
The Michaelis-Menten model of catalysis by enzymes



2.9 Modelling signal transduction III

We can use an allosteric model to describe activation of the receptors in Fig. 1. Consider

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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RR*

R1R*1

L

KK*

S

then the fraction of activated receptors is

f
⇤ =

1 + K
⇤[S]

1 + K⇤[S] + L(1 + K[S])
(2.58)

from Eq 2.44. The concentration of active receptors is [R⇤] = f
⇤
R0, and so Eq 2.43 becomes

d[A⇤]

dt
' kR0(1 + K

⇤[S])

1 + K⇤[S] + L(1 + K[S])
(A0 � [A⇤]). (2.59)

When [S] = 0, then Eq 2.59 simplifies

d[A⇤]

dt
' kR0

1 + L
(A0 � [A⇤]) (2.60)

and there is a basal rate of activation even in the absence of ligand. This basal rate goes to
zero as L � 1 because then receptors almost never spontaneously enter the activated state. If
K

⇤[S] � 1 so that almost all the active receptors are in the R
⇤
1 state and not in the R

⇤ state
then

d[A⇤]

dt
' kR0K

⇤[S]

L + (K⇤ + KL)[S]
(A0 � [A⇤]) (2.61)

and we recover Eq 2.24.

2.10 Enzyme kinetics

Almost all studies of enzymes start with the framework introduced by Michaelis and Menten,
which although approximate is a general description. An enzymatic reaction is considered to
occur in two steps: first, the enzyme binds the substrate to form an enzyme-substrate complex;
second, catalysis occurs and this complex dissociates to form the product and release the enzyme:

E + S
f�*)�
b

C
k�! P + E

For example, E may be a kinase in a signalling network that phosphorylates a substrate S to
form P (phosphorylated S).
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The standard way to model enzymes is with the Michaelis-Menten 
equation

In this model, an enzyme catalyses the irreversible conversion of substrate S to 
product P 

Using the law of mass action
Using the law of mass action, the rate equations for this system are

d[E]

dt
= �f [E][S] + (b + k)[C]

d[S]

dt
= �f [E][S] + b[C]

d[C]

dt
= f [E][S] � (b + k)[C]

d[P ]

dt
= k[C].

(2.62)

Catalysis does not use up the enzyme, and we see that

d[E]

dt
+

d[C]

dt
= 0 (2.63)

so that
[E] + [C] = [E]0 + [C]0 = [E]tot (2.64)

where the right-hand side is the total amount of enzyme initially present (denoted [E]tot). Simi-
larly, substrate is converted into product and no new substrate is created, so that [S]+ [C]+ [P ]
is a constant: the total amount of substrate is conserved in its various forms (either as free
substrate, in complex with enzyme, or as product).

The Michaelis-Menten approximation typically relies on more substrate being present than
enzyme, which is often true initially, so that almost all the enzyme is bound up in complex with
the substrate most of the time. The concentration of the complex does not then change with
time (although [S] and [P ] do), at least while levels of S remain su�ciently high. We say that
[C] is at quasi-steady-state because d[C]/dt ' 0, but the system as a whole is not at steady-state
(d[S]/dt < 0 and d[P ]/dt > 0). If d[C]/dt ' 0, then

f [E][S] = (b + k)[C] (2.65)

from Eqs 2.62. Combining Eq 2.65 with Eq 2.64, we can show that

[C] ' [E]tot[S]
b+k
f + [S]

(2.66)

and so
d[P ]

dt
' k[E]tot[S]

b+k
f + [S]

(2.67)

which depends only on the total amount of enzyme and the concentration of the substrate.
Defining

Vmax = k[E]tot ; Km = b+k
f (2.68)

we have the Michaelis-Menten equation:

d[P ]

dt
' Vmax[S]

Km + [S]
(2.69)

for the initial rate of an enzymatic reaction. The maximum rate of the reaction is given by Vmax

and occurs for high concentrations of substrate. The concentration of substrate at which the
reaction occurs at half this rate is given by the Michaelis constant, Km.
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We can simplify the equations because the reaction conserves 
enzymes

