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Modelling the degradation of a molecule that has a fixed half-life
3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.5)

which has solution
[A] = [A]0e

�kt (3.6)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.6 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :

[A] = [A]0 · 2
�kt
log 2 . (3.7)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.7, the half-life is

t 1
2

=
log 2

k
(3.8)

and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase is bound and is modelled as

dM

dt
= uP

Q
0 � dMM (3.9)

where RNA polymerase initiates transcription with a rate u and mRNA, M , is degraded with
first-order kinetics. The half-life of mRNA is log(2)/dM . Eqs 3.1 and 3.4 imply that Eq 3.9 can
be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.10)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.

3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M �! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins, the equation for protein
dynamics is then

dP

dt
= vM � dP P (3.11)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.11, M is a function of time and obeys Eq 3.10.

Eqns. 3.10 and 3.11 together model constitutive gene expression.
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The rate equation is

and so

or e = 2
1

log 2
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The half-life – the time taken for half the molecules to degrade – is inversely 
proportional to k

which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)
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To model gene expression, we start by considering the possible 
states of the promoter 

3 Modelling gene expression

Gene expression is fundamental to much of biology and modelling gene expression is fundamental
to much of systems biology. If we are interested in the average behaviour of a system, then
modelling gene expression usually requires modelling the average state of occupancy of the
promoter by transcription factors and RNA polymerase. We can use equations of chemical
reactions to describe binding of proteins to the promoter and to describe transcription and
translation.

Binding of proteins to the DNA is assumed to occur faster than transcription, translation,
and the degradation of both mRNAs and proteins so that each binding reaction is at equilibrium.
We will derive expressions for the promoter occupancy from the assumption of equilibrium of
DNA-binding reactions, but identical expressions can be written down directly using ideas from
statistical mechanics [9].

3.1 Modelling constitutive expression

A constitutively expressed gene is one that is unregulated and synthesizes mRNA at a constant
rate on average. The promoter therefore has two states: it can be either unbound or bound by
RNA polymerase. If Q denotes RNA polymerase and P0 is the unoccupied promoter then

P0 + Q ��*)�� PQ
0

is the binding reaction of RNA polymerase to the promoter. P
Q
0 is the complex of the promoter

bound by RNA polymerase:

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

At equilibrium,
P

Q
0 = KQQP0 (3.1)

where, for example, Q here represents the numbers of molecules of Q, which can be converted
into a concentration [Q] by dividing both sides of the equations by the volume of the cell. KQ

is an association constant.
The number of molecules of the promoter do not change with these reactions — the pro-

moter only changes state — and, assuming n molecules of promoter, we can then write down a
conservation law:

P0 + P
Q
0 = n (3.2)

Using Eq 3.1, this conservation implies that

P0 + KQQP0 = n (3.3)

and so that
P0

n
=

1

1 + KQQ
(3.4)
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which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)

3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.6)

which has solution
[A] = [A]0e

�kt (3.7)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :
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�kt
log 2 . (3.8)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound
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0

u�! PQ
0 + M

and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded

M
dM��! ;

then the rate equation for the mRNA M is

dM

dt
= uP

Q
0 � dMM (3.10)

and the half-life of mRNA is log(2)/dM .
Eqs 3.1 and 3.4 imply that Eq 3.10 can be written as

dM

dt
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nuKQQ
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We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.
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where, for example, Q here represents the numbers of molecules of Q, which can be converted
into a concentration [Q] by dividing both sides of the equations by the volume of the cell. KQ

is an association constant.
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Only the promoter state bound by RNAP initiates transcription
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into a concentration [Q] by dividing both sides of the equations by the volume of the cell. KQ

is an association constant.
The number of molecules of the promoter do not change with these reactions — the pro-

moter only changes state — and, assuming n molecules of promoter, we can then write down a
conservation law:

P0 + P
Q
0 = n (3.2)

Using Eq 3.1, this conservation implies that

P0 + KQQP0 = n (3.3)

and so that
P0

n
=

1

1 + KQQ
(3.4)
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which is the fraction of promoters that are not bound by RNA polymerase or, equivalently, the
fraction of time that the promoter is free.

Transcription occurs only when RNA polymerase is bound and is modelled as

dM

dt
= uP

Q
0 � dMM (3.5)

where RNA polymerase initiates transcription with a rate u and mRNA, M , is degraded with

first-order kinetics. The half-life of mRNA is log(2)/dM because e = 2
1

log 2 . Eqs 3.1 and 3.4 imply
that Eq 3.5 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.6)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.

