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ABSTRACT Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and
darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms
persist with a period close to 1 day (“circadian”), but it is usually not exactly 24 h. Recent discoveries have uncovered stunning
similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is
coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their
own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative
feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER
upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model
accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the perL mutant
phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more
primitive, light-activated switch.

INTRODUCTION

Wild-type fruit flies, Drosophila melanogaster, exhibit en-
dogenous activity rhythms with a period of 24 h over a
broad temperature range (18–33°C). The first mutation to
interfere with this circadian rhythm was discovered by
Konopka and Benzer (1971), who called the gene period
(per, for short). Three mutant alleles of per have been
studied: perL and perS, with endogenous activity rhythms of
27 and 19 h, respectively (at 18°C), and per0, a null allele
with no overt rhythm (Huang et al., 1995). Remarkably, the
perL mutant has lost temperature compensation; the period
of its endogenous rhythm increases from 25 h at 15°C to
33 h at 30°C (Huang et al., 1995).
A second important gene, timeless or tim, encodes a

protein, TIM, that binds to PER (Gekakis et al., 1995;
Myers et al., 1995; Sehgal et al., 1994, 1995; Vosshall et al.,
1994; Zeng et al., 1996). Mutation of tim abolishes the
circadian rhythm (Sehgal et al., 1994). During endogenous
cycling in constant darkness, a brief light pulse causes a
phase shift of the circadian rhythm (Myers et al., 1996;
Pittendrigh, 1967). This phase shift has recently been attrib-
uted to rapid degradation of TIM upon exposure to light
(Hunter-Ensor et al., 1996; Lee et al., 1996; Myers et al.,
1996; Zeng et al., 1996).
PER protein and per mRNA fluctuate with a 24-h period,

with protein lagging behind mRNA by 4–6 h (Hardin et al.,
1990; Zeng et al., 1994). When PER protein is overex-
pressed from a constitutive promoter, expression of endog-

enous per mRNA is repressed (Zeng et al., 1994), suggest-
ing that PER inhibits its own transcription (Hardin et al.,
1990). Binding to TIM seems to be necessary for translo-
cation of PER to the nucleus (Vosshall et al., 1994) to exert
its inhibitory effect. PER forms homo- and heterodimers
through its “PAS” domain (Gekakis et al., 1995; Huang et
al., 1995; Lee et al., 1996; Zeng et al., 1996), which it shares
with many transcription factors but not with TIM. The perL
mutation, which lies in the PAS domain, disrupts PER/PER
(Huang et al., 1995) and PER/TIM binding (Gekakis et al.,
1995). Expression of the per and tim genes is regulated by
a pair of transcription factors, dCLOCK (also called JRK)
and CYC, that appear to be inactivated by PER (Allada et
al., 1998; Darlington et al., 1998; Rutila et al., 1998). This
evidence for negative feedback of PER on transcription of
its own mRNA is the basis for most current theoretical
models of circadian rhythms (Goldbeter, 1995; Ruoff and
Rensing, 1996; Leloup and Goldbeter, 1998; Scheper et al.,
1999). However, we propose that a positive feedback loop,
based on stabilization of PER by dimerization with TIM,
may play an equally important role in generating oscilla-
tions. This proposal is supported by recent discoveries on
PER phosphorylation and proteolysis.
PER is phosphorylated by a casein-like kinase called

DBT (encoded by the double-time gene), which is present at
roughly constant levels during the rhythm (Kloss et al.,
1998; Price et al., 1998). PER phosphorylation seems to be
a prelude to its degradation, as suggested by the phenotypes
of dbt mutants. In dbtP, which codes for a nonfunctional
kinase and has no rhythm, PER accumulates in a hypophos-
phorylated form. dbtS codes for a more active kinase, accu-
mulates less PER than wild type, and has shorter cycles
(18 h in homozygote). dbtL codes for a less active kinase,
accumulates more PER than wild type, and has longer
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A well-know mathematical model of circadian rhythms that also 
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The Tyson et al model focuses on the negative feedback of dimers 
of PER protein on the transcription of the per gene

They do not model TIM but focus on PER.



with Michaelis-Menten reactions and, denoting P1 for PER monomers and P2 for PER dimers,
we have