2.9 Modelling signal transduction III

We can use an allosteric model to describe activation of the receptors in Fig. 1. Consider

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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RR*

R1R*1

L

KK*

S

then the fraction of activated receptors is

f
⇤ =

1 + K
⇤[S]

1 + K⇤[S] + L(1 + K[S])
(2.58)

from Eq 2.44. The concentration of active receptors is [R⇤] = f
⇤
R0, and so Eq 2.43 becomes

d[A⇤]

dt
' kR0(1 + K

⇤[S])

1 + K⇤[S] + L(1 + K[S])
(A0 � [A⇤]). (2.59)

When [S] = 0, then Eq 2.59 simplifies

d[A⇤]

dt
' kR0

1 + L
(A0 � [A⇤]) (2.60)

and there is a basal rate of activation even in the absence of ligand. This basal rate goes to
zero as L � 1 because then receptors almost never spontaneously enter the activated state. If
K

⇤[S] � 1 so that almost all the active receptors are in the R
⇤
1 state and not in the R

⇤ state
then

d[A⇤]

dt
' kR0K

⇤[S]

L + (K⇤ + KL)[S]
(A0 � [A⇤]) (2.61)

and we recover Eq 2.24.

2.10 Enzyme kinetics

Almost all studies of enzymes start with the framework introduced by Michaelis and Menten,
which although approximate is a general description. An enzymatic reaction is considered to
occur in two steps: first, the enzyme binds the substrate to form an enzyme-substrate complex;
second, catalysis occurs and this complex dissociates to form the product and release the enzyme:

E + S
f�*)�
b

C
k�! P + E

For example, E may be a kinase in a signalling network that phosphorylates a substrate S to
form P (phosphorylated S).
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Using the law of mass action, the rate equations for this system are

d[E]

dt
= �f [E][S] + (b + k)[C]

d[S]

dt
= �f [E][S] + b[C]

d[C]

dt
= f [E][S] � (b + k)[C]

d[P ]

dt
= k[C].

(2.62)

Catalysis does not use up the enzyme, and we see that

d[E]

dt
+

d[C]

dt
= 0 (2.63)

so that
[E] + [C] = [E]0 + [C]0 = [E]tot (2.64)

where the right-hand side is the total amount of enzyme initially present (denoted [E]tot). Simi-
larly, substrate is converted into product and no new substrate is created, so that [S]+ [C]+ [P ]
is a constant: the total amount of substrate is conserved in its various forms (either as free
substrate, in complex with enzyme, or as product).

The Michaelis-Menten approximation typically relies on more substrate being present than
enzyme, which is often true initially, so that almost all the enzyme is bound up in complex with
the substrate most of the time. The concentration of the complex does not then change with
time (although [S] and [P ] do), at least while levels of S remain su�ciently high. We say that
[C] is at quasi-steady-state because d[C]/dt ' 0, but the system as a whole is not at steady-state
(d[S]/dt < 0 and d[P ]/dt > 0). If d[C]/dt ' 0, then

f [E][S] = (b + k)[C] (2.65)

from Eqs 2.62. Combining Eq 2.65 with Eq 2.64, we can show that

[C] ' [E]tot[S]
b+k
f + [S]

(2.66)

and so
d[P ]

dt
' k[E]tot[S]

b+k
f + [S]

(2.67)

which depends only on the total amount of enzyme and the concentration of the substrate.
Defining

Vmax = k[E]tot ; Km = b+k
f (2.68)

we have the Michaelis-Menten equation:

d[P ]

dt
' Vmax[S]

Km + [S]
(2.69)

for the initial rate of an enzymatic reaction. The maximum rate of the reaction is given by Vmax

and occurs for high concentrations of substrate. The concentration of substrate at which the
reaction occurs at half this rate is given by the Michaelis constant, Km.
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quasi-steady state

Using
[E] = Etot � [C]
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at quasi-steady state

we have

Using the law of mass action, the rate equations for this system are

d[E]

dt
= �f [E][S] + (b + k)[C]

d[S]

dt
= �f [E][S] + b[C]

d[C]

dt
= f [E][S] � (b + k)[C]

d[P ]

dt
= k[C].

