The Michaelis-Menten model of catalysis by enzymes



The standard way to model enzymes is with the Michaelis-Menten
equation

In this model, an enzyme catalyses the irreversible conversion of substrate S to

product P
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Using the law of mass action
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We can simplity the equations because the reaction conserves

enzymes
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Most of the enzyme is bound up with substrate because there so
much more substrate compared to enzyme
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The Michaelis-Menten equation describes the rate of formation of
the product, or equally the rate of consumption of the substrate
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which is usually written as
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A more formal analysis shows that the assumption of quasi-steady state
requires




Modelling signal transduction IV.i
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The rate equation for [B*]
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The rate of change of [B*] has a
positive term
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The rate of change of [B*] has a
negative term
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We will simplify the rate equation for [B*]
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by assuming that the phosphatase is far from being saturated
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Enzymatic cascades



Why have a cascade of kinases? Enzymatic cascades can increase
ultrasensitivity

Active B is a Hill function of active A
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Hill numbers multiply in a cascade: nfinai= ng nc

Active B is a Hill function of active A
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For the cascade to increase sensitivity, the Hill numbers of intermediate
steps must be greater than one
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Many kinases require two phosphorylation to activate and so have a Hill number
greater than one if the activating enzyme is distributive.

l

A distributive kinase binds, phosphorylates, dissociates, and
then binds and phosphorylates again. A processive enzyme
binds once, phosphorylates twice, and then dissociates.