Translation is usually modelled as a first-order process:

M �! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins, the equation for protein
dynamics is then

dP

dt
= vM � dP P (3.7)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.7, M is a function of time and obeys Eq 3.6.

Eqns. 3.6 and 3.7 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.8)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.

The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.9)
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The rate equation for mRNA M is

maximum 
rate of 
transcription 

reciprocal of 
the half-life 
of mRNA

which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)

3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.6)

which has solution
[A] = [A]0e

�kt (3.7)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :

[A] = [A]0 · 2
�kt
log 2 . (3.8)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound

PQ
0

u�! PQ
0 + M

and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded

M
dM��! ;

then the rate equation for the mRNA M is

dM

dt
= uP

Q
0 � dMM (3.10)

and the half-life of mRNA is log(2)/dM .
Eqs 3.1 and 3.4 imply that Eq 3.10 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.11)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.
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Translation is modelled as a first-order process3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ;

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.14)
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The rate equation for protein P is



The complete model for a constitutive promoter is then:

3 Modelling gene expression

Gene expression is fundamental to much of biology and modelling gene expression is fundamental
to much of systems biology. If we are interested in the average behaviour of a system, then
modelling gene expression usually requires modelling the average state of occupancy of the
promoter by transcription factors and RNA polymerase. We can use equations of chemical
reactions to describe binding of proteins to the promoter and to describe transcription and
translation.

Binding of proteins to the DNA is assumed to occur faster than transcription, translation,
and the degradation of both mRNAs and proteins so that each binding reaction is at equilibrium.
We will derive expressions for the promoter occupancy from the assumption of equilibrium of
DNA-binding reactions, but identical expressions can be written down directly using ideas from
statistical mechanics [9].

3.1 Modelling constitutive expression

A constitutively expressed gene is one that is unregulated and synthesizes mRNA at a constant
rate on average. The promoter therefore has two states: it can be either unbound or bound by
RNA polymerase. If Q denotes RNA polymerase and P0 is the unoccupied promoter then

P0 + Q ��*)�� PQ
0

is the binding reaction of RNA polymerase to the promoter. P
Q
0 is the complex of the promoter

bound by RNA polymerase:
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At equilibrium,
P

Q
0 = KQQP0 (3.1)

where, for example, Q here represents the numbers of molecules of Q, which can be converted
into a concentration [Q] by dividing both sides of the equations by the volume of the cell. KQ

is an association constant.
The number of molecules of the promoter do not change with these reactions — the pro-

moter only changes state — and, assuming n molecules of promoter, we can then write down a
conservation law:

P0 + P
Q
0 = n (3.2)

Using Eq 3.1, this conservation implies that

P0 + KQQP0 = n (3.3)

and so that
P0

n
=

1

1 + KQQ
(3.4)
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which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)

3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.6)

which has solution
[A] = [A]0e

�kt (3.7)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :

[A] = [A]0 · 2
�kt
log 2 . (3.8)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.

3.1.2 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound

PQ
0

u�! PQ
0 + M

and where RNA polymerase initiates transcription with a rate u. We assume that the binding
of RNAP at the promoter is fast (compared to u) and remains at equilibrium so that a bound
polymerases replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded

M
dM��! ;

then the rate equation for the mRNA M is

dM

dt
= uP

Q
0 � dMM (3.10)

and the half-life of mRNA is log(2)/dM .
Eqs 3.1 and 3.4 imply that Eq 3.10 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.11)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.
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3.1.3 Modelling translation

Translation is usually modelled as a first-order process:

M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ;

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.

3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA. Let P0 denote the free promoter
of a gene of interest and let P1 denote the promoter when a repressor is bound. Then

P0 + R ��*)�� P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 + Q ��*)�� PQ
0

and initiate transcription with a rate u. If both these binding reactions are at equilibrium then

P1 = KRRP0 ; P
Q
0 = KQQP0 (3.13)

where KR and KQ are both association constants and increase in magnitude if binding to the
promoter becomes stronger.
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The number of molecules of the promoter do not change with these reactions and, assuming
n molecules of promoter, we can write:

P0 + P
Q
0 + P1 = n (3.14)
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which is the fraction of promoters that are not bound by RNA polymerase or, equivalently, the
fraction of time that the promoter is free.

Transcription occurs only when RNA polymerase is bound and is modelled as

dM

dt
= uP

Q
0 � dMM (3.5)

where RNA polymerase initiates transcription with a rate u and mRNA, M , is degraded with

first-order kinetics. The half-life of mRNA is log(2)/dM because e = 2
1

log 2 . Eqs 3.1 and 3.4 imply
that Eq 3.5 can be written as

dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.6)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.