(2.62)

Catalysis does not use up the enzyme, and we see that

d[E]

dt
+

d[C]

dt
= 0 (2.63)

so that
[E] + [C] = [E]0 + [C]0 = Etot (2.64)

where the right-hand side is the total amount of enzyme initially present, which I denote as
Etot. Similarly, substrate is converted into product and no new substrate is created, so that
[S] + [C] + [P ] is a constant: the total amount of substrate is conserved in its various forms –
either as free substrate, in complex with enzyme, or as product.

The Michaelis-Menten approximation typically relies on more substrate being present than
enzyme, which is often true initially, so that almost all the enzyme is bound up in complex with
the substrate most of the time. The concentration of the complex does not then change with
time (although [S] and [P ] do), at least while levels of S remain su�ciently high. We say that
[C] is at quasi-steady-state because d[C]/dt ' 0, but the system as a whole is not at steady-state
(d[S]/dt < 0 and d[P ]/dt > 0). If d[C]/dt ' 0, then

f [E][S] = (b + k)[C] (2.65)

from Eqs 2.62. Combining Eq 2.65 with Eq 2.64, we can show that

[C] ' Etot[S]
b+k
f + [S]

(2.66)

and so
d[P ]

dt
' kEtot[S]

b+k
f + [S]

(2.67)

which depends only on the total amount of enzyme and the concentration of the substrate.
Defining

Vmax = kEtot ; Km = b+k
f (2.68)

we have the Michaelis-Menten equation:

d[P ]

dt
' Vmax[S]

Km + [S]
(2.69)

for the initial rate of an enzymatic reaction. The maximum rate of the reaction is given by Vmax

and occurs for high concentrations of substrate. The concentration of substrate at which the
reaction occurs at half this rate is given by the Michaelis constant, Km.
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which is usually written as

2.9 Modelling signal transduction III

We can use an allosteric model to describe activation of the receptors in Fig. 1. Consider

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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L

KK*

S

then the fraction of activated receptors is

f
⇤ =

1 + K
⇤[S]

1 + K⇤[S] + L(1 + K[S])
(2.58)

from Eq 2.44. The concentration of active receptors is [R⇤] = f
⇤
R0, and so Eq 2.43 becomes

d[A⇤]

dt
' kR0(1 + K

⇤[S])

1 + K⇤[S] + L(1 + K[S])
(A0 � [A⇤]). (2.59)

When [S] = 0, then Eq 2.59 simplifies

d[A⇤]

dt
' kR0

1 + L
(A0 � [A⇤]) (2.60)

and there is a basal rate of activation even in the absence of ligand. This basal rate goes to
zero as L � 1 because then receptors almost never spontaneously enter the activated state. If
K

⇤[S] � 1 so that almost all the active receptors are in the R
⇤
1 state and not in the R

⇤ state
then

d[A⇤]

dt
' kR0K

⇤[S]

L + (K⇤ + KL)[S]
(A0 � [A⇤]) (2.61)

and we recover Eq 2.24.

2.10 Enzyme kinetics

Almost all studies of enzymes start with the framework introduced by Michaelis and Menten,
which although approximate is a general description. An enzymatic reaction is considered to
occur in two steps: first, the enzyme binds the substrate to form an enzyme-substrate complex;
second, catalysis occurs and this complex dissociates to form the product and release the enzyme:

E + S
f�*)�
b

C
k�! P + E

For example, E may be a kinase in a signalling network that phosphorylates a substrate S to
form P (phosphorylated S).
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with

Using the law of mass action, the rate equations for this system are

d[E]

dt
= �f [E][S] + (b + k)[C]

d[S]

dt
= �f [E][S] + b[C]

d[C]

dt
= f [E][S] � (b + k)[C]

d[P ]

dt
= k[C].

