
Steady state and equilibrium



A system is at steady-state when concentrations do not change with 
time – they are fixed, or steady
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At steady-state We will often study systems at 
steady-state because their 
behaviour is then simpler.
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Equilibrium is a special steady state where detailed balance holds

d[C]

dt
= f1[A][B]� b1[C] + f2[D][E]� b2[C]

<latexit sha1_base64="MN2Anf0hrgH6OLWxr5BJPTnXwFU="></latexit>

d[C]

dt
=

z }| {
f1[A][B]� b1[C] +

z }| {
f2[D][E]� b2[C]

<latexit sha1_base64="+UkrpyWwRV4kr6PUt0rbfaa3Bss="></latexit>

0

<latexit sha1_base64="VYiWBYhrnWQJS9CLd5RyiP2ZuEY=">AAACRXicdZDNThsxFIU9tLQwQAntko3VgIRYJHaESrJohdQNSyo1gJSMIo9zk1jYnsG+A41GeYE+TbftC/QZ+hDdVd2CJ6QSoHIlS8ffudc/J8218sjYr2jp2fPlFy9XVuO19Y1Xm7Wt16c+K5yErsx05s5T4UErC11UqOE8dyBMquEsvfhY+WdX4LzK7Gec5pAYMbZqpKTAgAa1nbifwljZEi6LOdqfxSzugx3eI4NanTUYY5xzWgl++I4F0em0W7xNeWWFqpNFnQy2otX+MJOFAYtSC+97nOWYlMKhkhpmcb/wkAt5IcbQC9IKAz4p59+Z0d1AhnSUubAs0jm9P1EK4/3UpKHTCJz4x14F/+f1Chy1k1LZvECw8u6iUaEpZrTKhg6VA4l6GoSQToW3UjkRTkgMCT44aRHp+4OkbHZ92DRzfy2UbSJ88TjV4JtmIidgZnEI719C9Glx2mrwg0bnU6t+9GER4wrZJm/JHuHkkByRY3JCukSSr+Qb+U5+RD+j39Gf6O9d61K0mHlDHlR0cwu2b7Ff</latexit>
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A system is in detailed balance if the rate of every forward reaction balances 
the rate of every backward reaction.

Consider

At steady state

d[C]

dt
= f1[A][B]� b1[C] + f2[D][E]� b2[C]
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At equilibrium

= 0

<latexit sha1_base64="AAVqMKpRU+3HBt3ZCZTmV/DxARw=">AAACRnicdZDLbhMxFIbPhFs73FJYsrGIKiEWiR1VNFkUVWLDskikrZSMIo9zkli1PYN9BohGeQKehi28AK/AS7BDbPGkQWoRHMnS7+8/x5c/L40OxPn3pHXj5q3bd3Z207v37j942N57dBqKyiscqcIU/jyXAY12OCJNBs9Lj9LmBs/yi1eNf/YefdCFe0urEjMrF07PtZIU0bS9n05yXGhX47tqg56v0yOeTtDNrqBpu8O7nHMhBGuEOHzBoxgOB30xYKKxYnVgWyfTvWR3MitUZdGRMjKEseAlZbX0pJXBdTqpApZSXcgFjqN00mLI6s1/1mw/khmbFz4uR2xDr07U0oawsnnstJKW4W+vgf/yxhXNB1mtXVkROnV50bwyjArWhMNm2qMis4pCKq/jW5laSi8VxQivnbTN9Oggq3ujEDe9MnyQ2vUIPwZaGQw9u1RLtOs0hvcnIfZ/cdrvioPu8E2/c/xyG+MOPIGn8AwEHMIxvIYTGIGCT/AZvsDX5FvyI/mZ/LpsbSXbmcdwrVrwG0/XsKc=</latexit>

0
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f1[A][B] + f2[D][E] = b1[C] + b2[C]
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f1[A][B] = b1[C]

<latexit sha1_base64="4gSIiFSf+IrHQlJWpNcT4jTE00Y=">AAAB/XicdZBNS8MwGMdTX+d8qy83L8EheCqtTNSDMt3F4wT3Al0paZZuYWlaklSYZfhVvHhQxKvfw5vfxnTrQEX/EPjn9zwPefIPEkalsu1PY25+YXFpubRSXl1b39g0t7ZbMk4FJk0cs1h0AiQJo5w0FVWMdBJBUBQw0g6G9bzeviNC0pjfqlFCvAj1OQ0pRkoj39wNfQe6lx50r7xzGOSXuuebFds6tnNB27JnpiBOQSqgUMM3P7q9GKcR4QozJKXr2InyMiQUxYyMy91UkgThIeoTV1uOIiK9bLL9GB5o0oNhLPThCk7o94kMRVKOokB3RkgN5O9aDv+quakKT72M8iRVhOPpQ2HKoIphHgXsUUGwYiNtEBZU7wrxAAmElQ6srEOY/RT+b1pHllO1zm6qldpFEUcJ7IF9cAgccAJq4Bo0QBNgcA8ewTN4MR6MJ+PVeJu2zhnFzA74IeP9CyEUkxg=</latexit>

f2[D][E] = b2[C]