D + P1

f1�*)�
b1

C1
k1�! P⇤

1 + D

and

D + P2

f2�*)�
b2

C2
k2�! P⇤

2 + D

where the kinase DBT is denoted D.
As before (see Eq 2.69), we assume that both C1 and C2, the kinase-substrate complexes,

are at quasi-steady state. Then

dC1

dt
= f1DP1 � (b1 + k1)C1 ' 0

dC2

dt
= f2DP2 � (b2 + k2)C2 ' 0

(5.7)

and therefore
C1 ' f1DP1

b1+k1
; C2 ' f2DP2

b2+k2
. (5.8)

The total amount of kinase, DT , is fixed, and D + C1 + C2 = DT . This conservation law with
Eq 5.8 implies that

D =
DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

. (5.9)

Consequently, the rate of formation of P
⇤
1 , which is k1C1, equals

k1 ⇥ f1P1

b1 + k1
⇥ DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

(5.10)

using Eqs 5.8 and 5.9. We can thus write

dP
⇤
1

dt
=

k1DT P1

b1+k1
f1

+ P1 + f2(b1+k1)
f1(b2+k2)

P2

(5.11)

and similarly can show that the rate of formation of P
⇤
2 is

dP
⇤
2

dt
=

k2DT P2

b2+k2
f2

+ P2 + f1(b2+k2)
f2(b1+k1)

P1

. (5.12)

PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1

f1
=

b2+k2
f2

= K say, then
dP

⇤
1

dt
=

V1P1

K + P1 + P2

dP
⇤
2

dt
=

V2P2

K + P1 + P2

(5.13)

with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].
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They use Michaelis-Menten to model DBT phosphorylating PER 
monomers and dimers

Quasi-steady state implies

Conservation of the enzyme DBT implies

and so the rate of formation of phosphorylated monomer is
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Monomers prevent dimers from being phosphorylated, and dimers 
prevent monomers from being phosphorylated
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and similarly can show that the rate of formation of P
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PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1
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=

b2+k2
f2

= K say, then
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=
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(5.13)

with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].
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extended 
Michaelis-Menten 

equations
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Each substrate inhibits the other by sequestering the enzyme DBT.

symmetric
case



The per gene is repressed by PER dimers

Autorepression is modelled through a Hill function with n= 2

PER mRNA

5.4.2 The Tyson et al. model

Tyson et al. have three equations in their model: one for per mRNA, one for PER monomers,
and one for PER dimers. They use a Hill function with a Hill number of two to model negative
auto-regulation of per expression by PER dimers. The equation for per mRNA levels is then

dM

dt
=

u

1 +
⇣

P2
Pc

⌘2 � dMM (5.14)

with dM being the rate of degradation of mRNA.
PER monomers are translated from the mRNA with rate v, phosphorylated by DBT, actively

degraded at rate dp, and undergo dimerisation

P1 + P1

f
��*)��

b
P2

so that
dP1

dt
= vM �

V1P1

K + P1 + P2
� dP P1 � 2fP

2
1 + 2bP2 (5.15)

using Eq. 5.13. Once phosphorylated, the PER monomers rapidly degrade and no longer con-
tribute to the dynamics.

PER dimers also undergo phosphorylation, degradation, and monomerisation:

dP2

dt
= �

V2P2

K + P1 + P2
� dP P2 + fP

2
1 � bP2. (5.16)

Once phosphorylated, the PER dimers degrade too.
By assuming equilibrum between PER monomers and dimers, Tyson et al. were able to

reduce this system of three equations to two equations.