(2.62)

Catalysis does not use up the enzyme, and we see that

d[E]

dt
+

d[C]

dt
= 0 (2.63)

so that
[E] + [C] = [E]0 + [C]0 = Etot (2.64)

where the right-hand side is the total amount of enzyme initially present, which I denote as
Etot. Similarly, substrate is converted into product and no new substrate is created, so that
[S] + [C] + [P ] is a constant: the total amount of substrate is conserved in its various forms –
either as free substrate, in complex with enzyme, or as product.

The Michaelis-Menten approximation typically relies on more substrate being present than
enzyme, which is often true initially, so that almost all the enzyme is bound up in complex with
the substrate most of the time. The concentration of the complex does not then change with
time (although [S] and [P ] do), at least while levels of S remain su�ciently high. We say that
[C] is at quasi-steady-state because d[C]/dt ' 0, but the system as a whole is not at steady-state
(d[S]/dt < 0 and d[P ]/dt > 0). If d[C]/dt ' 0, then

f [E][S] = (b + k)[C] (2.65)

from Eqs 2.62. Combining Eq 2.65 with Eq 2.64, we can show that

[C] ' Etot[S]
b+k
f + [S]

(2.66)

and so
d[P ]

dt
' kEtot[S]

b+k
f + [S]

(2.67)

which depends only on the total amount of enzyme and the concentration of the substrate.
Defining

Vmax = kEtot ; Km = b+k
f (2.68)

we have the Michaelis-Menten equation:

d[P ]

dt
' Vmax[S]

Km + [S]
(2.69)

for the initial rate of an enzymatic reaction. The maximum rate of the reaction is given by Vmax

and occurs for high concentrations of substrate. The concentration of substrate at which the
reaction occurs at half this rate is given by the Michaelis constant, Km.
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The Michaelis-Menten equation is approximate, and more careful analysis shows that

Etot

[S]0 + Km
⌧ 1 (2.70)

is necessary for Eq 2.69 to hold [6], where [S]0 is the initial concentration of substrate. Eq 2.69
is incorrect either when Eq 2.70 is violated or for more complex enzymatic schemes such as those
with multiple intermediate states.

2.11 Modelling signal transduction IV

Given our allosteric model of the activation of the receptors in Fig. 1 (Eq 2.59), we can consider
how the signal is propagated within the cell and model the dynamics of kinase B, which is
activated by A

⇤. We will assume that this activation obeys Michaelis-Menten kinetics:

A⇤ + B
fB��*)��
bB

CAB
kB�! B⇤ + A⇤

The rate of change of [B⇤] then has a positive term

kB[A⇤][B]
bB+kB

fB
+ [B]

(2.71)

from Eq 2.67. If there is an enzyme that is constitutively active and de-activates B
⇤, such as a

phosphatase if A
⇤ is a kinase, then this enzyme too is likely to have Michaelis-Menten kinetics.

Denoting the enzyme as P , we have

B⇤ + P
f 0
B��*)��

b0B

CPB

k0
B�! B + P

and so a negative term in the rate of change of [B⇤] of

� k
0
B[P ][B⇤]

b0B+k0
B

f 0
B

+ [B⇤]
. (2.72)

Hence
d[B⇤]

dt
' kB[A⇤][B]

bB+kB
fB

+ [B]
� k

0
B[P ][B⇤]

b0B+k0
B

f 0
B

+ [B⇤]
(2.73)

or
d[B⇤]

dt
' kB[A⇤](B0 � [B⇤])

bB+kB
fB

+ B0 � [B⇤]
� k

0
B[P ][B⇤]

b0B+k0
B

f 0
B

+ [B⇤]
(2.74)

because the total concentration of B is conserved and here equal to B0 = [B] + [B⇤]. Often the

assumption that enzyme P works far from saturation is made so that
b0B+k0

B
f 0
B

� [B⇤]. Eq 2.74

then simplifies
d[B⇤]

dt
' kB[A⇤](B0 � [B⇤])

bB+kB
fB

+ B0 � [B⇤]
� dB[B⇤] (2.75)
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A more formal analysis shows that the assumption of quasi-steady state 
requires
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The rate of change of [B*] has a 
positive term

