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1 Overview

These notes from the basis of lectures given to MSc students in the School of Biological Sciences
at the University of Edinburgh.

In Sections 2 and 3, we start with the fundamentals of mathematical modelling, both of
signal transduction and of gene expression. These sections are necessarily the most complex
mathematically, but throughout we will illustrate the techniques by developing a model of a
signalling pathway (Fig. 1). We then turn to the effects of positive and negative feedback.
Positive feedback can generate bistability and is used by cells to differentiate irreversibly (Sec. 4).
Negative feedback can cause oscillations and drives biological rhythms (Sec. 5).
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Figure 1: An idealised model of a eukaryotic signalling pathway: an input, ligand S, activates receptors
at the plasma membrane — activation is shown in purple, which in turn activate a cascade of kinases.
The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter
gene. The protein produced by this gene, G, is the system’s output.
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2 Modelling biochemical reactions

2.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ ⇠ (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by diffusion, tdiff, and the time taken for the two molecules
to react once in physical proximity, treac. We can write

time of reaction = tdiff + treac (2.1)

and so the association rate, which is inversely related to the time of the reaction, obeys

f̃ = (tdiff + treac)
−1 . (2.2)

The dissociation rate, b̃, is determined by one time — the half-life of the molecule C:

b̃ =
log 2

half-life of C
. (2.3)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic effects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t+ dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t+ dt) = NC(t) + f̃dtNANB − b̃dtNC (2.4)

or
NC(t+ dt)−NC(t)

dt
= f̃NANB − b̃NC . (2.5)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB − b̃NC (2.6)

4



which is an example of a chemical rate equation.
Chemical rate equations are usually written in terms of concentrations, which we measure in

molar units – the number of moles of a substance per litre. Let [C] denote the molar concentration
of C, then

[C] =
NC

nAV
(2.7)

where nA ≃ 6.02 × 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 2.6 into an equation for the rate of change of the concentration of C, we must divide
Eq. 2.6 by nAV . This division gives

d

dt
· NC

nAV
= f̃

NA

naV
· NB

naV
naV − b̃

NC

nAV
(2.8)

and so
d[C]

dt
= f̃nAV [A][B]− b̃[C] (2.9)

where [A] is the concentration of A and [B] is the concentration of B.
If we define macroscopic reactions rates, or rates for reactions involving concentrations, as

f = f̃nAV

b = b̃
(2.10)

then
d[C]

dt
= f [A][B]− b[C]. (2.11)

The units of the macroscopic association rate f are M−1 s−1. This rate should not change with
volume because molecular species are now measured in concentrations. The rate of association
of a pair of molecules, f̃ , does, however, depend on volume and will decrease in larger volumes
because it is more difficult for molecules to find each other [1]. The volume-dependence in
Eq. 2.10 cancels out the volume-dependence of f̃ . In contrast, the units of the macroscopic
rate b do not change, remaining s−1, because b describes a dissociation reaction that depends
principally on the chemical species involved and occurs at a rate independent of volume.

2.1.1 Example: dimerisation

Many membrane receptors reversibly dimerise to form a receptor-receptor dimer, and transcrip-
tion factors in bacteria often dimerise before binding to DNA, but the dimerisation reaction is
unusual.

Let T denote a transcription factor and T2 denote a dimer of two transcription factors. These
species satisfy the reactionThe rate equations for this system are atypical because the f reaction removes two molecules
of T rather than one and the b reaction releases two molecules. Although the association reaction
proceeds at the rate f [T ]2 and the dissociation reaction proceeds at the rate b[T2], we now have

d[T ]

dt
= −2f [T ]2 + 2b[T2] (2.12)

because the number of T molecules changes by two for both reactions. The dimer, T2, obeys

d[T2]

dt
= f [T ]2 − b[T2] (2.13)

5



6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ ⇠ (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3
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k2

k3

k-1
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k-3

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)

3

C
h
em
ic
al
ra
te
eq
u
at
io
n
s
ar
e
u
su
al
ly
w
ri
tt
en
in
te
rm
s
of
co
n
ce
n
tr
at
io
n
s,
w
h
ic
h
ar
e
m
ea
su
re
d

in
m
ol
ar
u
n
it
s
(n
u
m
b
er
of
m
ol
es
of
a
su
b
st
an
ce
p
er
li
tr
e)
.
L
et
[C
]
d
en
ot
e
th
e
m
ol
ar
co
n
ce
n
tr
at
io
n

of
C
,
th
en

[C
]
=

n
C

n
A
V

(4
)

w
h
er
e
n
A

'
6.
02
⇥
10
2
3

is
A
vo
ga
d
ro
’s
n
u
m
b
er
an
d
V
is
th
e
vo
lu
m
e
of
th
e
ce
ll
in
li
tr
es
.
T
o

co
n
ve
rt
E
q
.
3
in
to
an
eq
u
at
io
n
fo
r
th
e
ra
te
of
ch
an
ge
of
th
e
co
n
ce
n
tr
at
io
n
of
C
,
w
e
m
u
st
d
iv
id
e

E
q
.
3
b
y
n
A
V
.
T
h
is
d
iv
is
io
n
gi
ve
s

d
[C
]

d
t

=

˜f
n
A
V
[A
][
B
]
�
˜b[
C
]

(5
)

w
h
er
e
[A
]
is
th
e
co
n
ce
n
tr
at
io
n
of
A
an
d
[B
]
is
th
e
co
n
ce
n
tr
at
io
n
of
B
.
If
w
e
d
efi
n
e
m
ac
ro
sc
op
ic

re
ac
ti
on
s
ra
te
s,
fo
r
re
ac
ti
on
s
in
vo
lv
in
g
co
n
ce
n
tr
at
io
n
s,
as

f
=

˜f
n
A
V

b
=
˜b

(6
)

th
en

d
[C
]

d
t

=
f
[A
][
B
]
�
b[
C
].