5.4.3 Dimerisation

The dimerisation reaction of PER proteins is

P1 + P1

f
��*)��

b
P2

and so at equilibrium

P2 =
f

b
P

2
1 . (5.17)

If we write the total number of PER monomers, both free and in dimers, as PT , where PT can
change with time, then

PT = P1 + 2P2 (5.18)

and so

PT = P1 + 2
f

b
P

2
1 (5.19)

which is a quadratic equation for P1:

P
2
1 +

b

2f
P1 �

b

2f
PT = 0. (5.20)
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There are three rate equations 
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5.4.3 The Tyson et al model

Tyson et al have three equations in their model: one for per mRNA, one for PER monomers,
and one for PER dimers. They use a Hill function with a Hill number of two to model negative
autoregulation of per expression by PER dimers. The equation for per mRNA levels is then

dM

dt
=

u

1 + P 2
2

P 2
c

� dMM (5.23)

with dM being the rate of degradation of mRNA.
PER monomers are translated from the mRNA with rate v, are phosphorylated by DBT, are

actively degraded at rate dp, and undergo dimerization:

dP1

dt
= vM � V1P1

K + P1 + P2
� dP P1 � 2fP

2
1 + 2bP2 (5.24)

using Eq 5.13. Once phosphorylated, the PER monomers are assumed to rapidly degrade and
no longer play any part in the dynamics.

PER dimers also undergo phosphorylation, degradation, and monomerization:

dP2

dt
= � V2P2

K + P1 + P2
� dP P2 + fP

2
1 � bP2. (5.25)

Once phosphorylated, the PER dimers rapidly degrade too and are no longer relevant for the
dynamics.

By assuming equilibrium between PER monomers and dimers, Tyson et al. were able to
reduce this system of three equations to two equations. By adding dP1/dt to twice dP2/dt, they
found an equation for PT = P1 + 2P2:

dPT

dt
= vM � V1q + V2(1 � q)

K + 1
2(1 + q)PT

PT � dP PT (5.26)

using Eq 5.22. Similarly, we use Eq 5.22 to write the equation for mRNA in terms of PT rather
than P2:

dM

dt
=

u

1 +
(1�q)2P 2

T
4P 2

c

� dMM (5.27)

with q obeying Eq 5.21.
Eqs 5.26 and 5.27 can be investigated using phase plane analysis. The nullclines intersect at

one point, but this point is unstable for certain values of the parameters [12], and the system
oscillates.

The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because PER must be synthesized and then converted into dimers
before repressing transcription. The delayed negative feedback is the basis of the circadian
oscillations.

The system also has positive feedback. If the number of dimers is such that the rate of
phosphorylation of dimers by DBT is saturated, then an increase in the number of dimers cannot
a↵ect the rate of phosphorylation of dimers, but does still decrease the rate of phosphorylation
of PER monomers. PER monomers consequently build up and so too do PER dimers because of
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The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because PER must be synthesized and then converted into dimers
before repressing transcription. The delayed negative feedback is the basis of the circadian
oscillations.

The system also has positive feedback. If the number of dimers is such that the rate of
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a↵ect the rate of phosphorylation of dimers, but does still decrease the rate of phosphorylation
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from DBT dimerisationtranslation

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
This reaction is

P1 + P1

f�*)�
b

P2

and, by mass action, generates the following dynamics for P1

dP1

dt
= �2fP

2
1 + 2bP2 (5.14)

where the factor of two arises because the forward reaction decreases the number of P1 molecules
by two and the backward reaction increases the number of P1 molecules by two. The dimer obeys

dP2

dt
= fP

2
1 � bP2. (5.15)

At equilibrium,

P2 =
f

b
P

2
1 (5.16)

and if we let
PT = P1 + 2P2 (5.17)

then

PT = P1 + 2
f

b
P

2
1 (5.18)

which is a quadratic equation:

P
2
1 +

b

2f
P1 � b

2f
PT = 0 (5.19)

This equation can be solved following the usual formula

P1 =
�1 +

q
1 + 8f

b PT

4f
b

=
2PT

1 +
q

1 + 8f
b PT

(5.20)

where we have multiplied both top and bottom by 2/q where q is

q =
2

1 +
q

1 + 8f
b PT

(5.21)

Consequently, we can write the equilibrium concentrations in the convenient form

P1 = qPT ; P2 = 1
2(1 � q)PT (5.22)

with q given by Eq 5.21.
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dimerisation



To simplify, they assume that PER monomer and dimers are in 
equilibrium

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
This reaction is

P1 + P1

f�*)�
b

P2

and, by mass action, generates the following dynamics for P1

dP1

dt
= �2fP

2
1 + 2bP2 (5.14)

where the factor of two arises because the forward reaction decreases the number of P1 molecules
by two and the backward reaction increases the number of P1 molecules by two. The dimer obeys

dP2

dt
= fP

2
1 � bP2. (5.15)

