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ABSTRACT Many organisms display rhythms of physiology and behavior that are entrained to the 24-h cycle of light and
darkness prevailing on Earth. Under constant conditions of illumination and temperature, these internal biological rhythms
persist with a period close to 1 day (“circadian”), but it is usually not exactly 24 h. Recent discoveries have uncovered stunning
similarities among the molecular circuitries of circadian clocks in mice, fruit flies, and bread molds. A consensus picture is
coming into focus around two proteins (called PER and TIM in fruit flies), which dimerize and then inhibit transcription of their
own genes. Although this picture seems to confirm a venerable model of circadian rhythms based on time-delayed negative
feedback, we suggest that just as crucial to the circadian oscillator is a positive feedback loop based on stabilization of PER
upon dimerization. These ideas can be expressed in simple mathematical form (phase plane portraits), and the model
accounts naturally for several hallmarks of circadian rhythms, including temperature compensation and the perL mutant
phenotype. In addition, the model suggests how an endogenous circadian oscillator could have evolved from a more
primitive, light-activated switch.

INTRODUCTION

Wild-type fruit flies, Drosophila melanogaster, exhibit en-
dogenous activity rhythms with a period of 24 h over a
broad temperature range (18–33°C). The first mutation to
interfere with this circadian rhythm was discovered by
Konopka and Benzer (1971), who called the gene period
(per, for short). Three mutant alleles of per have been
studied: perL and perS, with endogenous activity rhythms of
27 and 19 h, respectively (at 18°C), and per0, a null allele
with no overt rhythm (Huang et al., 1995). Remarkably, the
perL mutant has lost temperature compensation; the period
of its endogenous rhythm increases from 25 h at 15°C to
33 h at 30°C (Huang et al., 1995).
A second important gene, timeless or tim, encodes a

protein, TIM, that binds to PER (Gekakis et al., 1995;
Myers et al., 1995; Sehgal et al., 1994, 1995; Vosshall et al.,
1994; Zeng et al., 1996). Mutation of tim abolishes the
circadian rhythm (Sehgal et al., 1994). During endogenous
cycling in constant darkness, a brief light pulse causes a
phase shift of the circadian rhythm (Myers et al., 1996;
Pittendrigh, 1967). This phase shift has recently been attrib-
uted to rapid degradation of TIM upon exposure to light
(Hunter-Ensor et al., 1996; Lee et al., 1996; Myers et al.,
1996; Zeng et al., 1996).
PER protein and per mRNA fluctuate with a 24-h period,

with protein lagging behind mRNA by 4–6 h (Hardin et al.,
1990; Zeng et al., 1994). When PER protein is overex-
pressed from a constitutive promoter, expression of endog-

enous per mRNA is repressed (Zeng et al., 1994), suggest-
ing that PER inhibits its own transcription (Hardin et al.,
1990). Binding to TIM seems to be necessary for translo-
cation of PER to the nucleus (Vosshall et al., 1994) to exert
its inhibitory effect. PER forms homo- and heterodimers
through its “PAS” domain (Gekakis et al., 1995; Huang et
al., 1995; Lee et al., 1996; Zeng et al., 1996), which it shares
with many transcription factors but not with TIM. The perL
mutation, which lies in the PAS domain, disrupts PER/PER
(Huang et al., 1995) and PER/TIM binding (Gekakis et al.,
1995). Expression of the per and tim genes is regulated by
a pair of transcription factors, dCLOCK (also called JRK)
and CYC, that appear to be inactivated by PER (Allada et
al., 1998; Darlington et al., 1998; Rutila et al., 1998). This
evidence for negative feedback of PER on transcription of
its own mRNA is the basis for most current theoretical
models of circadian rhythms (Goldbeter, 1995; Ruoff and
Rensing, 1996; Leloup and Goldbeter, 1998; Scheper et al.,
1999). However, we propose that a positive feedback loop,
based on stabilization of PER by dimerization with TIM,
may play an equally important role in generating oscilla-
tions. This proposal is supported by recent discoveries on
PER phosphorylation and proteolysis.
PER is phosphorylated by a casein-like kinase called