(7
)

T
h
e
u
n
it
s
of
th
e
m
ac
ro
sc
op
e
ra
te
f
ar
e
M
�
1

s �
1

,
an
d
f
h
as
an
u
p
p
er
b
ou
n
d
gi
ve
n
b
y
a
re
ac
ti
on

th
at
is
d
i↵
u
si
on
-l
im
it
ed
.
T
h
e
u
n
it
s
of
th
e
m
ac
ro
sc
op
ic
ra
te
b
ar
e
u
n
ch
an
ge
d
an
d
ar
e
s �
1

.

1
.1
.1

E
x
a
m
p
le
:
d
im
e
ri
z
a
ti
o
n

M
an
y
m
em
b
ra
n
e
re
ce
p
to
rs
re
ve
rs
ib
ly
d
im
er
iz
e
to
fo
rm
a
re
ce
p
to
r-
re
ce
p
to
r
d
im
er
,
an
d
so
m
et
im
es

on
ly
th
e
d
im
er
ca
n
b
in
d
li
ga
n
d
an
d
si
gn
al
d
ow
n
st
re
am
.
T
h
e
d
im
er
iz
at
io
n
re
ac
ti
on
is
u
n
u
su
al
.

L
et
R
d
en
ot
e
a
re
ce
p
to
r
an
d
R
2
d
en
ot
e
a
d
im
er
of
re
ce
p
to
rs
.
T
h
es
e
sp
ec
ie
s
sa
ti
sf
y
th
e
re
ac
ti
on

R
+
R

f�*)�b

R
2

T
h
e
ra
te
eq
u
at
io
n
s
fo
r
th
is
sy
st
em

ar
e
at
y
p
ic
al
b
ec
au
se
tw
o
m
ol
ec
u
le
s
of
R
ar
e
re
m
ov
ed

b
y
th
e
f
re
ac
ti
on
an
d
tw
o
m
ol
ec
u
le
s
ar
e
re
le
as
ed
b
y
th
e
b
re
ac
ti
on
.
A
lt
h
ou
gh
th
e
as
so
ci
at
io
n

re
ac
ti
on
p
ro
ce
ed
s
at
th
e
ra
te
f
[R
] 2
an
d
th
e
d
is
so
ci
at
io
n
re
ac
ti
on
p
ro
ce
ed
s
at
th
e
ra
te
b[
R
2
],
w
e

h
av
e

d
[R
]

d
t

=
�
2f
[R
] 2
+
2b
[R
2
]

(8
)

b
ec
au
se
tw
o
R
m
ol
ec
u
le
s
ar
e
in
vo
lv
ed
in
b
ot
h
re
ac
ti
on
s.
T
h
e
d
im
er
,
R
2
,
ob
ey
s

d
[R
2
]

d
t

=
f
[R
] 2
�
b[
R
2
]

(9
)

b
ec
au
se
on
ly
on
e
m
ol
ec
u
le
of
d
im
er
fo
rm
s
or
d
is
so
ci
at
es
.
S
u
m
m
in
g
E
q
.
8
an
d
tw
ic
e
E
q
.
9
gi
ve
s

d
[R
]

d
t

+
2
d
[R
2
]

d
t

=
0

(1
0)

im
p
ly
in
g
th
at

[R
]
+
2[
R
2
]
=
co
n
st
an
t
=
[R
]0
+
2[
R
2
]0

(1
1)

3

C
h
em

ic
al

ra
te

eq
u
at

io
n
s

ar
e

u
su

al
ly

w
ri

tt
en

in
te

rm
s

of
co

n
ce

n
tr

at
io

n
s,

w
h
ic

h
ar

e
m

ea
su

re
d

in
m

ol
ar

u
n
it

s
(n

u
m

b
er

of
m

ol
es

of
a

su
b
st

an
ce

p
er

li
tr

e)
.

L
et

[C
]
d
en

ot
e

th
e

m
ol

ar
co

n
ce

n
tr

at
io

n
of

C
,
th

en

[C
]
=

n
C

n
A
V

(4
)

w
h
er

e
n

A
'

6.
02

⇥
10

2
3

is
A

vo
ga

d
ro

’s
n
u
m

b
er

an
d

V
is

th
e

vo
lu

m
e

of
th

e
ce

ll
in

li
tr

es
.

T
o

co
n
ve

rt
E

q
.
3

in
to

an
eq

u
at

io
n

fo
r

th
e

ra
te

of
ch

an
ge

of
th

e
co

n
ce

n
tr

at
io

n
of

C
,
w

e
m

u
st

d
iv

id
e

E
q
.
3

b
y

n
A
V

.
T

h
is

d
iv

is
io

n
gi

ve
s

d
[C

]

d
t

=
f̃
n

A
V

[A
][
B

]�
b̃[

C
]

(5
)

w
h
er

e
[A

]
is

th
e

co
n
ce

n
tr

at
io

n
of

A
an

d
[B

]
is

th
e

co
n
ce

n
tr

at
io

n
of

B
.

If
w

e
d
efi

n
e

m
ac

ro
sc

op
ic

re
ac

ti
on

s
ra

te
s,

fo
r

re
ac

ti
on

s
in

vo
lv

in
g

co
n
ce

n
tr

at
io

n
s,

as

f
=

f̃
n

A
V

b
=

b̃
(6

)

th
en

d
[C

]

d
t

=
f
[A

][
B

]�
b[

C
].

(7
)

T
h
e

u
n
it

s
of

th
e

m
ac

ro
sc

op
e

ra
te

f
ar

e
M

�
1

s�
1
,
an

d
f

h
as

an
u
p
p
er

b
ou

n
d

gi
ve

n
b
y

a
re

ac
ti
on

th
at

is
d
i↵

u
si

on
-l
im

it
ed

.
T

h
e

u
n
it

s
of

th
e

m
ac

ro
sc

op
ic

ra
te

b
ar

e
u
n
ch

an
ge

d
an

d
ar

e
s�

1
.