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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The Michaelis-Menten equation is approximate, and more careful analysis shows that
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We will simplify the rate equation for [B*] 
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by assuming that the phosphatase is far from being saturated

The Michaelis-Menten equation is approximate, and more careful analysis shows that
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is necessary for Eq 2.69 to hold [6], where [S]0 is the initial concentration of substrate. Eq 2.69
is incorrect either when Eq 2.70 is violated or for more complex enzymatic schemes such as those
with multiple intermediate states.
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Given our allosteric model of the activation of the receptors in Fig. 1 (Eq 2.59), we can consider
how the signal is propagated within the cell and model the dynamics of kinase B, which is
activated by A
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A⇤ + B
fB��*)��
bB

CAB
kB�! B⇤ + A⇤

The rate of change of [B⇤] then has a positive term

kB[A⇤][B]
bB+kB

fB
+ [B]

(2.71)

from Eq 2.67. If there is an enzyme that is constitutively active and de-activates B
⇤, such as a

phosphatase if A
⇤ is a kinase, then this enzyme too is likely to have Michaelis-Menten kinetics.

Denoting the enzyme as P , we have

B⇤ + P
f 0
B��*)��

b0B

CPB

k0
B�! B + P

and so a negative term in the rate of change of [B⇤] of

� k
0
B[P ][B⇤]

b0B+k0
B

f 0
B

+ [B⇤]
. (2.72)

Hence
d[B⇤]

dt
' kB[A⇤][B]

bB+kB
fB

+ [B]
� k

0
B[P ][B⇤]

b0B+k0
B

f 0
B

+ [B⇤]
(2.73)

or
d[B⇤]

dt
' kB[A⇤](B0 � [B⇤])

bB+kB
fB

+ B0 � [B⇤]
� k

0
B[P ][B⇤]

b0B+k0
B

f 0
B

+ [B⇤]
(2.74)

because the total concentration of B is conserved and here equal to B0 = [B] + [B⇤]. Often the
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Including similar activation of molecule C by B
⇤, our final model of the cytoplasmic reactions

of Fig. 1 is
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assuming that deactivating enzymes (phosphatases) are present and are far from saturation.

2.12 Enzymatic cascades

Enzymatic cascades – where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on – have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
of oocytes in the frog Xenopus laevis. The hormone progesterone activates the MAP kinase
kinase kinase Mos; Mos activates the MAP kinase kinase MEK1; and MEK1 activates the MAP
kinase p42. Activation of p42 MAP kinase leads ultimately to the oocyte maturating.

If each step of the cascade is ultrasensitive, then each subsequent step increases the ultra-
sensitivity of the response of the cascade’s final enzyme. For example, if steady-state [B⇤] is a
sigmoidal function of [A⇤] then

[B⇤] = [B⇤]max · [A⇤]nB

K
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B + [A⇤]nB

(2.78)

where nB is the Hill number and KB is the EC50 of the activation of B by A
⇤. Similarly, if

steady-state [C⇤] is a sigmoidal function of [B⇤] then

[C⇤] = [C⇤]max · [B⇤]nC
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where nC is the Hill number and KC is the EC50 of B
⇤. Inserting Eq 2.78 into Eq 2.79 gives
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If the concentration of A
⇤ is smaller than its EC50 ([A⇤] ⌧ KB), then

[C⇤] ' [C⇤]max · [A⇤]nBnC
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and the maximum e↵ective Hill number of the response of C
⇤ to A

⇤ is nBnC — the product of
the Hill numbers of each stage of the cascade. For example, if each element of the cascade has a
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Modelling signal transduction IV.iii

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec 5).

nucleus

plasma  
membrane

DNA

mRNA

reporter

SInput

R
R*

A A*

B* B

C*

C*

C

G

Output

ki
na

se
 c

as
ca

de

receptor

Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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⇤, our final model of the cytoplasmic reactions
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assuming that deactivating enzymes (phosphatases) are present and are far from saturation.

