Bistability in genetic networks generates
hysteresis and bimodal behaviour



Bistable behaviour in a genetic network relies on positive feedback
and exhibits hysteresis

Multistabhility in the lactose
utilization network of
Escherichia coli

Ertugrul M. Ozbudak'*, Mukund Thattai'*, Han N. Lim',
Boris I. Shraiman’ & Alexander van Oudenaarden’

Positive feedback is through the permease LacY, which acts to
Increase its own expression.
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Expression from the network exhibits hysteresis

Multistabhility in the lactose
utilization network of
Escherichia coli

Ertugrul M. Ozbudak'*, Mukund Thattai'*, Han N. Lim',

Boris I. Shraiman’ & Alexander van Oudenaarden’

GFP synthesized from a copy
of a promoter in the network
is used to measure output.

Hysteresis: two different concentrations of inducer (TMG) cause switching of
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Bimodal: the
distribution of
fluorescence
has two peaks



Bistability may be generated by a transcription factor
directly activating its own transcription

positive
feedback
dM __ uP"
MRNA G =Wt g —duM
protein % — M —dpP

High levels of protein activate transcription creating still higher levels of protein.
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The steady-states are where the nullclines intersect

The nullclines are the lines along which the time

n

derivatives are zero. i — Wt gagpr —aM
dP
10 y : Y ‘ G =M—dpP
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the nullclines, both M
and P are at steady
state because both

dM/dt and dP/dt are
ol | zero.
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On the blue nullcline, dM/dt is zero; on the red nullcline, dP/dt is zero.



We find the stability of the steady states by determining
the local dynamics

aM __ uP™
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On the blue nullcline,
dM/dt is zero;

On the red nullcline,
= a7 dP/dt is zero.
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We find the stability of the steady states by determining
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The system can undergo a bifurcation from one to three
steady states and vice versa
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There are two saddle-node bifurcations
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There is hysteresis
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Negative feedback and biological oscillators



Negative feedback can generate oscillations

Negative feedback is process where an effect diminishes itself.
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Resulting movement

If an increase in the output causes the system to act to decrease that output,
then the system has negative feedback.



A preliminary remark: Degradation is stabilising

Consider constitutive expression

Ip . protein
— —k—dpP e

dt ' NN o
—p -

At steady state

synthesis rate is constant, but

:ZC — dPP* degradation rate is not
For a fluctuation above steady state For a fluctuation below steady state
dpP > dpP* =k dpP < dpP* = k

degradation increases degradation decreases



Negative feedback is stabilising

Consider negative autoregulation

. . protein

The rate equation is
dP k

dt 1+ (P/K)"

and at steady state

= dpP"

1+ (P/K)"



Like degradation, negative feedback adjusts to
perturbations

Negative feedback on
protein synthesis works

. , together with d dati
For fluctuations above steady state, synthesis decreases Poether With degracation

k k

P>F 1+ (P/K)" ~ 14 (P /K)"

For fluctuations below steady state, synthesis increases

k k
P <P 1+ (P/K)y ~ 1+ (P/K)"




Delayed negative teedback can cause oscillations

The delay in changing synthesis causes a mismatch between the synthesis rate and
the degradation rate.

The duration of the
synthesis synthesis delay is in red.
determined by determined by

protein here protein here

synthesis

l too low

mean
degradation degradation ' synthesis
determined by determined by too high
protein here protein here

Oscillations are continual overshoots and undershoots because of the mismatch.



There are two requirements for a system to oscillate

(i) negative feedback: feedback that acts to reduce
deviations of the system away from steady state

(ii) a delay: a sufficiently long time delay before the
feedback acts.



For example: increasing the delay induces oscillations
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For example: increasing the delay induces oscillations, through a Hopf

bifurcation
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For example: increasing the delay in this example increases the
amplitude of the oscillations
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Circadian rhythms as genetic oscillators



Rhythms are circadian if they have four characteristics

They have a period of approximately 24 hours;

are free running and exist in the absence of cues to the
earth's 24-hour rotation;

are synchronised by environmental signals, usually light;

are able to run over a range of temperatures.




Circadian rhythms occur in single cells

The suprachiasmatic nucleus comprises numerous clock cells, but a single
neuron from the nucleus has circadian rhythms in culture.
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Negative transcriptional feedback controls circadian rhythms in
Drosophila

from Howard Hughes Medical Institute



CLD:cytoplasmic
localization domain

Changes in the levels of PER/TIM are fundamental

Level of nuclear PER/TIM
complex declines following

Highest levels of nuclear :
turnover without replacement
PER/TIM fully suppress per )

and tim transcription,
declining RNA pools block
further accumulation of
PER/TIM heterodimers

s

Absence of PER/TIM
complex derepresses
perand tim
transcription

Nuclear PER/TIM
complexes begin to
suppress per/tim RNA
accumulation

High levels of
per and tim RNA With per and tim RNA levels

promote PER/TIM insufficient for PER/TIM
assembly and heterodimer formation,
suppression of CLDs PER monomers degrade



The behaviour is more complex because light resets the clock

from Howard Hughes Medical Institute
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Through cryptochrome, the rhythms adjust to the seasons

subjective day
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Pulse of light early in subjective night delays rhythm and extends day time.
Pulse of light late in subjective night advances rhythm and reduces night time.



