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MSc course: Practical Systems Biology

Peter Swain (peter.swain@ed.ac.uk THE UNIVERSITY
#EDINBURGH

This course will provide an introduction to systems biology by focusing on the
behaviours expected from interactions between only a few genes, taking
examples from microbes to mammals.

Cells are dynamic systems, and we will build intuition about the types of
responses expected from different gene circuits by running, adapting, and
analysing computer simulations.
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Overview

1. What is systems biology and why do we need it?

2. An introduction using three examples:
a. Learning and memory
b. Single-cell responses to stress
c. Social behaviour in bacteria

3. A summary of the course structure

Although systems biology cannot be easily defined, a system can.

By a system, we simply mean some
subset of the entire world whose
behaviour, and whose interaction with
the rest of the world, we believe can be
sensibly described. (Kuipers, 1994)
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These interactions be intra- or extracellular.

For many, systems biology started with this 1999 review

From molecular
to modular cell biology

Leland H. Hartwell, John J. Hopfield, Stanislas Leibler and Andrew W. Murray

Cellular functions, such as signal transmission, are
carried out by 'modules’ made up of many species of
interacting molecules ...

General principles that govern the structure and
behaviour of modules may be discovered with help
from synthetic sciences such as engineering and
computer science, from stronger interactions between
experiment and theory in cell biology, and from an
appreciation of evolutionary constraints.

Nature, 1999




Initial definitions of systems biology were mostly operational

Systems biology studies biological systems by
systematically perturbing them (biologically,
genetically, or chemically); monitoring the gene,
protein, and informational pathway responses;

More inspiring definitions emerged later

What distinguishes systems biology from earlier traditions is
the tendency to define importance less in operational terms
(e.g., necessary or sufficient to produce a behavior) than in
terms of relevance to the goals of a system. (Lander, 2007)

integrating these data; and ultimately,
formulating mathematical models that describe
the structure of the system and its response to
individual perturbations. (Ideker et al, 2001)

To understand complex biological
systems requires the integration of
experimental and computational
research — in other words a systems
biology approach. (Kitano, 2002)
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Modeling

By discovering how function arises in dynamic
interactions, systems biology addresses the
missing links between molecules and physiology.
(Bruggeman and Westerhoff, 2007)

the objective of systems biology [can be] defined as the understanding of network
behavior, and in particular their dynamic aspects, which requires the utilization of
methematical modeling tightly linked to experiment. (Cassman, 2005)

Cellular behaviour can be remarkable...

Why do we need systems biology?

The sequencing of the human genome has
given us a list of the parts of the cell (the genes
and proteins).

We need to understand how these parts
interact to generate cellular behaviour if we
wish to improve medicine and biotechnology.




Cellular behaviour results from changes in proteins

Proteins can change shape, sometimes spontaneously and sometimes
because of the binding of another molecule.

from Graham Johnson
Medical Media
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Information about the
presence of an extracellular
molecule is passed from
protein to protein through
changes in protein state or
conformation.

Biology is complex
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These proteins are part of the innate immune response and the figure is taken from a
map of the innate immune system by Oda and Kitano.

Zooming out...
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Zooming out...

Zooming out...

Biology is complex: cells are packed with proteins and other macromolecules
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Mycoplasm mycoides
David Goodsell, Scripps Institute




From molecular
to modular cell biology

Leland H. Hartwell, John J. Hopfield, Stanislas Leibler and Andrew W. Murray

Cellular functions, such as signal transmission, are carried out by
‘'modules' made up of many species of interacting molecules ...

General principles that govern the structure and behaviour of
modules may be discovered with help from synthetic sciences
such as engineering and computer science, from stronger
interactions between experiment and theory in cell biology, and
from an appreciation of evolutionary constraints.

Nature, 1999

A memory module

The debilitating effects of memory loss are portrayed in the movie Momento (C Nolan,

2000).
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Can cells remember?

Early development of a fertilized egg of an African clawed toad:

H Williams and K Smith

Differentiated (specialised) cells “remember” to stay differentiated. They do not
spontaneously undifferentiate.