2.12 Enzymatic cascades

Enzymatic cascades – where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on – have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
of oocytes in the frog Xenopus laevis. The hormone progesterone activates the MAP kinase
kinase kinase Mos; Mos activates the MAP kinase kinase MEK1; and MEK1 activates the MAP
kinase p42. Activation of p42 MAP kinase leads ultimately to the oocyte maturating.

If each step of the cascade is ultrasensitive, then each subsequent step increases the ultra-
sensitivity of the response of the cascade’s final enzyme. For example, if steady-state [B⇤] is a
sigmoidal function of [A⇤] then
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where nB is the Hill number and KB is the EC50 of the activation of B by A
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[C⇤] = [C⇤]max · [B⇤]nC

K
nC
C + [B⇤]nC

(2.79)

where nC is the Hill number and KC is the EC50 of B
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If the concentration of A
⇤ is smaller than its EC50 ([A⇤] ⌧ KB), then
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and the maximum e↵ective Hill number of the response of C
⇤ to A

⇤ is nBnC — the product of
the Hill numbers of each stage of the cascade. For example, if each element of the cascade has a
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Enzymatic cascades



Why have a cascade of kinases? Enzymatic cascades can increase 
ultrasensitivity

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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Including similar activation of molecule C by B
⇤, our final model of the cytoplasmic reactions

of Fig. 1 is
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assuming that deactivating enzymes (phosphatases) are present and are far from saturation.

2.12 Enzymatic cascades

Enzymatic cascades – where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on – have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
of oocytes in the frog Xenopus laevis. The hormone progesterone activates the MAP kinase
kinase kinase Mos; Mos activates the MAP kinase kinase MEK1; and MEK1 activates the MAP
kinase p42. Activation of p42 MAP kinase leads ultimately to the oocyte maturating.

If each step of the cascade is ultrasensitive, then each subsequent step increases the ultra-
sensitivity of the response of the cascade’s final enzyme. For example, if steady-state [B⇤] is a
sigmoidal function of [A⇤] then

[B⇤] = [B⇤]max · [A⇤]nB

K
nB
B + [A⇤]nB

(2.78)

where nB is the Hill number and KB is the EC50 of the activation of B by A
⇤. Similarly, if

steady-state [C⇤] is a sigmoidal function of [B⇤] then

[C⇤] = [C⇤]max · [B⇤]nC

K
nC
C + [B⇤]nC

(2.79)

where nC is the Hill number and KC is the EC50 of B
⇤. Inserting Eq 2.78 into Eq 2.79 gives

[C⇤] = [C⇤]max ·
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If the concentration of A
⇤ is smaller than its EC50 ([A⇤] ⌧ KB), then

[C⇤] ' [C⇤]max · [A⇤]nBnC

K
nBnC
B K
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[B⇤]
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+ [A⇤]nBnC

(2.81)

and the maximum e↵ective Hill number of the response of C
⇤ to A

⇤ is nBnC — the product of
the Hill numbers of each stage of the cascade. For example, if each element of the cascade has a
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Including similar activation of molecule C by B
⇤, our final model of the cytoplasmic reactions

of Fig. 1 is
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assuming that deactivating enzymes (phosphatases) are present and are far from saturation.

2.12 Enzymatic cascades

Enzymatic cascades – where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on – have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
of oocytes in the frog Xenopus laevis. The hormone progesterone activates the MAP kinase
kinase kinase Mos; Mos activates the MAP kinase kinase MEK1; and MEK1 activates the MAP
kinase p42. Activation of p42 MAP kinase leads ultimately to the oocyte maturating.