1
.1

.1
E
x
a
m

p
le

:
d
im

e
ri

za
ti

o
n

M
an

y
m

em
b
ra

n
e

re
ce

p
to

rs
re

ve
rs

ib
ly

d
im

er
iz

e
to

fo
rm

a
re

ce
p
to

r-
re

ce
p
to

r
d
im

er
,
an

d
so

m
et

im
es

on
ly

th
e

d
im

er
ca

n
b
in

d
li
ga

n
d

an
d

si
gn

al
d
ow

n
st

re
am

.
T

h
e

d
im

er
iz

at
io

n
re

ac
ti

on
is

u
n
u
su

al
.

L
et

R
d
en

ot
e

a
re

ce
p
to

r
an

d
R

2
d
en

ot
e

a
d
im

er
of

re
ce

p
to

rs
.

T
h
es

e
sp

ec
ie

s
sa

ti
sf

y
th

e
re

ac
ti

on

R
+

R
f �* )� b

R
2

T
h
e

ra
te

eq
u
at

io
n
s

fo
r

th
is

sy
st

em
ar

e
at

y
p
ic

al
b
ec

au
se

tw
o

m
ol

ec
u
le

s
of

R
ar

e
re

m
ov

ed
b
y

th
e

f
re

ac
ti

on
an

d
tw

o
m

ol
ec

u
le

s
ar

e
re

le
as

ed
b
y

th
e

b
re

ac
ti

on
.

A
lt

h
ou

gh
th

e
as

so
ci

at
io

n
re

ac
ti

on
p
ro

ce
ed

s
at

th
e

ra
te

f
[R

]2
an

d
th

e
d
is

so
ci

at
io

n
re

ac
ti

on
p
ro

ce
ed

s
at

th
e

ra
te

b[
R

2
],

w
e

h
av

e
d
[R

]

d
t

=
�2

f
[R

]2
+

2b
[R

2
]

(8
)

b
ec

au
se

tw
o

R
m

ol
ec

u
le

s
ar

e
in

vo
lv

ed
in

b
ot

h
re

ac
ti

on
s.

T
h
e

d
im

er
,
R

2
,
ob

ey
s

d
[R

2
]

d
t

=
f
[R

]2
�

b[
R

2
]

(9
)

b
ec

au
se

on
ly

on
e

m
ol

ec
u
le

of
d
im

er
fo

rm
s

or
d
is

so
ci

at
es

.
S
u
m

m
in

g
E

q
.
8

an
d

tw
ic

e
E

q
.
9

gi
ve

s

d
[R

]

d
t

+
2
d
[R

2
]

d
t

=
0

(1
0)

im
p
ly

in
g

th
at

[R
]+

2[
R

2
]
=

co
n
st

an
t

=
[R

] 0
+

2[
R

2
] 0

(1
1)

3

L

2KT 2KR

T R

T1 R1

C
h
em
ic
al
ra
te
eq
u
at
io
n
s
ar
e
u
su
al
ly
w
ri
tt
en
in
te
rm
s
of
co
n
ce
n
tr
at
io
n
s,
w
h
ic
h
ar
e
m
ea
su
re
d

in
m
ol
ar
u
n
it
s
(n
u
m
b
er
of
m
ol
es
of
a
su
b
st
an
ce
p
er
li
tr
e)
.
L
et
[C
]
d
en
ot
e
th
e
m
ol
ar
co
n
ce
n
tr
at
io
n

of
C
,
th
en

[C
]
=

n
C

n
A
V

(4
)

w
h
er
e
n
A

'
6.
02
⇥
10
2
3

is
A
vo
ga
d
ro
’s
n
u
m
b
er
an
d
V
is
th
e
vo
lu
m
e
of
th
e
ce
ll
in
li
tr
es
.
T
o

co
n
ve
rt
E
q
.
3
in
to
an
eq
u
at
io
n
fo
r
th
e
ra
te
of
ch
an
ge
of
th
e
co
n
ce
n
tr
at
io
n
of
C
,
w
e
m
u
st
d
iv
id
e

E
q
.
3
b
y
n
A
V
.
T
h
is
d
iv
is
io
n
gi
ve
s

d
[C
]

d
t

=
˜f
n
A
V
[A
][
B
]�
˜b[
C
]

(5
)

w
h
er
e
[A
]
is
th
e
co
n
ce
n
tr
at
io
n
of
A
an
d
[B
]
is
th
e
co
n
ce
n
tr
at
io
n
of
B
.
If
w
e
d
efi
n
e
m
ac
ro
sc
op
ic

re
ac
ti
on
s
ra
te
s,
fo
r
re
ac
ti
on
s
in
vo
lv
in
g
co
n
ce
n
tr
at
io
n
s,
as

f
=
˜f
n
A
V

b
=
˜b

(6
)

th
en

d
[C
]

d
t

=
f
[A
][
B
]�
b[
C
].

(7
)

T
h
e
u
n
it
s
of
th
e
m
ac
ro
sc
op
e
ra
te
f
ar
e
M
�
1

s �
1

,
an
d
f
h
as
an
u
p
p
er
b
ou
n
d
gi
ve
n
b
y
a
re
ac
ti
on

th
at
is
d
i↵
u
si
on
-l
im
it
ed
.
T
h
e
u
n
it
s
of
th
e
m
ac
ro
sc
op
ic
ra
te
b
ar
e
u
n
ch
an
ge
d
an
d
ar
e
s �
1

.

1
.1
.1

E
x
a
m
p
le
:
d
im
e
ri
za
ti
o
n

M
an
y
m
em
b
ra
n
e
re
ce
p
to
rs
re
ve
rs
ib
ly
d
im
er
iz
e
to
fo
rm
a
re
ce
p
to
r-
re
ce
p
to
r
d
im
er
,
an
d
so
m
et
im
es

on
ly
th
e
d
im
er
ca
n
b
in
d
li
ga
n
d
an
d
si
gn
al
d
ow
n
st
re
am
.
T
h
e
d
im
er
iz
at
io
n
re
ac
ti
on
is
u
n
u
su
al
.