<latexit sha1_base64="mT2ePDufvd/EWR7M27UJs8Nr3P8=">AAAB/XicdZBNS8MwGMfT+TbnW325eQkOwVPpxkQ9KIMpeJzgXqArJc3SLSxNS5IKswy/ihcPinj1e3jz25huHajoHwL//J7nIU/+fsyoVLb9aRQWFpeWV4qrpbX1jc0tc3unLaNEYNLCEYtE10eSMMpJS1HFSDcWBIU+Ix1/1MjqnTsiJI34rRrHxA3RgNOAYqQ08sy9wKtC59KFzpV7Dv3s0nA9s2xbx3YmaFv23OSkkpMyyNX0zI9eP8JJSLjCDEnpVOxYuSkSimJGJqVeIkmM8AgNiKMtRyGRbjrdfgIPNenDIBL6cAWn9PtEikIpx6GvO0OkhvJ3LYN/1ZxEBaduSnmcKMLx7KEgYVBFMIsC9qkgWLGxNggLqneFeIgEwkoHVtIhzH8K/zftqlWpWWc3tXL9Io+jCPbBATgCFXAC6uAaNEELYHAPHsEzeDEejCfj1XibtRaMfGYX/JDx/gUtkZMg</latexit>
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Detailed balance means that the system is at a minimum of free 
energy and is in a “dead” state

We often model systems that can never equilibrate

Now
 <latexit sha1_base64="oDhQPPwK3CHE1jJlLB0rtv0ZxU8="></latexit>

k
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d[C]

dt
= f1[A][B]� b1[C]� k[C]

<latexit sha1_base64="Rud5y/3BOvdB6Wyedf851bMb+BM="></latexit>

which is able to reach steady state but never equilibrium because the k reaction 
cannot be balanced.

ATP

ADP

we implicitly assume the free energy, 
here ATP, preventing a backward 
reaction is continually re-supplied



We use detailed balance and conservations to find equilibrium 
concentrations

A+ B
f�*)�
b

C

<latexit sha1_base64="R/19piQdx2ziOcMQj68U8Ix7epM="></latexit>

Detailed balance implies

At equilibrium, the extra condition of detailed balance implies

d[C]

dt
=

0z }| {
f1[A][B] � b1C +

0z }| {
f2[D][E] � b2[C] = 0 (2.27)

so that not only is d[C]
dt equal to zero, but also f1[A][B] = b1[C] so that the first reaction is

balanced and f2[D][E] = b2[C] so that the second reaction is balanced.
Detailed balance forces the system to be at a minimum of free energy and so ‘dead’. In

modelling, we often assume that a system is never able to reach equilibrium so that there is
always free energy to exploit. For example, if any reaction is made irreversible, it will never be
balanced, and the system may reach a steady state, but this steady state will not be equilibrium.
Implicitly we are assuming a continual supply of free energy, such as ATP, which biases the
reaction to work predominately in one direction. For example, there may be a coupling of the
reaction in this direction to the hydrolysis of ATP.

2.3.1 Finding concentrations at equilibrium

As an example of solving a system at equilibrium, consider again

A + B
f�*)�
b

C. (2.28)

At equilibrium, detailed balance implies

f [A][B] = b[C] (2.29)

so that the rate of association of A and B equals the rate of dissociation of C. The equilibrium
dissociation constant is defined as Keq = b/f , and

[A][B] = Keq[C]. (2.30)

From the rate equations

d[A]

dt
=

d[B]

dt
= �f [A][B] + b[C] = �d[C]

dt
(2.31)

we see that
d[A]

dt
+

d[C]

dt
= 0 (2.32)

and
d[B]

dt
+

d[C]

dt
= 0 (2.33)

implying
[A] + [C] = A0 (2.34)

and
[B] + [C] = B0 (2.35)

for some constant A0 and B0. These conservation laws arise because each C molecule ‘contains’
an A molecule and a B molecule. Together with Eq 2.30, these conservation laws define the
equilibrium concentrations of [A], [B], and [C].
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or