Cells remember through positive feedback

Positive feedback is a “runaway” process, where an effect enhances itself.
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As opposed to negative feedback where an effect diminishes itself.
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Positive feedback can be generated by the synthesis of new proteins
that cause their own rate of synthesis to increase.

Example: maturation of frog oocytes

Very large single cells
around Tmm in diameter.

Progesterone induces the cells to mature after which they acquire a jelly coat and
are laid by the frog.
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The last protein of the cascade becomes more active as levels of progesterone increase.
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Increasing positive feedback allows the system to become either “on” or “off”

activated p42 MAPK
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Increasing positive feedback allows the system to become either “on” or "off”
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With both an on and an off state for the same level of progesterone, the system has

memory.

activated p42 MAPK

The cell remembers because the level of progesterone at which
MAPK jumps to the other state depends on whether the cell was

initially either on or off.
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With strong feedback, the memory can become permanent.

activated p42 MAPK

progesterone

Even when levels of progesterone fall to zero, the cell remains

on. The cell has differentiated.

progesterone

!
i

'
!
}

maturation




Summary

Biochemical systems can “remember” through positive
feedback, where a sufficiently large stimulus causes a
response that generates more response.

Such memory is important to ensure that cells stay

differentiated.

Similar ideas may apply to
memory in neurons.

A focus of systems biology is on the behaviour of
individual cells rather than the average behaviour of

populations of cells
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Microfluidic devices allow the responses of individual cells to be quantified

in controlled dynamic environments
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Crane et al., PLoS One 2014

With time-lapse microscopy, 100s of cells can be followed

flow




Yeast cells die of old age after 20 or so divisions

direction
of flow

Cells must adapt to changing osmotic conditions

Cells maintain turgor as they grow. / \

Under hypo-osmotic conditions, cells swell and
must lose water.

water

Under hyper-osmotic conditions, cells shrink and
must gain water.

From Ziegler et al., 2010

Yeast change the concentration of glycerol to adapt to osmotic stress

Cells must increase
internal osmolytes to
recover turgor

Upon hyper-osmotic stress, cells:

first:
(i) stop dividing
(ii) divert glycolytic flux towards glycerol synthesis
(iii) close glycerol exporters

second:
(i) increase expression of the enzymes for glycerol
synthesis

The signalling network has a Y-shaped structure with two input
branches leading to activation of a MAP kinase, Hog

Osmotic Signal

Phosphorelay
branch. branch
Fast activation. Pbs2 Slow activation.
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Using microfluidics, the volume and levels of nuclear Hog1 can be
measured in single cells

Cell volume and cell P Cell size
fitness is determined

from DIC images

Cell division
event
Htb2::mCherry Hog1::GFP
Nuclear Hog1 via a Nuclear
histone marker accumulation
of HOG

Hog1 translocates in response to a step in the concentration of
sorbitol

sorbitol

time

fluorescence

Summary

Individual cells can show behaviour far from average
responses.

Microfluidics allows the study of single-cell responses in
controlled dynamic environments.

Signal transduction systems can specialize to particular
dynamics of the cellular environment.

Systems biology goes beyond intracellular behaviour:
communication and cooperation in bacteria




Even bacteria can “talk”

Bacteria can secrete molecules called autoinducers, which are sensed by other
bacteria.

gene expression.
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The biochemistry of auto induction involves positive feedback.
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expression of more Luxl.

from Henke & Bassler, 2004

Bacterial communication is called quorum-sensing.

Levels of autoinducer only become high for sufficiently dense populations —
when the population of cells has reached a threshold size, or quorum.
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An example of positive feedback generating “all-or-none” behaviour.

A Hawaiian bobtail squid is luminescent because of quorum sensing
by Vibrio fischeri bacteria.

The bacteria are supplied with nutrients in an internal organ
of the squid. The squid hunts at night and hides its shadow
from predators by controlling the level of bioluminescence
emitted.
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Two quorum sensing circuits control the expression of virulence factors

in the opportunistic pathogen Pseudomonas aeruginosa.

SN
oo oa— |ua ua
m Lasreg}lonm

N

Rhl regulon <————!