L
et
R
d
en
ot
e
a
re
ce
p
to
r
an
d
R
2
d
en
ot
e
a
d
im
er
of
re
ce
p
to
rs
.
T
h
es
e
sp
ec
ie
s
sa
ti
sf
y
th
e
re
ac
ti
on

R
+
R

f�*)�b

R
2

T
h
e
ra
te
eq
u
at
io
n
s
fo
r
th
is
sy
st
em
ar
e
at
y
p
ic
al
b
ec
au
se
tw
o
m
ol
ec
u
le
s
of
R
ar
e
re
m
ov
ed

b
y
th
e
f
re
ac
ti
on
an
d
tw
o
m
ol
ec
u
le
s
ar
e
re
le
as
ed
b
y
th
e
b
re
ac
ti
on
.
A
lt
h
ou
gh
th
e
as
so
ci
at
io
n

re
ac
ti
on
p
ro
ce
ed
s
at
th
e
ra
te
f
[R
] 2
an
d
th
e
d
is
so
ci
at
io
n
re
ac
ti
on
p
ro
ce
ed
s
at
th
e
ra
te
b[
R
2
],
w
e

h
av
e

d
[R
]

d
t

=
�2
f
[R
] 2
+
2b
[R
2
]

(8
)

b
ec
au
se
tw
o
R
m
ol
ec
u
le
s
ar
e
in
vo
lv
ed
in
b
ot
h
re
ac
ti
on
s.
T
h
e
d
im
er
,
R
2
,
ob
ey
s

d
[R
2
]

d
t

=
f
[R
] 2
�
b[
R
2
]

(9
)

b
ec
au
se
on
ly
on
e
m
ol
ec
u
le
of
d
im
er
fo
rm
s
or
d
is
so
ci
at
es
.
S
u
m
m
in
g
E
q
.
8
an
d
tw
ic
e
E
q
.
9
gi
ve
s

d
[R
]

d
t

+
2

d
[R
2
]

d
t

=
0

(1
0)

im
p
ly
in
g
th
at

[R
]+
2[
R
2
]
=
co
n
st
an
t
=
[R
]0
+
2[
R
2
]0

(1
1)

3

C
h
em

ic
al

ra
te

eq
u
at

io
n
s

ar
e

u
su

al
ly

w
ri

tt
en

in
te

rm
s

of
co

n
ce

n
tr

at
io

n
s,

w
h
ic

h
ar

e
m

ea
su

re
d

in
m

ol
ar

u
n
it

s
(n

u
m

b
er

of
m

ol
es

of
a

su
b
st

an
ce

p
er

li
tr

e)
.

L
et

[C
]
d
en

ot
e

th
e

m
ol

ar
co

n
ce

n
tr

at
io

n
of

C
,
th

en

[C
]
=

n
C

n
A
V

(4
)

w
h
er

e
n

A
'

6.
02

⇥
10

2
3

is
A

vo
ga

d
ro

’s
n
u
m

b
er

an
d

V
is

th
e

vo
lu

m
e

of
th

e
ce

ll
in

li
tr

es
.

T
o

co
n
ve

rt
E

q
.
3

in
to

an
eq

u
at

io
n

fo
r

th
e

ra
te

of
ch

an
ge

of
th

e
co

n
ce

n
tr

at
io

n
of

C
,
w

e
m

u
st

d
iv

id
e

E
q
.
3

b
y

n
A
V

.
T

h
is

d
iv

is
io

n
gi

ve
s

d
[C

]

d
t

=
f̃
n

A
V

[A
][
B

]�
b̃[

C
]

(5
)

w
h
er

e
[A

]
is

th
e

co
n
ce

n
tr

at
io

n
of

A
an

d
[B

]
is

th
e

co
n
ce

n
tr

at
io

n
of

B
.

If
w

e
d
efi

n
e

m
ac

ro
sc

op
ic

re
ac

ti
on

s
ra

te
s,

fo
r

re
ac

ti
on

s
in

vo
lv

in
g

co
n
ce

n
tr

at
io

n
s,

as

f
=

f̃
n

A
V

b
=

b̃
(6

)

th
en

d
[C

]

d
t

=
f
[A

][
B

]�
b[

C
].

(7
)

T
h
e

u
n
it

s
of

th
e

m
ac

ro
sc

op
e

ra
te

f
ar

e
M

�
1

s�
1
,
an

d
f

h
as

an
u
p
p
er

b
ou

n
d

gi
ve

n
b
y

a
re

ac
ti
on

th
at

is
d
i↵

u
si

on
-l
im

it
ed

.
T

h
e

u
n
it

s
of

th
e

m
ac

ro
sc

op
ic

ra
te

b
ar

e
u
n
ch

an
ge

d
an

d
ar

e
s�

1
.

1
.1

.1
E
x
a
m

p
le

:
d
im

e
ri

za
ti

o
n

M
an

y
m

em
b
ra

n
e

re
ce

p
to

rs
re

ve
rs

ib
ly

d
im

er
iz

e
to

fo
rm

a
re

ce
p
to

r-
re

ce
p
to

r
d
im

er
,
an

d
so

m
et

im
es

on
ly

th
e

d
im

er
ca

n
b
in

d
li
ga

n
d

an
d

si
gn

al
d
ow

n
st

re
am

.
T

h
e

d
im

er
iz

at
io

n
re

ac
ti

on
is

u
n
u
su

al
.

L
et

R
d
en

ot
e

a
re

ce
p
to

r
an

d
R

2
d
en

ot
e

a
d
im

er
of

re
ce

p
to

rs
.

T
h
es

e
sp

ec
ie

s
sa

ti
sf

y
th

e
re

ac
ti

on

R
+

R
f �* )� b

R
2

T
h
e

ra
te

eq
u
at

io
n
s

fo
r

th
is

sy
st

em
ar

e
at

y
p
ic

al
b
ec

au
se

tw
o

m
ol

ec
u
le

s
of

R
ar

e
re

m
ov

ed
b
y

th
e

f
re

ac
ti

on
an

d
tw

o
m

ol
ec

u
le

s
ar

e
re

le
as

ed
b
y

th
e

b
re

ac
ti

on
.