At equilibrium, the extra condition of detailed balance implies

d[C]

dt
=

0z }| {
f1[A][B] � b1C +

0z }| {
f2[D][E] � b2[C] = 0 (2.27)

so that not only is d[C]
dt equal to zero, but also f1[A][B] = b1[C] so that the first reaction is

balanced and f2[D][E] = b2[C] so that the second reaction is balanced.
Detailed balance forces the system to be at a minimum of free energy and so ‘dead’. In

modelling, we often assume that a system is never able to reach equilibrium so that there is
always free energy to exploit. For example, if any reaction is made irreversible, it will never be
balanced, and the system may reach a steady state, but this steady state will not be equilibrium.
Implicitly we are assuming a continual supply of free energy, such as ATP, which biases the
reaction to work predominately in one direction. For example, there may be a coupling of the
reaction in this direction to the hydrolysis of ATP.

2.3.1 Finding concentrations at equilibrium

As an example of solving a system at equilibrium, consider again

A + B
f�*)�
b

C. (2.28)

At equilibrium, detailed balance implies

f [A][B] = b[C] (2.29)

so that the rate of association of A and B equals the rate of dissociation of C. The equilibrium
dissociation constant is defined as Keq = b/f , and

[A][B] = Keq[C]. (2.30)

From the rate equations

d[A]

dt
=

d[B]

dt
= �f [A][B] + b[C] = �d[C]

dt
(2.31)

we see that
d[A]

dt
+

d[C]

dt
= 0 (2.32)

and
d[B]

dt
+

d[C]
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Thermodynamic cycles



Allowing reactions to go to equilibrium can restrict the values of rate 
constants

2.4 The law of mass action

The law of mass action states that the rate of a reaction should depend on stoichiometry in the
same way that equilibrium constants depend on stoichiometry. The stoichiometry of a reaction
is defined as the relative numbers of reactants and products that are expended and created by
the reaction. For example, for the association reaction A+B ! C, the stoichiometric coe�cient
of A is -1, of B is -1, and of C is 1 because one molecule of A combines with one molecule of
B to form one molecule of C. Comparing Eq 2.11 and Eq 2.29, we see that the dependence on
stoichiometry is the same because the concentrations are raised to the same powers.

E↵ectively, the law of mass action means that the rate of a reaction is proportional to the
number of ways the reaction can occur, which is the logic we used to derive Eq 2.11. Using the
law of mass action, we ensure that the dynamics of our system are such that the system reaches
a thermodynamically correct equilibrium.

2.5 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable.

Schematically these reactions may be written in a circle. The ion channel is said to undergo
a thermodynamic cycle because the channel once open can go through the refractory and the
closed state before opening again.
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV
b = b̃

(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV
b=b̃

(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (2.36)

For a thermodynamic cycle that is able to reach equilibrium, the reaction rates may not be
arbitrarily chosen and must obey Eq 2.36, which implies that the probability of going round the
cycle one way is equal to the probability of going round the cycle the other way.

If the rate constants do not satisfy Eq 2.36, the system is using energy to force the cycle to
occur preferentially in one direction. A phenomenon that may not be intended by the modeller.
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Ion channels often have 
multiple states

ions

2.4 The law of mass action

The law of mass action states that the rate of a reaction should depend on stoichiometry in the
same way that equilibrium constants depend on stoichiometry. The stoichiometry of a reaction
is defined as the relative numbers of reactants and products that are expended and created by
the reaction. For example, for the association reaction A+B ! C, the stoichiometric coe�cient
of A is -1, of B is -1, and of C is 1 because one molecule of A combines with one molecule of
B to form one molecule of C. Comparing Eq 2.11 and Eq 2.29, we see that the dependence on
stoichiometry is the same because the concentrations are raised to the same powers.

E↵ectively, the law of mass action means that the rate of a reaction is proportional to the
number of ways the reaction can occur, which is the logic we used to derive Eq 2.11. Using the
law of mass action, we ensure that the dynamics of our system are such that the system reaches
a thermodynamically correct equilibrium.

2.5 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable.