DBT (encoded by the double-time gene), which is present at
roughly constant levels during the rhythm (Kloss et al.,
1998; Price et al., 1998). PER phosphorylation seems to be
a prelude to its degradation, as suggested by the phenotypes
of dbt mutants. In dbtP, which codes for a nonfunctional
kinase and has no rhythm, PER accumulates in a hypophos-
phorylated form. dbtS codes for a more active kinase, accu-
mulates less PER than wild type, and has shorter cycles
(18 h in homozygote). dbtL codes for a less active kinase,
accumulates more PER than wild type, and has longer
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A well-know mathematical model of circadian rhythms that also 
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The Tyson et al model focuses on the negative feedback of dimers 
of PER protein on the transcription of the per gene

They do not model TIM but focus on PER.



with Michaelis-Menten reactions and, denoting P1 for PER monomers and P2 for PER dimers,
we have

D + P1

f1�*)�
b1

C1
k1�! P⇤

1 + D

and

D + P2

f2�*)�
b2

C2
k2�! P⇤

2 + D

where the kinase DBT is denoted D.
As before (see Eq 2.69), we assume that both C1 and C2, the kinase-substrate complexes,

are at quasi-steady state. Then

dC1

dt
= f1DP1 � (b1 + k1)C1 ' 0

dC2

dt
= f2DP2 � (b2 + k2)C2 ' 0

(5.7)

and therefore
C1 ' f1DP1

b1+k1
; C2 ' f2DP2

b2+k2
. (5.8)

The total amount of kinase, DT , is fixed, and D + C1 + C2 = DT . This conservation law with
Eq 5.8 implies that

D =
DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

. (5.9)

Consequently, the rate of formation of P
⇤
1 , which is k1C1, equals

k1 ⇥ f1P1

b1 + k1
⇥ DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

(5.10)

using Eqs 5.8 and 5.9. We can thus write

dP
⇤
1

dt
=

k1DT P1

b1+k1
f1

+ P1 + f2(b1+k1)
f1(b2+k2)

P2

(5.11)

and similarly can show that the rate of formation of P
⇤
2 is

dP
⇤
2

dt
=

k2DT P2

b2+k2
f2

+ P2 + f1(b2+k2)
f2(b1+k1)

P1

. (5.12)

PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1

f1
=

b2+k2
f2

= K say, then
dP

⇤
1

dt
=

V1P1

K + P1 + P2

dP
⇤
2

dt
=

V2P2

K + P1 + P2

(5.13)

with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].

45

with Michaelis-Menten reactions and, denoting P1 for PER monomers and P2 for PER dimers,
we have

D + P1

f1�*)�
b1

C1
k1�! P⇤

1 + D

and

D + P2

f2�*)�
b2

C2
k2�! P⇤

2 + D

where the kinase DBT is denoted D.
As before (see Eq 2.69), we assume that both C1 and C2, the kinase-substrate complexes,

are at quasi-steady state. Then

dC1

dt
= f1DP1 � (b1 + k1)C1 ' 0

dC2

dt
= f2DP2 � (b2 + k2)C2 ' 0

(5.7)

and therefore
C1 ' f1DP1

b1+k1
; C2 ' f2DP2

b2+k2
. (5.8)

The total amount of kinase, DT , is fixed, and D + C1 + C2 = DT . This conservation law with
Eq 5.8 implies that

D =
DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

. (5.9)

Consequently, the rate of formation of P
⇤
1 , which is k1C1, equals

k1 ⇥ f1P1

b1 + k1
⇥ DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

(5.10)

using Eqs 5.8 and 5.9. We can thus write

dP
⇤
1

dt
=

k1DT P1

b1+k1
f1

+ P1 + f2(b1+k1)
f1(b2+k2)

P2

(5.11)

and similarly can show that the rate of formation of P
⇤
2 is

dP
⇤
2

dt
=

k2DT P2

b2+k2
f2

+ P2 + f1(b2+k2)
f2(b1+k1)

P1

. (5.12)

PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1

f1
=

b2+k2
f2

= K say, then
dP

⇤
1

dt
=

V1P1

K + P1 + P2

dP
⇤
2

dt
=

V2P2

K + P1 + P2

(5.13)

with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].

