A well-know mathematical model of circadian rhythms that also
serves as an example paper for the research project
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ABSTRACT Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and
darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms
persist with a period close to 1 day (“circadian”), but it is usually not exactly 24 h. Recent discoveries have uncovered stunning
similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is
coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their
own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative
feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER
upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model
accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the per- mutant
phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more
primitive, light-activated switch.



The Tyson et al model focuses on the negative feedback of dimers
of PER protein on the transcription of the per gene
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They do not model TIM but focus on PER.



They use Michaelis-Menten to model DBT phosphorylating PER
monomers and dimers
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Conservation of the enzyme DBT implies
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and so the rate of formation of phosphorylated monomer is
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Monomers prevent dimers from being phosphorylated, and dimers
prevent monomers from being phosphorylated
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Each substrate inhibits the other by sequestering the enzyme DBT.



The per gene is repressed by PER dimers
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Autorepression is modelled through a Hill function with n= 2



There are three rate equations
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translation from DBT dimerisation
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To simplity, they assume that PER monomer and dimers are in

equilibrium

Let the total number of monomers be Py
Pr=P + 2P

Combining these equations gives
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By assuming dimerisation is at equilibrium, only two rate equations
are necessary
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Relaxation oscillators are selected for their
robustness



Circadian networks have a core structure of negative
and positive feedbacks
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Why?

From Barkai & Leibler 2000 and Dunlap 1999



Relaxation oscillators operate around the hysteresis loop of an
underlying, former bistability
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Steady-state
response with only
positive feedback
has hysteresis.

Relaxation oscillations
occur with additional
negative feedback.
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A model of the cell cycle
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From Tsai et al, 2008



Relaxation oscillators can maintain their amplitude as the frequency of
the oscillations changes.

r controls the strength

of positive feedback
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From Tsai et al., 2008



Relaxation oscillators are able to oscillate for wider ranges of

parameters than negative feedback oscillators

From Tsai et al, 2008
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Relaxation oscillators can maintain the amplitude of oscillations more

than negative feedback oscillators
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