Schematically these reactions may be written in a circle. The ion channel is said to undergo
a thermodynamic cycle because the channel once open can go through the refractory and the
closed state before opening again.
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

If we assume that each of these reactions is at equilibrium and obeys detailed balance then

k1C = k�1O ; k2O = k�2R ; k3R = k�3C. (2.36)

Rearranging these equations gives

C =
k�1

k1
O =

k�1

k1
· k�2

k2
R =

k�1

k1
· k�2

k2
· k�3

k3
C (2.37)

and so equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (2.38)
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Detailed balance implies

2.4 The law of mass action

The law of mass action states that the rate of a reaction should depend on stoichiometry in the
same way that equilibrium constants depend on stoichiometry. The stoichiometry of a reaction
is defined as the relative numbers of reactants and products that are expended and created by
the reaction. For example, for the association reaction A+B ! C, the stoichiometric coe�cient
of A is -1, of B is -1, and of C is 1 because one molecule of A combines with one molecule of
B to form one molecule of C. Comparing Eq 2.11 and Eq 2.29, we see that the dependence on
stoichiometry is the same because the concentrations are raised to the same powers.

E↵ectively, the law of mass action means that the rate of a reaction is proportional to the
number of ways the reaction can occur, which is the logic we used to derive Eq 2.11. Using the
law of mass action, we ensure that the dynamics of our system are such that the system reaches
a thermodynamically correct equilibrium.

2.5 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable.

Schematically these reactions may be written in a circle. The ion channel is said to undergo
a thermodynamic cycle because the channel once open can go through the refractory and the
closed state before opening again.
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

If we assume that each of these reactions is at equilibrium and obeys detailed balance then

k1C = k�1O ; k2O = k�2R ; k3R = k�3C. (2.36)

Rearranging these equations gives

C =
k�1

k1
O =

k�1

k1
· k�2

k2
R =

k�1

k1
· k�2

k2
· k�3

k3
C (2.37)

and so equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (2.38)

10

or

and so

2.4 The law of mass action

The law of mass action states that the rate of a reaction should depend on stoichiometry in the
same way that equilibrium constants depend on stoichiometry. The stoichiometry of a reaction
is defined as the relative numbers of reactants and products that are expended and created by
the reaction. For example, for the association reaction A+B ! C, the stoichiometric coe�cient
of A is -1, of B is -1, and of C is 1 because one molecule of A combines with one molecule of
B to form one molecule of C. Comparing Eq 2.11 and Eq 2.29, we see that the dependence on
stoichiometry is the same because the concentrations are raised to the same powers.

E↵ectively, the law of mass action means that the rate of a reaction is proportional to the
number of ways the reaction can occur, which is the logic we used to derive Eq 2.11. Using the
law of mass action, we ensure that the dynamics of our system are such that the system reaches
a thermodynamically correct equilibrium.

2.5 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable.

Schematically these reactions may be written in a circle. The ion channel is said to undergo
a thermodynamic cycle because the channel once open can go through the refractory and the
closed state before opening again.
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

If we assume that each of these reactions is at equilibrium and obeys detailed balance then

k1C = k�1O ; k2O = k�2R ; k3R = k�3C. (2.36)

Rearranging these equations gives

C =
k�1

k1
O =

k�1

k1
· k�2

k2
R =

k�1

k1
· k�2

k2
· k�3

k3
C (2.37)

and so equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (2.38)

10

if this constraint is broken, the system 
must use energy to bias the cycle to 
move in a particular direction 

equilibrium



Hill functions



Empirical input-output relationships are often approximated as Hill 
functions

For a thermodynamic cycle that is able to reach equilibrium, the reaction rates may not be
arbitrarily chosen and must obey Eq 2.38, which implies that the probability of going round the
cycle one way is equal to the probability of going round the cycle the other way.

If the rate constants do not satisfy Eq 2.38, the system is using energy to force the cycle to
occur preferentially in one direction. A phenomenon that may not be intended by the modeller.

2.6 Ultrasensitivity and the Hill number

The response curve of system is the input-output relation and gives the level of output for as a
function of the level of input. Many empirical response curves may be approximately described
by a Hill function.

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.
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1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(2.39)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal (50%) e↵ective concentration.

If the output decreases with increasing levels of input, then the appropriate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(2.40)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

The Hill number is often used to characterize the ultrasensitivity – also called the coopera-
tivity – of the response. A response with a Hill number of 1 is said to be hyperbolic. The rate
of a Michaelis-Menten enzymatic reaction as a function of the substrate concentration, Eq 2.68,
is a well-known example. If the Hill number is greater than 1, the response is ultrasensitive,
and the response curve has a S- or sigmoidal shape. With Hill numbers above approximately 3,

11

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)

3

Che
m
ica

l r
at
e
eq

ua
tio

ns
ar
e
us

ua
lly

writ
te
n
in

te
rm

s of
co

nc
en

tr
at
io
ns

, w
hi
ch

ar
e
m
ea

su
re
d

in
m
ol
ar

un
its

(n
um

be
r o

f m
ol
es

of
a su

bs
ta
nc

e p
er

lit
re
).