At equilibrium,
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f

b
P

2
1 (5.16)

and if we let
PT = P1 + 2P2 (5.17)

then

PT = P1 + 2
f

b
P

2
1 (5.18)

which is a quadratic equation:

P
2
1 +

b

2f
P1 � b

2f
PT = 0 (5.19)

This equation can be solved following the usual formula

P1 =
�1 +

q
1 + 8f

b PT

4f
b

=
2PT

1 +
q

1 + 8f
b PT

(5.20)

where we have multiplied both top and bottom by 2/q where q is

q =
2

1 +
q

1 + 8f
b PT

(5.21)

Consequently, we can write the equilibrium concentrations in the convenient form

P1 = qPT ; P2 = 1
2(1 � q)PT (5.22)

with q given by Eq 5.21.
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5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
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Consequently, we can write the equilibrium concentrations in the convenient form
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with q given by Eq 5.21.
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Let the total number of monomers be PT

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
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and, by mass action, generates the following dynamics for P1
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2
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where the factor of two arises because the forward reaction decreases the number of P1 molecules
by two and the backward reaction increases the number of P1 molecules by two. The dimer obeys
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2
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Consequently, we can write the equilibrium concentrations in the convenient form

P1 = qPT ; P2 = 1
2(1 � q)PT (5.22)

with q given by Eq 5.21.
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Combining these equations gives

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
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and, by mass action, generates the following dynamics for P1

dP1

dt
= �2fP

2
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where the factor of two arises because the forward reaction decreases the number of P1 molecules
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and so both can be expressed in terms of PT

5.4.2 Dimerization
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with

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
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PT changes 
with time



By assuming dimerisation is at equilibrium, only two rate equations 
are necessary

5.4.3 The Tyson et al model

Tyson et al have three equations in their model: one for per mRNA, one for PER monomers,
and one for PER dimers. They use a Hill function with a Hill number of two to model negative
autoregulation of per expression by PER dimers. The equation for per mRNA levels is then

dM

dt
=

u

1 + P 2
2

P 2
c

� dMM (5.23)

with dM being the rate of degradation of mRNA.
PER monomers are translated from the mRNA with rate v, are phosphorylated by DBT, are

actively degraded at rate dp, and undergo dimerization:

dP1

dt
= vM � V1P1

K + P1 + P2
� dP P1 � 2fP

2
1 + 2bP2 (5.24)

using Eq 5.13. Once phosphorylated, the PER monomers are assumed to rapidly degrade and
no longer play any part in the dynamics.

PER dimers also undergo phosphorylation, degradation, and monomerization:

dP2

dt
= � V2P2

K + P1 + P2
� dP P2 + fP

2
1 � bP2. (5.25)

Once phosphorylated, the PER dimers rapidly degrade too and are no longer relevant for the
dynamics.

By assuming equilibrium between PER monomers and dimers, Tyson et al. were able to
reduce this system of three equations to two equations. By adding dP1/dt to twice dP2/dt, they
found an equation for PT = P1 + 2P2:

dPT

dt
= vM � V1q + V2(1 � q)

K + 1
2(1 + q)PT

PT � dP PT (5.26)

using Eq 5.22. Similarly, we use Eq 5.22 to write the equation for mRNA in terms of PT rather
than P2:

dM

dt
=

u

1 +
(1�q)2P 2

T
4P 2

c

� dMM (5.27)

with q obeying Eq 5.21.
Eqs 5.26 and 5.27 can be investigated using phase plane analysis. The nullclines intersect at

one point, but this point is unstable for certain values of the parameters [12], and the system
oscillates.

The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because PER must be synthesized and then converted into dimers
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Relaxation oscillations

Frzilator, the legs of the curve were truncated; the
oscillator had a nonzero minimal amplitude (Fig.
3A). For all five of the negative feedback–only
models, the oscillators functioned over only a
narrow range of frequencies (Fig. 3A).