A
lt

h
ou

gh
th

e
as

so
ci

at
io

n
re

ac
ti

on
p
ro

ce
ed

s
at

th
e

ra
te

f
[R

]2
an

d
th

e
d
is

so
ci

at
io

n
re

ac
ti

on
p
ro

ce
ed

s
at

th
e

ra
te

b[
R

2
],

w
e

h
av

e
d
[R

]

d
t

=
�2

f
[R

]2
+

2b
[R

2
]

(8
)

b
ec

au
se

tw
o

R
m

ol
ec

u
le

s
ar

e
in

vo
lv

ed
in

b
ot

h
re

ac
ti

on
s.

T
h
e

d
im

er
,
R

2
,
ob

ey
s

d
[R

2
]

d
t

=
f
[R

]2
�

b[
R

2
]

(9
)

b
ec

au
se

on
ly

on
e

m
ol

ec
u
le

of
d
im

er
fo

rm
s

or
d
is

so
ci

at
es

.
S
u
m

m
in

g
E

q
.
8

an
d

tw
ic

e
E

q
.
9

gi
ve

s

d
[R

]

d
t

+
2
d
[R

2
]

d
t

=
0

(1
0)

im
p
ly

in
g

th
at

[R
]+

2[
R

2
]
=

co
n
st

an
t

=
[R

] 0
+

2[
R

2
] 0

(1
1)

3

KT/2 KR/2

T2 R2

T + T
f�*)�
b

T2

because only one molecule of dimer either forms or dissociates.
Summing Eq. 2.12 and twice Eq. 2.13 gives

d[T ]

dt
+ 2

d[T2]

dt
= 0 (2.14)

implying that
[T ] + 2[T2] = constant = [T ]0 + 2[T2]0 (2.15)

where [T ]0 is the initial concentration of monomers and [T2]0 is the initial concentration of
dimers.

The dimerisation reaction only changes the form of T molecules, either from monomers to
dimers or vice versa, and does not lead to either their synthesis or destruction. Consequently,
the number of T molecules is conserved and determined by the initial numbers of monomers
and dimers. The conservation law, Eq. 2.15, reflects that a dimer contains twice as many T
molecules as a monomer.

2.1.2 Rates of first-order reactions

In Eq. 2.3, there is a log 2 term. This term comes from the definition of half-life: the average
time taken for the number, and so also typically the concentration, of molecules to halve. If a
molecule degrades at a rate k, then the number of molecules N obeys

dN

dt
= −kN. (2.16)

If we have N0 molecules initially, Eq. 2.16 has the solution

N = N0 e
−kt, (2.17)

and the number of molecules decreases exponentially with time.
To determine the molecule’s half-life, we should re-write this solution in powers of 2. Using

the mathematical relation for any variable a

ea =
(
elog 2

) a
log 2

= 2
a

log 2

we can write Eq. 2.17 as

N = N0 2
− kt

log 2 . (2.18)
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After a period of time equal to the half-life, t 1
2
, has passed, the number of molecules will be, by

definition, N0/2. Therefore Eq. 2.18 implies

N0 2
−1 = N0 2

−kt 1
2
/ log 2

(2.19)

or, comparing the exponents,

1 =
kt 1

2

log 2
, (2.20)

which is Eq. 2.3.

2.1.3 Diffusion-limited reactions

Association rates are expected to be less than ≃ 109 M−1 s−1. All association reactions proceed
by the two reactants first finding each other and then reacting. We may estimate the fastest
rate at which such association reactions can possibly proceed by assuming that the reactants
react immediately once together, so that treac = 0 in Eq. 2.2. The upper bound on association
reactions is then determined from the time taken for the two reactants to diffuse together (tdiff).
Using the diffusion equation and assuming spherical reactants, this maximum rate is [2] (p. 314)

fmax = 4πDa (2.21)

where D is the sum of the diffusion constants of the reactants and a is the typical size of a
reactant.

Remembering that D is measured in units of m2 s−1, fmax in Eq. 2.21 has units of volume
per second and is the inverse of the time for a pair of reactants to diffuse together in a unit
volume. We would like to convert these units to M−1 s−1 to be able to compare with standard
association rates. We therefore multiply first by Avogadro’s number so as to consider a mole
of reactants diffusing together (similarly to Eq. 2.10) and second by 103 to convert the volume
units from m3 to litres:

f (in M) < fmax × na × 103. (2.22)

If D is 1000 µm2 s−1 and so of order the diffusion constant of water [3] and around 150 times
larger than the typical diffusion coefficients of proteins in the cytoplasm [4], and a is 1 nm, then

f < 4π ×
D in m2s−1︷ ︸︸ ︷

103 × 10−12×
a︷︸︸︷

10−9×
na︷ ︸︸ ︷

6× 1023×
for ℓ︷︸︸︷
103

≃ 7.5× 109M−1s−1.

(2.23)

2.1.4 The concentration of one molecule

A bacterium such as Escherichia coli has a volume of approximately 1 µm3 or 10−18 m3 or
10−15 litres. The concentration of one molecule is then 1/nA/10

−15 M or of order 1 nM. The
budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 × 10−15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.
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2.2 Equilibrium and detailed balance

In the absence of any input of energy, chemical reactions reach an equilibrium where the average
number of molecules of each species stay constant, even though reactions will still be occurring.
All time derivatives are zero, and the system is defined to be at a steady state, but equilibrium
is the particular steady state where a property called detailed balance also holds.

Detailed balance means the forward rate of any reaction is exactly balanced – equal to – the
backward rate. For example, in the system of reactions

A + B
f1��*)��
b1

C
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the concentration of C obeys

d[C]

dt
= f1[A][B]− b1C + f2[D][E]− b2[C], (2.24)

and at steady state we have

d[C]

dt
= f1[A][B]− b1C + f2[D][E]− b2[C] = 0. (2.25)

At equilibrium, the extra condition of detailed balance implies

d[C]

dt
=

0︷ ︸︸ ︷
f1[A][B]− b1C +

0︷ ︸︸ ︷
f2[D][E]− b2[C] = 0 (2.26)

so that not only is d[C]
dt

equal to zero, but also f1[A][B] = b1[C] so that the first reaction is
balanced and f2[D][E] = b2[C] so that the second reaction is balanced.