Le
t [
C
] d

en
ot
e t

he
m
ol
ar

co
nc

en
tr
at
io
n

of
C
, t

he
n

[C
] =

nC

nA
V

(4
)

whe
re

nA
'

6.
02

⇥
10
23

is
Avo

ga
dr

o’
s
nu

m
be

r
an

d
V

is
th

e
vo

lu
m
e
of

th
e
ce
ll

in
lit

re
s.

To

co
nv

er
t Eq

. 3
in
to

an
eq

ua
tio

n
fo
r th

e
ra
te

of
ch

an
ge

of
th

e
co

nc
en

tr
at
io
n
of

C
, w

e
m
us

t di
vi
de

Eq
. 3

by
nA

V
. Thi

s di
vi
sio

n
gi
ve

s
d
[C

]

d
t

=
f̃
nA

V
[A

][B
]�

b̃[C
]

(5
)

whe
re

[A
] i
s th

e
co

nc
en

tr
at
io
n
of

A
an

d
[B

] i
s th

e
co

nc
en

tr
at
io
n
of

B
. If

we
de

fin
e
m
ac

ro
sc
op

ic

re
ac

tio
ns

ra
te
s,

fo
r re

ac
tio

ns
in
vo

lv
in
g
co

nc
en

tr
at
io
ns

, a
s

f
=

f̃
nA

V

b
=

b̃

(6
)

th
en

d
[C

]

d
t

=
f
[A

][B
]�

b[C
].

(7
)

The
un

its
of

th
e m

ac
ro
sc
op

e ra
te

f
ar
e M

�1 s�
1 , a

nd
f
ha

s an
up

pe
r bo

un
d
gi
ve

n
by

a
re
ac

tio
n

th
at

is
di
↵u

sio
n-
lim

ite
d.

The
un

its
of

th
e
m
ac

ro
sc
op

ic
ra
te

b
ar
e
un

ch
an

ge
d
an

d
ar
e
s�
1 .

1.
1.
1

Ex
am

pl
e:

di
m
er
iz
at
io
n

M
an

y
m
em

br
an

e re
ce
pt

or
s r

ev
er
sib

ly
di
m
er
ize

to
fo
rm

a
re
ce
pt

or
-re

ce
pt

or
di
m
er
, a

nd
so
m
et
im

es

on
ly

th
e
di
m
er

ca
n
bi
nd

lig
an

d
an

d
sig

na
l d

ow
ns

tr
ea

m
.
The

di
m
er
iza

tio
n
re
ac

tio
n
is

un
us

ua
l.

Le
t R

de
no

te
a
re
ce
pt

or
an

d
R

2
de

no
te

a
di
m
er

of
re
ce
pt

or
s.

The
se

sp
ec
ies

sa
tis

fy
th

e
re
ac

tio
n

R
+

R

f�*)�b

R 2

The
ra
te

eq
ua

tio
ns

fo
r
th

is
sy
st
em

ar
e
at
yp

ica
l be

ca
us

e
tw

o
m
ol
ec
ul
es

of
R

ar
e
re
m
ov

ed

by
th

e
f

re
ac

tio
n

an
d

tw
o
m
ol
ec
ul
es

ar
e
re
lea

se
d

by
th

e
b
re
ac

tio
n.

Alth
ou

gh
th

e
as
so
cia

tio
n

re
ac

tio
n
pr

oc
ee
ds

at
th

e
ra
te

f
[R

]2
an

d
th

e
di
ss
oc

ia
tio

n
re
ac

tio
n
pr

oc
ee
ds

at
th

e
ra
te

b[R
2
],
we

ha
ve

d
[R

]

d
t

=
�2f

[R
]2
+

2b
[R

2
]

(8
)

be
ca

us
e
tw

o
R

m
ol
ec
ul
es

ar
e
in
vo

lv
ed

in
bo

th
re
ac

tio
ns

. The
di
m
er
, R

2
, o

be
ys

d
[R

2
]

d
t

=
f
[R

]2
�

b[R
2
]

(9
)

be
ca

us
e
on

ly
on

e
m
ol
ec
ul
e
of

di
m
er

fo
rm

s or
di
ss
oc

ia
te
s.

