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A bifurcation diagram shows the steady states as a
function of the bifurcation parameter

e . The bifurcation parameter is [p]
. P and this type of bifurcation is
) called a saddle-node bifurcation.
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The system has hysteresis and the positive feedback is
so strong that there is permanent memory
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Starting from the Off state as pheromone [p] increases, the system will eventually
jump permanently to the On state, remaining there even as [p] decreases.



Waddington’s epigenetic landscape illustrates how an
undifferentiated cell progresses to one of several possible
differentiated states
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Differentiation is more likely to occur through saddle-node
bifurcations, which cause a valley and a ridge to disappear
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