Detailed balance forces the system to be at a minimum of free energy and so ‘dead’. In
modelling, we often assume that a system is never able to reach equilibrium so that there is
always free energy to exploit. For example, if any reaction is made irreversible, it will never
be balanced, and the system may reach a steady state, but this steady state will not be an
equilibrium. Implicitly we are assuming a continual supply of free energy, such as ATP, which
biases the reaction to work predominately in one direction. For example, there may be a coupling
of the reaction in this direction to ATP’s hydrolysis.

2.2.1 Finding concentrations at equilibrium

As an example of solving a system at equilibrium, consider again

A + B
f−−⇀↽−−
b

C (2.27)

At equilibrium, detailed balance implies

f [A][B] = b[C] (2.28)
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so that the rate of association of A and B equals the rate of dissociation of C. The equilibrium
dissociation constant is defined as Keq = b/f , and

[A][B] = Keq[C]. (2.29)

From the rate equations

d[A]

dt
=

d[B]

dt
= −f [A][B] + b[C] = −d[C]

dt
(2.30)

we see that
d[A]

dt
+

d[C]

dt
= 0 (2.31)

and
d[B]

dt
+

d[C]

dt
= 0 (2.32)

implying
[A] + [C] = A0 (2.33)

and
[B] + [C] = B0 (2.34)

for some constant A0 and B0. These conservation laws arise because each C molecule ‘contains’
an A molecule and a B molecule. Together with Eq. 2.29, the conservation laws, Eq. 2.33 and
Eq. 2.34, define the equilibrium concentrations of [A], [B], and [C].

2.3 The law of mass action

The law of mass action states that the rate of a reaction should depend on its stoichiometry
in the same way that equilibrium constants depend on the stoichiometry. The stoichiometry of
a reaction is defined as the relative numbers of reactants and products that are expended and
created by the reaction. For example, for the association reaction A+B → C, the stoichiometric
coefficient of A is -1, of B is -1, and of C is 1 because one molecule of A combines with one
molecule of B to form one molecule of C. Comparing Eq. 2.11 and Eq. 2.28, we see that the
dependence on stoichiometry is the same because the concentrations are raised to the same
powers.

Effectively, the law of mass action means that the rate of a reaction is proportional to the
number of ways the reaction can occur, which is the logic we used to derive Eq. 2.11. Using the
law of mass action, we ensure that the dynamics of our system are such that the system reaches
a thermodynamically correct equilibrium.

2.4 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R∗ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f−−⇀↽−−
b

[R∗]
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To allow the activated receptors to activate a downstream signalling protein, A say, we include
another binary reaction:

[R∗] + [A]
k−−→ [R∗] + [A∗]

Here [R∗] appears on both sides of the chemical equation because R∗ is not consumed by the
reaction, but catalyses the conversion of A to its activated form A∗.

The corresponding differential equations are

d[S]

dt
= −f [R][S] + b[R∗]

d[R]

dt
= −f [R][S] + b[R∗]

d[R∗]

dt
= f [R][S]− b[R∗]

d[A]

dt
= −k[A][R∗]

d[A∗]

dt
= k[A][R∗]

(2.35)

but our main focus of interest is the production of A∗ because A∗ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ≃ b[R∗]. (2.36)

The number of receptor molecules is conserved because d[R]/dt + d[R∗]/dt = 0: receptors are
neither created nor destroyed but only change state from inactivated to activated and vice versa.
Writing R0 for the total concentration of receptors so that

R0 = [R] + [R∗], (2.37)

then, using Eq. 2.36, we can show that

[R∗] ≃ [S]R0

b
f
+ [S]

. (2.38)

The differential equation for [A∗], the output of the signalling system, then becomes

d[A∗]

dt
≃ k[S]R0

b
f
+ [S]

[A] (2.39)

or
d[A∗]

dt
≃ k[S]R0

b
f
+ [S]

(A0 − [A∗]) (2.40)

because the number of A molecules is conserved, with a total concentration of say A0, because
A also only changes state.

Eq. 2.40 is our model of the signalling pathway. If either [S] = 0 or f = 0, no A∗ is produced.
If [S] ≫ b/f , the rate of production of A∗ saturates because all the receptors are bound by S.
There is no reverse reaction that converts A∗ back into A, and so all the A molecules eventually
become activated: [A∗] −→ A0.
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2.5 Thermodynamic cycles

A system contains a thermodynamic cycle if it has a series of states interlinked by equilibrium
reactions and where starting from any particular state the system can return to that state by
passing through a series of intermediate states.

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an
open state, which allows ions to pass through the plasma membrane, and then frequently enter
a refractory state. In the refractory state, the channel rarely opens but eventually transitions
into the closed state, where switching to the open state is more probable.

Schematically these reactions may be written in a circle. The ion channel is said to undergo
a thermodynamic cycle because the channel once open can go through the refractory and the
closed state before opening again.
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ ⇠ (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

If we assume that each of these reactions is at equilibrium and obeys detailed balance then

k1C = k−1O ; k2O = k−2R ; k3R = k−3C. (2.41)

Rearranging these equations gives

C =
k−1

k1
O =

k−1

k1
· k−2

k2
R =

k−1

k1
· k−2

k2
· k−3

k3
C (2.42)

and so equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k−1k−2k−3. (2.43)

For a thermodynamic cycle that is able to reach equilibrium, the reaction rates may not be
arbitrarily chosen and must obey Eq. 2.43, which implies that the probability of going round
the cycle one way is equal to the probability of going round the cycle the other way.

If the rate constants do not satisfy Eq. 2.43, the system is using energy to force the cycle to
occur preferentially in one direction. A phenomenon that may not be intended by the modeller.