Su
m
m
in
g
Eq

. 8
an

d
tw

ice
Eq

. 9
gi
ve

s

d
[R

]

d
t

+
2
d
[R

2
]

d
t

=
0

(1
0)

im
pl
yi
ng

th
at

[R
] +

2[
R

2
] =

co
ns

ta
nt

=
[R

] 0
+

2[
R 2

] 0

(1
1)

3

Che
m

ica
lr

at
e

eq
ua

tio
ns

ar
e

us
ua

lly
writ

te
n

in
te

rm
sof

co
nc

en
tr

at
io

ns
,w

hi
ch

ar
e

m
ea

su
re

d

in
m

ol
ar

un
its

(n
um

be
ro

fm
ol

es
of

asu
bs

ta
nc

ep
er

lit
re

).
Le

t[
C

]d
en

ot
et

he
m

ol
ar

co
nc

en
tr

at
io

n

of
C

,t
he

n

[C
]=

n
C n

AV

(4
)

whe
re

n
A

'
6.

02
⇥

1023
is

Avo
ga

dr
o’

s
nu

m
be

r
an

d
V

is
th

e
vo

lu
m

e
of

th
e

ce
ll

in
lit

re
s.

To

co
nv

er
tEq

.3
in

to
an

eq
ua

tio
n

fo
rth

e
ra

te
of

ch
an

ge
of

th
e

co
nc

en
tr

at
io

n
of

C
,w

e
m

us
tdi

vi
de

Eq
.3

by
n

AV
.Thi

sdi
vi

sio
n

gi
ve

s

d
[C

] d
t

=
˜fn

AV
[A

][B
]�

b̃[C
]

(5
)

whe
re

[A
]i

sth
e

co
nc

en
tr

at
io

n
of

A
an

d
[B

]i
sth

e
co

nc
en

tr
at

io
n

of
B

.If
we

de
fin

e
m

ac
ro

sc
op

ic

re
ac

tio
ns

ra
te

s,
fo

rre
ac

tio
ns

in
vo

lv
in

g
co

nc
en

tr
at

io
ns

,a
s

f
=

˜fn
AV

b
=

b̃

(6
)

th
en

d
[C

] d
t

=
f

[A
][B

]�
b[C

].

(7
)

The
un

its
of

th
em

ac
ro

sc
op

era
te

f
ar

eM�1
s�1

,a
nd

f
ha

san
up

pe
rbo

un
d

gi
ve

n
by

a
re

ac
tio

n

th
at

is
di

↵u
sio

n-
lim

ite
d.

The
un

its
of

th
e

m
ac

ro
sc

op
ic

ra
te

b
ar

e
un

ch
an

ge
d

an
d

ar
e

s�1
.

1.
1.

1
Ex

am
pl

e:
di

m
er

iz
at

io
n

M
an

y
m

em
br

an
ere

ce
pt

or
sr

ev
er

sib
ly

di
m

er
ize

to
fo

rm
a

re
ce

pt
or

-re
ce

pt
or

di
m

er
,a

nd
so

m
et

im
es

on
ly

th
e

di
m

er
ca

n
bi

nd
lig

an
d

an
d

sig
na

ld
ow

ns
tr

ea
m

.
The

di
m

er
iza

tio
n

re
ac

tio
n

is
un

us
ua

l.

Le
tR

de
no

te
a

re
ce

pt
or

an
d

R
2

de
no

te
a

di
m

er
of

re
ce

pt
or

s.
The

se
sp

ec
ies

sa
tis

fy
th

e
re

ac
tio

n

R
+

Rf �*)�
bR

2

The
ra

te
eq

ua
tio

ns
fo

r
th

is
sy

st
em

ar
e

at
yp

ica
lbe

ca
us

e
tw

o
m

ol
ec

ul
es

of
R

ar
e

re
m

ov
ed

by
th

e
f

re
ac

tio
n

an
d

tw
o

m
ol

ec
ul

es
ar

e
re

lea
se

d
by

th
e

b
re

ac
tio

n.
Alth

ou
gh

th
e

as
so

cia
tio

n

re
ac

tio
n

pr
oc

ee
ds

at
th

e
ra

te
f

[R
]2

an
d

th
e

di
ss

oc
ia

tio
n

re
ac

tio
n

pr
oc

ee
ds

at
th

e
ra

te
b[R

2],
we

ha
ve

d
[R

] d
t

=
�2f

[R
]2

+
2b

[R
2]

(8
)

be
ca

us
e

tw
o

R
m

ol
ec

ul
es

ar
e

in
vo

lv
ed

in
bo

th
re

ac
tio

ns
.The

di
m

er
,R

2,
ob

ey
s

d
[R

2] d
t

=
f

[R
]2

�
b[R

2]

(9
)

be
ca

us
e

on
ly

on
e

m
ol

ec
ul

e
of

di
m

er
fo

rm
sor

di
ss

oc
ia

te
s.