45

with Michaelis-Menten reactions and, denoting P1 for PER monomers and P2 for PER dimers,
we have

D + P1

f1�*)�
b1

C1
k1�! P⇤

1 + D

and

D + P2

f2�*)�
b2

C2
k2�! P⇤

2 + D

where the kinase DBT is denoted D.
As before (see Eq 2.69), we assume that both C1 and C2, the kinase-substrate complexes,

are at quasi-steady state. Then

dC1

dt
= f1DP1 � (b1 + k1)C1 ' 0

dC2

dt
= f2DP2 � (b2 + k2)C2 ' 0

(5.7)

and therefore
C1 ' f1DP1

b1+k1
; C2 ' f2DP2

b2+k2
. (5.8)

The total amount of kinase, DT , is fixed, and D + C1 + C2 = DT . This conservation law with
Eq 5.8 implies that

D =
DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

. (5.9)

Consequently, the rate of formation of P
⇤
1 , which is k1C1, equals

k1 ⇥ f1P1

b1 + k1
⇥ DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

(5.10)

using Eqs 5.8 and 5.9. We can thus write

dP
⇤
1

dt
=

k1DT P1

b1+k1
f1

+ P1 + f2(b1+k1)
f1(b2+k2)

P2

(5.11)

and similarly can show that the rate of formation of P
⇤
2 is

dP
⇤
2

dt
=

k2DT P2

b2+k2
f2

+ P2 + f1(b2+k2)
f2(b1+k1)

P1

. (5.12)

PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1

f1
=

b2+k2
f2

= K say, then
dP

⇤
1

dt
=

V1P1

K + P1 + P2

dP
⇤
2

dt
=

V2P2

K + P1 + P2

(5.13)

with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].

45

with Michaelis-Menten reactions and, denoting P1 for PER monomers and P2 for PER dimers,
we have

D + P1

f1�*)�
b1

C1
k1�! P⇤

1 + D

and

D + P2

f2�*)�
b2

C2
k2�! P⇤

2 + D

where the kinase DBT is denoted D.
As before (see Eq 2.69), we assume that both C1 and C2, the kinase-substrate complexes,

are at quasi-steady state. Then

dC1

dt
= f1DP1 � (b1 + k1)C1 ' 0

dC2

dt
= f2DP2 � (b2 + k2)C2 ' 0

(5.7)

and therefore
C1 ' f1DP1

b1+k1
; C2 ' f2DP2

b2+k2
. (5.8)

The total amount of kinase, DT , is fixed, and D + C1 + C2 = DT . This conservation law with
Eq 5.8 implies that

D =
DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

. (5.9)

Consequently, the rate of formation of P
⇤
1 , which is k1C1, equals

k1 ⇥ f1P1

b1 + k1
⇥ DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

(5.10)

using Eqs 5.8 and 5.9. We can thus write

dP
⇤
1

dt
=

k1DT P1

b1+k1
f1

+ P1 + f2(b1+k1)
f1(b2+k2)

P2

(5.11)

and similarly can show that the rate of formation of P
⇤
2 is

dP
⇤
2

dt
=

k2DT P2

b2+k2
f2

+ P2 + f1(b2+k2)
f2(b1+k1)

P1

. (5.12)

PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1

f1
=

b2+k2
f2

= K say, then
dP

⇤
1

dt
=

V1P1

K + P1 + P2

dP
⇤
2

dt
=

V2P2

K + P1 + P2

(5.13)

with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].