We also examined four positive-plus-negative
feedback oscillators: (i) the van der Pol oscillator,
inspired by studies of vacuum tubes (12); (ii) the
Fitzhugh-Nagumo model of propagating action
potentials (23, 24); (iii) the Meyer-Stryer model of
calcium oscillations (25); and (iv) a model of cir-
cadian oscillations in the cyanobacterial KaiA/B/C
system (26–28). In each case, we obtained a flat,
wide amplitude/frequency curve (Fig. 3B). Thus,
a tunable frequency plus constant amplitude can
be obtained from many different positive-plus-
negative feedbackmodels; this feature is not peculiar
to one particular topology or parameterization.

These findings rationalize why the positive-
plus-negative feedback design might have been
selected through evolution in cases where a tun-
able frequency and constant amplitude are impor-
tant, such as heartbeats and cell cycles. However,
it is not clear that an adjustable frequency would
be advantageous for circadian oscillations, be-
cause frequency is fixed at one cycle per day.
Nevertheless, the cyanobacterial circadian oscil-
lator appears to rely on positive feedback (26),
and positive feedback loops have been postulated
for other circadian oscillators as well (Table 1).
This raises the question of whether the positive-
plus-negative feedback design might offer addi-
tional advantages.

One possibility is that the positive-plus-
negative feedback design permits oscillations
over a wider range of enzyme concentrations and
kinetic constant values, making the oscillator
easier to evolve and more robust to variations in
its imperfect components. We tested this idea
through a Monte Carlo approach. We formulated
three simple oscillator models: (i) a three-variable
triple negative feedback loop with no additional
feedback (Fig. 4A), (ii) one with added positive
feedback (Fig. 4B), or (iii) one with added negative
feedback (Fig. 4C). We generated random pa-
rameter sets for the models and then for each set
determined whether the model produced limit cycle
oscillations.We continued generating parameter sets
until we had amassed 500 that gave oscillations.

For the negative feedback–only model, 500
out of 138,785 parameter sets (0.36%) yielded
oscillations (Fig. 4D). For the positive-plus-
negative feedback model, oscillatory parameter
sets were found at a higher rate: 500 out of 23,848
parameter sets (2.1%) if we assumed weak posi-
tive feedback and 500 out of 9854 sets (5.1%) for
strong positive feedback (Fig. 4D). The negative-
plus-negative feedbackmodel yielded oscillations
at a lower rate than even the negative feedback–
only model: 500 out of 264,672 parameter sets
(0.19%) for the weaker feedback strength and 500
out of 583,263 (0.086%) for the stronger feed-
back. This is probably because the short negative
feedback loop stabilizes the output of A, making
it difficult for changes in C’s activity to be propa-

gated onward. Thus, the positive-plus-negative
feedback design was substantially more robust, by
this measure, than either the negative feedback–
onlymodel or the negative-plus-negative feedback
model.

The random parameter sets also provided a
further test of the hypothesis that the positive-
plus-negative design allows for a tunable frequency.
For each oscillatory set, we varied one parameter
(k3) and calculated amplitude/frequency curves
and operational frequency ranges. For the nega-
tive feedback–only and the negative-plus-negative

feedback models, all of the oscillatory parameter
sets yielded narrow, inverted U-shaped amplitude/
frequency curveswith small operational frequency
ranges (Fig. 4, E and F, and fig. S1). In contrast,
many of the amplitude/frequency curves for the
positive-plus-negative feedback model were flat
and wide, with large operational frequency ranges
(Fig. 4, E and F). Thus, the positive-plus-negative
design provided the possibility of a tunable fre-
quency and near-constant amplitude.

The frequent presence of positive feedback
loops in natural biological oscillators suggests

Fig. 2. From a hysteretic switch to a relaxation oscillator. (A) Hysteretic steady-state response of CDK1 to
cyclin B, on the basis of previous experimental studies (16, 17). (B) CDK1 activation and inactivation in
the limit of slow cyclin B synthesis and degradation. (C and D) Cell cycle model run with biologically
realistic parameters, showing a looser relation between the oscillations and the hysteretic steady-state
response.

Fig. 3. Amplitude/frequency curves for various legacy oscillators. (A) Negative feedback–only models.
(B) Positive-plus-negative feedback models.
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Relaxation oscillators operate around the hysteresis loop of an 
underlying, former bistability

Steady-state 
response with only 
positive feedback 
has hysteresis.