Su
m

m
in

g
Eq

.8
an

d
tw

ice
Eq

.9
gi

ve
s

d
[R

] d
t+

2d
[R

2] d
t

=
0

(1
0)

im
pl

yi
ng

th
at

[R
]+

2[
R

2]
=

co
ns

ta
nt

=
[R

]0
+

2[
R

2]0

(1
1)

3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

the response is switch-like or ‘all-or-none’ with little response for inputs below K and an almost
maximal response for all inputs above K. This switch-like response is sometimes called a ‘soft’
switch because the underlying system is not bistable (Sec. 4).

For di↵erent biochemistry, there is di↵erent terminology. Responses with a Hill number
greater than 1 are often called ultrasensitive for systems involved in signal transduction and are
often called cooperative for systems involved in gene regulation. A response with a Hill number
below one is subsensitive.

2.7 Modelling signal transduction II

Considering Fig. 1, we can use a Hill function to immediately write an equivalent to Eq 2.22:

[R⇤] ' R0[S]n

Kn + [S]n
(2.41)

where the Hill number n could be greater than 1 if, for example, multiple molecules of S have
to bind to a receptor R to activate that receptor or if S only binds to R as a dimer. Eq 2.24
then becomes:

d[A⇤]

dt
' kR0[S]n

Kn + [S]n
(A0 � [A⇤]). (2.42)

2.8 Allostery and the Monod-Wyman-Changeux model

Allostery is the modification of molecule’s activity through binding of a regulatory molecule to a
site on the molecule that is not the molecule’s functional site. Allostery explains why a molecule
that regulates an enzyme need not be of a similar structure to the substrate of an enzyme. That
a regulatory molecule need not be similar to a substrate was a great revelation when discovered
in the 1950s. Through conformational changes, binding sites on allosteric enzymes interact, and
a molecule binding at a regulatory site cause an allosteric enzyme to change conformation at
its active site and so alter enzymatic activity. Allostery is one way to generate ultrasensitive
responses.

12

y(x) =
ymaxxn

Kn + xn
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Some terminology

y(x) =
ymaxxn

Kn + xn
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n= 1: hyperbolic or Michaelis-Menten response

n> 1: sigmoidal or S-shaped response

n> 1: ultrasensitive response for signalling
n< 1: subsensitive response

n> 1: cooperative response for gene expression



Modelling signal transduction II

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec. 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec. 5).
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mRNA

reporter

SInput

R
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B* B
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ki
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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Rather than 

The number of receptor molecules is conserved because d[R]/dt + d[R⇤]/dt = 0: receptors are
neither created nor destroyed but only change state from inactivated to activated and vice versa.
Writing R0 for the total concentration of receptors so that

R0 = [R] + [R⇤], (2.21)

then, using Eq. 2.20, we can show that

[R⇤] ' [S]R0
b
f + [S]

. (2.22)

The di↵erential equation for [A⇤], the output of the signalling system, then becomes

d[A⇤]

dt
' k[S]R0

b
f + [S]

[A] (2.23)

or
d[A⇤]

dt
' k[S]R0

b
f + [S]

(A0 � [A⇤]) (2.24)

because the number of A molecules is conserved (with a total concentration of A0) because A
also only changes state.

Eq. 2.24 is our model of the signalling pathway. If either [S] = 0 or f = 0, no A⇤ is produced.
If [S] � b/f , the rate of production of A⇤ saturates because all the receptors are bound by S.
There is no reverse reaction that converts A⇤ back into A, and so all the A molecules become
activated at steady-state: [A⇤] = A0.

2.3 Equilibrium and detailed balance

In the absence of any input of energy, chemical reactions reach an equilibrium where the number
of molecules of each species stay constant. All time derivatives are then zero, and the system is
said to be at a steady-state. Equilibrium is, however, a particular steady-state where detailed
balance also holds. Detailed balance means that for each chemical reaction, the forward rate of
the reaction must equal the backward rate of the reaction. When [A], [B], and [C] all become
constant,

d[A]

dt
=

d[B]

dt
=

d[C]

dt
= 0 (2.25)

and the system is at steady-state. To be at equilibrium, we need detailed balance and so that

f [A][B] = b[C] (2.26)

and the rate of association of A and B equals the rate of dissociation of C. For this system,
there is one steady-state, which is equilibrium. For more complex systems, steady-state need not
be equilibrium. For example, systems that contain irreversible reactions can reach steady-state
but can never be at equilibrium because the backward rate of a irreversible reaction is zero and
therefore cannot equal the forward rate: detailed balance does not hold.