Aside

We can compute the times to go around the cycle in each direction, which are equal at equilib-
rium.
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Let the typical time for one clockwise transition around the cycle be TC and so the typical
rate for this cycle be 1/TC . We expect that the rate of a compound reaction, such as a clockwise
transition, is approximately equal to the product of the probability of the most probable reaction
and its rate [5]. The most probable clockwise transition is the direct cycle from, say, the closed to
the open to the refractory and back to the closed state. Let this probability as P(c → o → r → c)
and its rate by 1/td. Then we expect

T−1
C ≃ P(c → o → r → c)× t−1

d . (2.44)

Intuitively, the typical clockwise transition time T+ is longer than the time td for a direct
clockwise cycle because at least some anticlockwise reactions will also likely occur.

The probability P(c → o → r → c) is a product of the probability of moving from the closed
to the open state, k1

k−3+k1
, and the probability of moving from the open to the refractory state,

k2
k−1+k2

, and the probability of moving from the refractory back to the closed state, k3
k−2+k3

:

P(c → o → r → o) =
k1

k−3 + k1
× k2

k−1 + k2
× k3

k−2 + k3
. (2.45)

The rate of the direct clockwise cycle is the reciprocal of the total dwell time in the three
states: closed, open, and refractory. Once the system enters a particular state, the dwell time is
the average time spent there. It is determined by the number of reactions leaving the state. The
dwell time for the closed state is 1

k−3+k1
; for the open state it is 1

k−1+k2
; and for the refractory

state 1
k−2+k3

. The total dwell time is therefore

td =
1

k−3 + k1
+

1

k−1 + k2
+

1

k−2 + k3
. (2.46)

Using Eqs. 2.45 and Eq. 2.46, we can find TC from Eq. 2.44.
Similarly, if the typical time to transition anticlockwise around the cycle is TA then we expect

T−1
A = P(c → r → o → c)× t−1

d (2.47)

with

P(c → r → o → c) =
k−3

k−3 + k1
× k−2

k−2 + k3
× k−1

k−1 + k2
. (2.48)

Consequently,
TC

TA

=
P(c → r → o → c)

P(c → o → r → o)

=
k−1k−2k−3

k1k2k3

which gives Eq. 2.43 when TC = TA.

2.6 Ultrasensitivity and the Hill number

The response curve of system is its input-output relationship and gives the steady-state level of
output as a function of the level of input. Many empirical response curves may be approximately
described by a Hill function.
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1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
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7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3
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openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)

3

Che
m
ica

l r
at
e
eq

ua
tio

ns
ar
e
us

ua
lly

writ
te
n
in

te
rm

s of
co

nc
en

tr
at
io
ns

, w
hi
ch

ar
e
m
ea

su
re
d

in
m
ol
ar

un
its

(n
um

be
r o

f m
ol
es

of
a
su

bs
ta
nc

e p
er

lit
re
).

Le
t [
C
] d

en
ot
e t

he
m
ol
ar

co
nc

en
tr
at
io
n

of
C
, t

he
n

[C
] =

nC

nA
V

(4
)

whe
re

nA
'

6.
02
⇥ 10

23
is

A
vo

ga
dr

o’
s
nu

m
be

r
an

d
V

is
th

e
vo

lu
m
e
of

th
e
ce
ll

in
lit

re
s.

To

co
nv

er
t Eq

. 3
in
to

an
eq

ua
tio

n
fo
r th

e
ra
te

of
ch

an
ge

of
th

e
co

nc
en

tr
at
io
n
of

C
, w

e
m
us

t di
vi
de

Eq
. 3

by
nA

V
. Thi

s
di
vi
sio

n
gi
ve

s
d[
C
]

dt

=
f̃n

A
V
[A

][B
]�

b̃[C
]

(5
)

whe
re

[A
] i
s th

e
co

nc
en

tr
at
io
n
of

A
an

d
[B

] i
s th

e
co

nc
en

tr
at
io
n
of

B
. If

we
de

fin
e
m
ac

ro
sc
op

ic

re
ac

tio
ns

ra
te
s,

fo
r re

ac
tio

ns
in
vo

lv
in
g
co

nc
en

tr
at
io
ns

, a
s

f
=

f̃n
A
V

b =
b̃

(6
)

th
en

d[
C
]

dt

=
f [
A
][B

]�
b[C

].

(7
)

The
un

its
of

th
e
m
ac

ro
sc
op

e
ra
te

f
ar
e
M
�1 s

�1 , a
nd

f
ha

s an
up

pe
r bo

un
d
gi
ve

n
by

a
re
ac

tio
n

th
at

is
di
↵u

sio
n-
lim

ite
d.

The
un

its
of

th
e
m
ac

ro
sc
op

ic
ra
te

b
ar
e
un

ch
an

ge
d
an

d
ar
e
s
�1 .

1.
1.
1

E
xa

m
pl
e:

di
m
er
iz
at
io
n

M
an

y
m
em

br
an

e re
ce
pt

or
s r

ev
er
sib

ly
di
m
er
ize

to
fo
rm

a
re
ce
pt

or
-re

ce
pt

or
di
m
er
, a

nd
so
m
et
im

es

on
ly

th
e
di
m
er

ca
n
bi
nd

lig
an

d
an

d
sig

na
l d

ow
ns

tr
ea

m
.
The

di
m
er
iza

tio
n
re
ac

tio
n
is

un
us

ua
l.

Le
t R

de
no

te
a
re
ce
pt

or
an

d
R 2

de
no

te
a
di
m
er

of
re
ce
pt

or
s.

The
se

sp
ec
ies

sa
tis

fy
th

e
re
ac

tio
n

R
+

R

f�*)�b

R 2

The
ra
te

eq
ua

tio
ns

fo
r
th

is
sy
st
em

ar
e
at
yp

ica
l
be

ca
us

e
tw

o
m
ol
ec
ul
es

of
R

ar
e
re
m
ov

ed

by
th

e
f

re
ac

tio
n

an
d

tw
o
m
ol
ec
ul
es

ar
e
re
lea

se
d

by
th

e
b
re
ac

tio
n.