If each step of the cascade is ultrasensitive, then each subsequent step increases the ultra-
sensitivity of the response of the cascade’s final enzyme. For example, if steady-state [B⇤] is a
sigmoidal function of [A⇤] then
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where nB is the Hill number and KB is the EC50 of the activation of B by A
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where nC is the Hill number and KC is the EC50 of B
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If the concentration of A
⇤ is smaller than its EC50 ([A⇤] ⌧ KB), then

[C⇤] ' [C⇤]max · [A⇤]nBnC
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and the maximum e↵ective Hill number of the response of C
⇤ to A

⇤ is nBnC — the product of
the Hill numbers of each stage of the cascade. For example, if each element of the cascade has a
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assuming that deactivating enzymes (phosphatases) are present and are far from saturation.
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Enzymatic cascades – where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on – have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
of oocytes in the frog Xenopus laevis. The hormone progesterone activates the MAP kinase
kinase kinase Mos; Mos activates the MAP kinase kinase MEK1; and MEK1 activates the MAP
kinase p42. Activation of p42 MAP kinase leads ultimately to the oocyte maturating.
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Hill numbers multiply in a cascade: nfinal= nB nC

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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Including similar activation of molecule C by B
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of Fig. 1 is
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assuming that deactivating enzymes (phosphatases) are present and are far from saturation.

2.12 Enzymatic cascades

Enzymatic cascades – where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on – have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
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If the concentration of A
⇤ is smaller than its EC50 ([A⇤] ⌧ KB), then
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and the maximum e↵ective Hill number of the response of C
⇤ to A

⇤ is nBnC — the product of
the Hill numbers of each stage of the cascade. For example, if each element of the cascade has a
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if



For the cascade to increase sensitivity, the Hill numbers of intermediate 
steps must be greater than one

Figure 3: Enzymes lower in a cascade respond more sigmoidally than enzymes higher in the cascade

if the Hill number for activation of each step, n, is greater than 1.

Hill number of 2 then a cascade of three enzymes would have a maximum Hill number of 23 = 8.
In contrast, if each element of the cascade responds hyperbolically (n = 1) then the cascade will
have a maximum Hill number of 1 regardless of the number of stages in the cascade (Fig. 3).

How could each element of the cascade have a Hill number greater than one? If a kinase
needs to be phosphorylated only once by an upstream kinase then it is di�cult to generate
ultrasensitivity without having to impose restrictions on the concentrations of the enzymes
(through zero-order ultrasensitivity [7]). Many kinases, including many MAP kinases, require,
however, two phosphorylations to become active. If the activating kinase acts distributively and
dissociates from the downstream kinase after each phosphorylation (a processive kinase would
bind its substrate and phosphorylate the substrate twice before dissociating), then intuitively
activation of the downstream kinase ‘sees’ the concentration of the upstream kinase twice, once
for each phosphorylation. We therefore might expect activation of the downstream kinase to be
a sigmoidal function of the upstream kinase. Where tested, this expectation has been borne out
[8].

2.13 Zero-order ultrasensitivity

A kinase and a phosphatase acting on the same substrate can generate a highly ultrasensitive
response in the level of phosphorylated substrate as the ratio of the concentration of the two
enzymes is varied [7]. A substrate that is continually phosphorylated and then dephosphory-
lated is sometimes said to take part in a ‘futile’ cycle because energy appears to be pointlessly
consumed. Such cycles may, however, be used by the cell to generate ultrasensitive responses.

For example, consider a kinase and a phosphatase that bind identically to a substrate and
either phosphorylate or dephosphorylate with the same rate. If there are initially equal amounts
of both enzymes then half of the substrate is phosphorylated at steady-state. Let both enzymes
be saturated – there is so much substrate compared to enzymes that both the kinase and the
phosphatase work close to their maximum rate and no longer have a Michaelis-Menten depen-
dence on the concentration of their substrate. If there is a small increase in the concentration
of one of the enzymes, say the phosphatase, then the kinase is unable to resist the increase in
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Many kinases require two phosphorylation to activate and so have a Hill number 
greater than one if the activating enzyme is distributive.

A distributive kinase binds, phosphorylates, dissociates, and 
then binds and phosphorylates again. A processive enzyme 
binds once, phosphorylates twice, and then dissociates.