45

They use Michaelis-Menten to model DBT phosphorylating PER 
monomers and dimers

Quasi-steady state implies

Conservation of the enzyme DBT implies

and so the rate of formation of phosphorylated monomer is
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Monomers prevent dimers from being phosphorylated and dimers 
prevent monomers from being phosphorylated
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PER dimers therefore inhibit the phosphorylation of PER monomers (high P2 decreases dP
⇤
1 /dt)

and PER monomers inhibit the phosphorylation of PER dimers (high P1 decreases dP
⇤
2 /dt). Both

isoforms are competitive inhibitors of each other.
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with V1 = k1DT and V2 = k2DT . Eq 5.13 is the form used by Tyson et al [12].
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extended 
Michaelis-Menten 

equations
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Each substrate inhibits the other by sequestering the enzyme DBT.



The per gene is repressed by PER dimers

5.4.3 The Tyson et al model

Tyson et al have three equations in their model: one for per mRNA, one for PER monomers,
and one for PER dimers. They use a Hill function with a Hill number of two to model negative
autoregulation of per expression by PER dimers. The equation for per mRNA levels is then

dM

dt
=

u

1 + P 2
2

P 2
c

� dMM (5.23)

with dM being the rate of degradation of mRNA.
PER monomers are translated from the mRNA with rate v, are phosphorylated by DBT, are

actively degraded at rate dp, and undergo dimerization:

dP1

dt
= vM � V1P1

K + P1 + P2
� dP P1 � 2fP

2
1 + 2bP2 (5.24)

using Eq 5.13. Once phosphorylated, the PER monomers are assumed to rapidly degrade and
no longer play any part in the dynamics.

PER dimers also undergo phosphorylation, degradation, and monomerization:

dP2

dt
= � V2P2

K + P1 + P2
� dP P2 + fP

2
1 � bP2. (5.25)

Once phosphorylated, the PER dimers rapidly degrade too and are no longer relevant for the
dynamics.

By assuming equilibrium between PER monomers and dimers, Tyson et al. were able to
reduce this system of three equations to two equations. By adding dP1/dt to twice dP2/dt, they
found an equation for PT = P1 + 2P2:

dPT

dt
= vM � V1q + V2(1 � q)

K + 1
2(1 + q)PT

PT � dP PT (5.26)

using Eq 5.22. Similarly, we use Eq 5.22 to write the equation for mRNA in terms of PT rather
than P2:

dM

dt
=

u

1 +
(1�q)2P 2

T
4P 2

c

� dMM (5.27)

with q obeying Eq 5.21.
Eqs 5.26 and 5.27 can be investigated using phase plane analysis. The nullclines intersect at

one point, but this point is unstable for certain values of the parameters [12], and the system
oscillates.

The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because PER must be synthesized and then converted into dimers
before repressing transcription. The delayed negative feedback is the basis of the circadian
oscillations.

The system also has positive feedback. If the number of dimers is such that the rate of
phosphorylation of dimers by DBT is saturated, then an increase in the number of dimers cannot
a↵ect the rate of phosphorylation of dimers, but does still decrease the rate of phosphorylation
of PER monomers. PER monomers consequently build up and so too do PER dimers because of
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Autorepression is modelled through a Hill function with n= 2
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from DBT dimerisationtranslation

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
This reaction is

P1 + P1

f�*)�
b

P2

and, by mass action, generates the following dynamics for P1

dP1

dt
= �2fP

2
1 + 2bP2 (5.14)

where the factor of two arises because the forward reaction decreases the number of P1 molecules
by two and the backward reaction increases the number of P1 molecules by two. The dimer obeys

dP2

dt
= fP

2
1 � bP2. (5.15)