Translation is usually modelled as a first-order process:
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for mRNA, M , and protein, P . With first-order degradation of proteins, the equation for protein
dynamics is then

dP

dt
= vM � dP P (3.7)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.7, M is a function of time and obeys Eq 3.6.

Eqns. 3.6 and 3.7 together model constitutive gene expression.
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P0 + P
Q
0 + P1 = n (3.9)
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which is the number of promoters that are not bound by RNA polymerase. From Eq ceqm, the
number of bound promoters is

P
Q
0 =

nKQQ

1 + KQQ
. (3.5)

3.1.1 Modelling the degradation of a molecule with a fixed half-life

The simplest way to model the degradation of molecule, A say, is with a first-order reaction

A
k�! products of degradation

where k determines the average lifetime of an A molecule.
The corresponding rate equation is

d[A]

dt
= �k[A] (3.6)

which has solution
[A] = [A]0e

�kt (3.7)

and the concentration of the molecules falls exponentially from the initial value [A]0.

We are able to re-write Eq 3.7 in terms of the molecule’s half-life using the identity e = 2
1

log 2 :

[A] = [A]0 · 2
�kt
log 2 . (3.8)

The half-life is the time taken for the number of molecules to become half of their initial value:
[A] = [A]0

2 when t = t 1
2
. From Eq 3.8, the half-life is

t 1
2

=
log 2

k
(3.9)

and is inversely related to the rate k.

3.1.2 Modelling transcription
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PQ
0

u�! PQ
0 + M

and where RNA polymerase initiates transcription with a rate u. We assume that the binding
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M
dM��! ;
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dM
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= uP

Q
0 � dMM (3.10)
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dM

dt
=

nuKQQ

1 + KQQ
� dMM. (3.11)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase but saturates at a maximum rate of nu.
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3.1.3 Modelling translation
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M
v�! M + P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP�! ?

the equation for protein dynamics is then

dP

dt
= vM � dP P (3.12)

with v being the rate of translation and dP being the rate of degradation of proteins. The
half-life of protein is log(2)/dP . In Eq 3.12, M is a function of time and obeys Eq 3.11.

Eqns. 3.11 and 3.12 together model constitutive gene expression.
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where KR and KQ are both association constants and increase in magnitude if binding to the
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Modelling repression by a single repressor competing with RNA 
polymerase for the promoter
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We assume that binding of all proteins at the promoter is at equilibrium
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and that the total number of promoters is conserved 
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The higher the number of repressors, the less RNAP binds to the 
promoter

The total number of promoters is conserved 
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Using Eqs 3.13, this conservation implies that

P0 + KQQP0 + KRRP0 = n (3.15)

and so that
P0 =

n

1 + KQQ + KRR
(3.16)

which is number of promoters that are free and not bound by either the repressor or RNA
polymerase. From Eq 3.13, the number of promoters that are able to transcribe – have a bound
RNA polymerase – is

P
Q
0 =

nKQQ

1 + KQQ + KRR
. (3.17)

The rate equation describing transcription is then

dM

dt
= uP

Q
0 � dMM (3.18)

or, from Eq 3.17,
dM

dt
=

nuKQQ

1 + KQQ + KRR
� dMM. (3.19)

We are able to write Eq 3.19 as

dM

dt
=

⇣
nuKQQ
1+KQQ

⌘

1 +
⇣

KR
1+KQQ

⌘
R

� dMM (3.20)

which has the form of a Hill function in the concentration of repressor if the number of free RNA
polymerases is approximately constant.

We can further write
dM

dt
= umax

"
1

1 + R
K1

#
� dMM (3.21)

where the maximum rate of transcription is umax = nuKQQ
1+KQQ and the half-maximal number of

repressors is K1 = 1+KQQ
KR

. Note that both these quantities are functions of the numbers of free
RNA polymerase, Q.

Translation can again be modelled as a first-order process:

dP

dt
= vM � dP P (3.22)

where M satisfies Eq 3.21.

3.3 Activation by a single activator

The average rate of transcription can also be a Hill function with a Hill number of one if
transcription is controlled by the binding of a single activator. We can proceed as before and
consider the binding of activator, A, to the free promoter

P0 + A ��*)�� P1
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3.1.3 Modelling translation
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with v being the rate of translation and dP being the rate of degradation of proteins. The
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The model for gene expression from a repressed protein is then
Using Eqs 3.13, this conservation implies that
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If the concentration of RNAP is constant 