The equilibrium dissociation constant is defined as Keq = b/f , and the system at equilibrium
then obeys

[A][B] = Keq[C]. (2.27)
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use

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

and is determined solely by the Hill number. A response with a Hill number of 1 is said to be
hyperbolic. The rate of a Michaelis-Menten enzymatic reaction as a function of the substrate
concentration, Eq 2.69, is a well-known example. If the Hill number is greater than 1, the
response is ultrasensitive, and the response curve has a S- or sigmoidal shape. With Hill numbers
above approximately 3, the response is switch-like or ‘all-or-none’ with little response for inputs
below K and an almost maximal response for all inputs above K. This switch-like response is
sometimes called a ‘soft’ switch because the underlying system is not bistable (Sec. 4).

For di↵erent biochemistry, there is di↵erent terminology. Responses with a Hill number
greater than 1 are often called ultrasensitive for systems involved in signal transduction and are
often called cooperative for systems involved in gene regulation. A response with a Hill number
below one is subsensitive.

2.7 Modelling signal transduction II

Considering Fig. 1, we can use a Hill function to immediately write an equivalent to Eq 2.22:

[R⇤] ' R0[S]n

Kn + [S]n
(2.42)

where the Hill number n could be greater than 1 if, for example, multiple molecules of S have
to bind to a receptor R to activate that receptor or if S only binds to R as a dimer. Eq 2.24
then becomes:

d[A⇤]

dt
' kR0[S]n

Kn + [S]n
(A0 � [A⇤]). (2.43)

2.8 Allostery and the Monod-Wyman-Changeux model

Allostery is the modification of molecule’s activity through binding of a regulatory molecule to a
site on the molecule that is not the molecule’s functional site. Allostery explains why a molecule
that regulates an enzyme need not be of a similar structure to the substrate of an enzyme. That
a regulatory molecule need not be similar to a substrate was a great revelation when discovered
in the 1950s. Through conformational changes, binding sites on allosteric enzymes interact, and

12

so that

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.
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1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B

molecule. For example, the A molecule could be a receptor on the cell membrane and the B

molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A

and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1

. (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f

�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax
=

x
n

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax
=

K
n

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

and is determined solely by the Hill number. A response with a Hill number of 1 is said to be
hyperbolic. The rate of a Michaelis-Menten enzymatic reaction as a function of the substrate
concentration, Eq 2.69, is a well-known example. If the Hill number is greater than 1, the
response is ultrasensitive, and the response curve has a S- or sigmoidal shape. With Hill numbers
above approximately 3, the response is switch-like or ‘all-or-none’ with little response for inputs
below K and an almost maximal response for all inputs above K. This switch-like response is
sometimes called a ‘soft’ switch because the underlying system is not bistable (Sec. 4).

For di↵erent biochemistry, there is di↵erent terminology. Responses with a Hill number
greater than 1 are often called ultrasensitive for systems involved in signal transduction and are
often called cooperative for systems involved in gene regulation. A response with a Hill number
below one is subsensitive.

2.7 Modelling signal transduction II

Considering Fig. 1, we can use a Hill function to immediately write an equivalent to Eq 2.22:

[R⇤] ' R0[S]n

Kn + [S]n
(2.42)

where the Hill number n could be greater than 1 if, for example, multiple molecules of S have
to bind to a receptor R to activate that receptor or if S only binds to R as a dimer. Eq 2.24
then becomes:

d[A⇤]

dt
' kR0[S]n

Kn + [S]n
(A0 � [A⇤]). (2.43)

2.8 Allostery and the Monod-Wyman-Changeux model

Allostery is the modification of molecule’s activity through binding of a regulatory molecule to a
site on the molecule that is not the molecule’s functional site. Allostery explains why a molecule
that regulates an enzyme need not be of a similar structure to the substrate of an enzyme. That
a regulatory molecule need not be similar to a substrate was a great revelation when discovered
in the 1950s. Through conformational changes, binding sites on allosteric enzymes interact, and
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eg n molecules of S 
are needed to 
activate a receptor