Relaxation oscillations 
occur with additional 
negative feedback.

From Tsai et al, 2008

A model of the cell cycle
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for other circadian oscillators as well (Table 1).
This raises the question of whether the positive-
plus-negative feedback design might offer addi-
tional advantages.

One possibility is that the positive-plus-
negative feedback design permits oscillations
over a wider range of enzyme concentrations and
kinetic constant values, making the oscillator
easier to evolve and more robust to variations in
its imperfect components. We tested this idea
through a Monte Carlo approach. We formulated
three simple oscillator models: (i) a three-variable
triple negative feedback loop with no additional
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it difficult for changes in C’s activity to be propa-
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Levels of CDK1 as cyclin B is slowly 
and periodically changed externally.



Relaxation oscillators can maintain their amplitude as the frequency of 
the oscillations changes.

From Tsai et al., 2008

Both the tunable frequency and constant am-
plitude of the positive-plus-negative feedback cell
cyclemodel arise because the system behaves like
a relaxation oscillator (12–15). Relaxation oscilla-
tors are built on a hysteretic switch, and experi-
mental studies have shown that inXenopus extracts
the response of theCDK1/Cdc25/Wee1/Myt1 posi-
tive feedback loop is hysteretic, resembling that
shown in Fig. 2A (16, 17).

To see how relaxation oscillations can arise
from a hysteretic switch and to see why this per-
mits a tunable period and constant amplitude, as-
sume that a cell cycle begins with no cyclin B and
no active CDK1 and that cyclin B synthesis is
slow relative to the phosphorylation and dephos-
phorylation reactions that allow the hysteretic
switch to approach its steady state (Fig. 2A). As
cyclin B accumulates, the system moves up the

lower branch of the stimulus/response curve, and
the CDK1 activity slowly rises (Fig. 2, A and B,
segments 0 and 1). Ultimately, the branch termi-
nates and the system switches (“relaxes”) to the
other branch (Fig. 2, A and B, segment 2).

Now assume that at this higher, mitotic level
of CDK1 activity, the APC is turned on and the
cyclin B concentration begins to fall slowly. The
system progresses down the upper branch of
the stimulus/response curve (Fig. 2, A and B,
segment 3) until the branch terminates and the
system switches to the lower branch (Fig. 2, A
and B, segment 4). The APC turns back off, cyclin
B reaccumulates, and the cycle starts over. Thus,
oscillations in this system essentially represent a
walk around the hysteretic steady-state stimulus/
response loop. The frequency of the oscillator is
determined by how rapid the walk is, and the
amplitude (the height of the loop) is constant.

In reality, the rate of cyclin B destruction by
the APC is not slow compared with the phos-
phorylation and dephosphorylation reactions (7).
This fact is incorporated into the cell cycle model
examined here, and it makes the orbits of the
oscillator overshoot the hysteretic loop (Fig. 2C).
Nevertheless, the model still behaves much like a
relaxation oscillator, especially at low ksynth values
(Fig. 2, C and D).

To test the generality of the idea that positive
feedback enables an oscillator to have a tunable
frequency and constant amplitude, we examined
several other oscillator models, including five
negative feedback–only models: (i) the Goodwin
oscillator, a well-studied model relevant to cir-
cadian oscillations (18, 19); (ii) the Repressilator,
a transcriptional triple-negative feedback loop con-
structed inEscherichia coli (20); (iii) the “Pentilator,”
a Repressilator with five (rather than three) re-
pressors; (iv) the Metabolator (21), a synthetic
metabolic oscillator; and (v) the Frzilator, a model
of the control of gliding motions in myxobacteria
(22). In four of the cases (Goodwin, Repressilator,
Pentilator, andMetabolator), the amplitude/frequency
curves were inverted U-shaped curves similar to
that seen for the negative feedback–only cell cy-
cle model (Figs. 1B and 3A). In the case of the

Table 1. Positive feedback loops in biological oscillators.