At equilibrium,

P2 =
f

b
P

2
1 (5.16)

and if we let
PT = P1 + 2P2 (5.17)

then

PT = P1 + 2
f

b
P

2
1 (5.18)

which is a quadratic equation:

P
2
1 +

b

2f
P1 � b

2f
PT = 0 (5.19)

This equation can be solved following the usual formula

P1 =
�1 +

q
1 + 8f

b PT

4f
b

=
2PT

1 +
q

1 + 8f
b PT

(5.20)

where we have multiplied both top and bottom by 2/q where q is

q =
2

1 +
q

1 + 8f
b PT

(5.21)

Consequently, we can write the equilibrium concentrations in the convenient form

P1 = qPT ; P2 = 1
2(1 � q)PT (5.22)

with q given by Eq 5.21.
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dimerisation



To simplify, they assume that PER monomer and dimers are in 
equilibrium

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
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Consequently, we can write the equilibrium concentrations in the convenient form

P1 = qPT ; P2 = 1
2(1 � q)PT (5.22)

with q given by Eq 5.21.
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Let the total number of monomers be PT

5.4.2 Dimerization

Second, we investigate the equilibrium properties of the dimerization reaction of PER proteins.
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Combining these equations gives
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and so both can be expressed in terms of PT
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By assuming dimerisation is at equilibrium, only two rate equations 
are necessary

5.4.3 The Tyson et al model

Tyson et al have three equations in their model: one for per mRNA, one for PER monomers,
and one for PER dimers. They use a Hill function with a Hill number of two to model negative
autoregulation of per expression by PER dimers. The equation for per mRNA levels is then

dM

dt
=

u

1 + P 2
2

P 2
c

� dMM (5.23)

with dM being the rate of degradation of mRNA.
PER monomers are translated from the mRNA with rate v, are phosphorylated by DBT, are

actively degraded at rate dp, and undergo dimerization:

dP1

dt
= vM � V1P1

K + P1 + P2
� dP P1 � 2fP

2
1 + 2bP2 (5.24)

using Eq 5.13. Once phosphorylated, the PER monomers are assumed to rapidly degrade and
no longer play any part in the dynamics.

PER dimers also undergo phosphorylation, degradation, and monomerization:

dP2

dt
= � V2P2

K + P1 + P2
� dP P2 + fP

2
1 � bP2. (5.25)

Once phosphorylated, the PER dimers rapidly degrade too and are no longer relevant for the
dynamics.

By assuming equilibrium between PER monomers and dimers, Tyson et al. were able to
reduce this system of three equations to two equations. By adding dP1/dt to twice dP2/dt, they
found an equation for PT = P1 + 2P2:

dPT

dt
= vM � V1q + V2(1 � q)

K + 1
2(1 + q)PT

PT � dP PT (5.26)

using Eq 5.22. Similarly, we use Eq 5.22 to write the equation for mRNA in terms of PT rather
than P2:

dM
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(1�q)2P 2

T
4P 2

c

� dMM (5.27)

with q obeying Eq 5.21.
Eqs 5.26 and 5.27 can be investigated using phase plane analysis. The nullclines intersect at

one point, but this point is unstable for certain values of the parameters [12], and the system
oscillates.

The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because PER must be synthesized and then converted into dimers
before repressing transcription. The delayed negative feedback is the basis of the circadian
oscillations.

The system also has positive feedback. If the number of dimers is such that the rate of
phosphorylation of dimers by DBT is saturated, then an increase in the number of dimers cannot
a↵ect the rate of phosphorylation of dimers, but does still decrease the rate of phosphorylation
of PER monomers. PER monomers consequently build up and so too do PER dimers because of
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one point, but this point is unstable for certain values of the parameters [12], and the system
oscillates.

The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because PER must be synthesized and then converted into dimers
before repressing transcription. The delayed negative feedback is the basis of the circadian
oscillations.

The system also has positive feedback. If the number of dimers is such that the rate of
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