P aeruginosa is the major pathogen for people with cystic fibrosis.

Secreted products can lead to the “tragedy of the commons”,
where cheats dominate and the fitness of the population falls.

Cooperative cells produce public
goods. Cheater cells do not.

All cells, whether they contributed or not,
benefit from the availability of public goods.

from West et al., 2007

For P aeruginosa, cooperators persist because populations of
cooperators are more infectious than populations of cheaters.
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Wild-type cells secrete exoproducts; cells do not.

from Brown et al., 2009

Quorum sensing and cooperative behaviour of pathogens
suggest new therapies.

For example, creating cheater cells and inoculating mice with cheaters, which
should out-compete wild-type cells:

Mice inoculated with
cells.

The resulting bacteria populations are less virulent and more vulnerable to the
immune system.




Summary

Microbes can communicate through secreting and sensing

extracellular products.

Autoinducers are used by bacteria to estimate cell
densities.

Such communication is important in biofilms and for
determining when pathogenic bacteria become virulent.

Formation of a biofilm (Davies, 2003)

Moving beyond individual modules, the first whole-cell
model was published in 2012.

A Whole-Cell Computational Model
Predicts Phenotype from Genotype

Jonathan R. Karr,'+* Jayodita C. Sanghvi,2 Derek N. Mackiin,2 Miriam V. Gutschow, Jared M. Jacobs,2
Benjamin Bolival, Jr..2 Nacyra Assad-Garcia,? John I. Glass,? and Markus W. Covert2*

Cell, 2012
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A challenge was to make different types of models “talk” to each other.

Such models will be repositories of information and enable the cycle
of experiment and prediction that underpins systems biology.

Quantitative
whole-cell models

Karr et al. simulation
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Freddolino & Tavazoie, Cell 2012

The future: from genes to cells to whole organs

Models of the heart incorporate gene expression, signal transduction, and
electrophysiology with three dimensional models of the whole organ.

Norepinephrine  Acatylcholine  Na aNa 2K
epinephrine

Nyofiament

signal transduction electrophysiology

prediction of
electrocardiogram

whole
organ

From Winslow et al., 2011 & Roberts et al., 2012




Outcomes of the course

You will be able to:

(i) design a systems approach

(i) understand and predict the dynamics of simple
modules

(iii) formulate and simulate mathematical models

(iv) write programs in Python to test biological
hypotheses

Main learning outcome:

To use the free computer language Python to test
biological hypotheses by creating, simulating and
analysing mathematical models of biological processes.

Assessment:

Two assignments (step-by-step computational analyses of a model of

a biological system — 20% each)

A research project (selecting a model from the literature and pmgei‘emne

simulating and adapting that mode to test a novel hypothesis — 60%) '
Further information:

swainlab.bio.ed.ac.uk/psb t

maturation

Lecture Outlines

Week 1 What is systems biology?
The general systems approach with examples. Why a systems approach is
important for molecular and cellular biology.

Weeks 2-5 Fundamentals of modelling biochemical networks
Mathematical modelling of biochemical reactions, the law of mass action, and
a discussion on ultrasensitivity, cooperativity, and Hill numbers.

Weeks 6 Modelling gene expression
Modelling the rate of transcription for genes controlled by activators and
repressors.

Weeks 7-8 Positive feedback and g ti itch
Positive feedback and MAP kinase cascades, bifurcations and hysteresis,
cellular memory and bistable genetic networks.

Weeks 9-10 Negative feedback and oscillations
Circadian rhythms, the Tyson model of the circadian clock in the fruit fly,
relaxation oscillations, and oscillations through positive and negative feedback.

Week 11 Stochastic simulations and model-fitting
Depending on interest.

Structure of the course

Systems biology Python

Modelling biochemical networks
Enzyme kinetics

Ultrasensitivity and allostery
Modelling gene expression
Biochemical switches

Negative feedback

Genetic oscillators

Stochastic gene expression

Basic programming

Loops, lists, and functions
Plotting data

Scientific computing with arrays
Generating random numbers
Simulating biochemical networks
Stochastic simulations

Fitting data
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