Oscillator Period Positive feedback Refs.
Sino-atrial pacemaker ~1 s Depolarization → Na+ channel

activation → depolarization
(29)

Calcium spikes ~100 s Cytoplasmic Ca2+ → PLC → IP3 →
cytoplasmic Ca2+

Cytoplasmic Ca2+ → IP3R →
cytoplasmic Ca2+

Cytoplasmic Ca2+ → IP3R -|
ER Ca2+ -| SOC → cytoplasmic Ca2+

(25, 30, 31)

Myxobacterial gliding ~10 min None known (22)
Animal cell cycle
(Xenopus laevis embryos)

~30 min Cdk1 → Cdc25 → Cdk1
Cdk1 -| Wee1 -| Cdk1
Cdk1 -| Myt1 -| Cdk1

(32, 33)

Somitogenesis ~30 min DeltaC → Notch → DeltaC (34)
Yeast cell cycle

(S. cerevisiae)
~2 hours CLN1,2 transcription → CDK1 →

CLN1,2 transcription
CDK1 -| Sic1 -| CDK1
CDK1 -| Cdh1 -| CDK1

(6, 35–39)

NF-kB responses ~100 min None known (40, 41)
p53 responses ~100 min p53 → PTEN -| Akt → Mdm2 -| p53

p53 → p21 -| Cdk2 -| Rb -| Mdm2 -| p53
(42, 43)

Animal cell cycle
(somatic cells)

~24 hours CDK2 -| Rb -| E2F → CDK2
Cdk1 → Cdc25 → Cdk1
Cdk1 -| Wee1 -| Cdk1
Cdk1 -| Myt1 -| Cdk1

(44)

Circadian rhythm
(mammals)

~24 hours BMAL1 → Rora → BMAL1 (45)

Circadian rhythm
(Drosophila)

~24 hours CLK → PDP1 → CLK (45)

Circadian rhythm
(fungi)

~24 hours FRQ → WC-1 → FRQ (46)

Circadian rhythm
(cyanobacteria)

~24 hours KaiC-SP -| KaiA -| KaiC-SP (26)

Fig. 1. Positive feedback provides an os-
cillator with a tunable frequency and nearly
constant amplitude. (A) Schematic view of the
Xenopus embryonic cell cycle. (B) Amplitude/
frequency curves for various strengths of
positive feedback (r). The frequency of the
oscillator was changed by varying the rate constant for cyclin B synthesis, ksynth. (C) Frequency as a function of ksynth for various strengths of positive feedback.
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r controls the strength 
of positive feedback

frequency is systematically 
changed by changing the 
synthesis rate



that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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Relaxation oscillators are able to oscillate for wider ranges of 
parameters than negative feedback oscillators

that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.

www.sciencemag.org SCIENCE VOL 321 4 JULY 2008 129

REPORTS

 o
n
 O

c
to

b
e
r 

2
, 
2
0
0
8
 

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

that this type of circuit possesses some perform-
ance advantages over simple negative feedback
loops. The present work demonstrates two such
advantages: (i) the ability to tune the oscillator’s
frequency without changing its amplitude and (ii)
a greater robustness and reliability.
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Fig. 4. Randomly parameterized oscillator models. (A) Negative feedback–only. A, B, and C, the fractions
of proteins A, B, and C that are active; K, median effective concentration values of the Hill functions; n, Hill
coefficients; k, rate constants. (B) Positive-plus-negative feedback. (C) Negative-plus-negative feedback.
(D) Percentage of parameter sets that yielded limit cycle oscillations. For the positive-plus-negative and
negative-plus-negative models, we looked at two ranges of feedback strengths: (i) k7 = 0 to 100 (weak)
and (ii) k7 = 500 to 600 (strong). (E) Operational frequency ranges for the oscillators. Each point
represents freqmax / freqmin for one of the 2500 parameter sets that produced oscillations, with k3 as the
bifurcation parameter. Mean operational frequency ranges were 1.6, 370, 63, 1.6, and 1.6. Medians were
1.6, 2.2, 3.3, 1.6, and 1.6. (F) Amplitude/frequency curves for the randomly parameterized models. We
show 300 out of 500 curves for the negative feedback–only model (red) and the positive-plus-negative
feedback model with weak (blue) or strong (green) positive feedback. Curves for the negative-plus-
negative feedback model are shown in fig. S1.
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