A
lth

ou
gh

th
e
as
so
cia

tio
n

re
ac

tio
n
pr

oc
ee
ds

at
th

e
ra
te

f [
R
]2

an
d
th

e
di
ss
oc

ia
tio

n
re
ac

tio
n
pr

oc
ee
ds

at
th

e
ra
te

b[R
2
],
we

ha
ve

d[
R
]

dt

=
�2f

[R
]2
+

2b
[R

2
]

(8
)

be
ca

us
e
tw

o
R

m
ol
ec
ul
es

ar
e
in
vo

lv
ed

in
bo

th
re
ac

tio
ns

. The
di
m
er
, R

2
, o

be
ys

d[
R 2

]

dt

=
f [
R
]2
� b[R

2
]

(9
)

be
ca

us
e
on

ly
on

e
m
ol
ec
ul
e
of

di
m
er

fo
rm

s
or

di
ss
oc

ia
te
s.

Su
m
m
in
g
Eq

. 8
an

d
tw

ice
Eq

. 9
gi
ve

s

d[
R
]

dt

+
2
d[
R 2

]

dt

=
0

(1
0)

im
pl
yi
ng

th
at

[R
] +

2[
R 2

] =
co

ns
ta
nt

=
[R

] 0
+

2[
R 2

] 0

(1
1)

3

Che
m

ica
lr

at
e

eq
ua

tio
ns

ar
e

us
ua

lly
writ

te
n

in
te

rm
sof

co
nc

en
tr

at
io

ns
,w

hi
ch

ar
e

m
ea

su
re

d

in
m

ol
ar

un
its

(n
um

be
ro

fm
ol

es
of

a
su

bs
ta

nc
ep

er
lit

re
).

Le
t[

C
]d

en
ot

et
he

m
ol

ar
co

nc
en

tr
at

io
n

of
C

,t
he

n

[C
]=

n
C n

AV

(4
)

whe
re

n
A

'
6.

02
⇥1023

is
A

vo
ga

dr
o’

s
nu

m
be

r
an

d
V

is
th

e
vo

lu
m

e
of

th
e

ce
ll

in
lit

re
s.

To

co
nv

er
tEq

.3
in

to
an

eq
ua

tio
n

fo
rth

e
ra

te
of

ch
an

ge
of

th
e

co
nc

en
tr

at
io

n
of

C
,w

e
m

us
tdi

vi
de

Eq
.3

by
n

AV
.Thi

s
di

vi
sio

n
gi

ve
s

d[
C

] dt
=

˜fn
AV

[A
][B

]�
b̃[C

]

(5
)

whe
re

[A
]i

sth
e

co
nc

en
tr

at
io

n
of

A
an

d
[B

]i
sth

e
co

nc
en

tr
at

io
n

of
B

.If
we

de
fin

e
m

ac
ro

sc
op

ic

re
ac

tio
ns

ra
te

s,
fo

rre
ac

tio
ns

in
vo

lv
in

g
co

nc
en

tr
at

io
ns

,a
s

f
=

˜fn
AV

b=
b̃

(6
)

th
en

d[
C

] dt
=

f[
A

][B
]�

b[C
].

(7
)

The
un

its
of

th
e

m
ac

ro
sc

op
e

ra
te

f
ar

e
M�1

s�1
,a

nd
f

ha
san

up
pe

rbo
un

d
gi

ve
n

by
a

re
ac

tio
n

th
at

is
di

↵u
sio

n-
lim

ite
d.

The
un

its
of

th
e

m
ac

ro
sc

op
ic

ra
te

b
ar

e
un

ch
an

ge
d

an
d

ar
e

s�1
.

1.
1.

1
E

xa
m

pl
e:

di
m

er
iz

at
io

n

M
an

y
m

em
br

an
ere

ce
pt

or
sr

ev
er

sib
ly

di
m

er
ize

to
fo

rm
a

re
ce

pt
or

-re
ce

pt
or

di
m

er
,a

nd
so

m
et

im
es

on
ly

th
e

di
m

er
ca

n
bi

nd
lig

an
d

an
d

sig
na

ld
ow

ns
tr

ea
m

.
The

di
m

er
iza

tio
n

re
ac

tio
n

is
un

us
ua

l.

Le
tR

de
no

te
a

re
ce

pt
or

an
d

R
2

de
no

te
a

di
m

er
of

re
ce

pt
or

s.
The

se
sp

ec
ies

sa
tis

fy
th

e
re

ac
tio

n

R
+

Rf �*)�
bR

2

The
ra

te
eq

ua
tio

ns
fo

r
th

is
sy

st
em

ar
e

at
yp

ica
l

be
ca

us
e

tw
o

m
ol

ec
ul

es
of

R
ar

e
re

m
ov

ed

by
th

e
f

re
ac

tio
n

an
d

tw
o

m
ol

ec
ul

es
ar

e
re

lea
se

d
by

th
e

b
re

ac
tio

n.
A

lth
ou

gh
th

e
as

so
cia

tio
n

re
ac

tio
n

pr
oc

ee
ds

at
th

e
ra

te
f[

R
]2

an
d

th
e

di
ss

oc
ia

tio
n

re
ac

tio
n

pr
oc

ee
ds

at
th

e
ra

te
b[R

2],
we

ha
ve

d[
R

] dt
=

�2f
[R

]2
+

2b
[R

2]

(8
)

be
ca

us
e

tw
o

R
m

ol
ec

ul
es

ar
e

in
vo

lv
ed

in
bo

th
re

ac
tio

ns
.The

di
m

er
,R

2,
ob

ey
s

d[
R

2] dt
=

f[
R

]2
�b[R

2]

(9
)

be
ca

us
e

on
ly

on
e

m
ol

ec
ul

e
of

di
m

er
fo

rm
s

or
di

ss
oc

ia
te

s.
Su

m
m

in
g

Eq
.8

an
d

tw
ice

Eq
.9

gi
ve

s

d[
R

] dt
+

2d[
R

2] dt
=

0

(1
0)

im
pl

yi
ng

th
at

[R
]+

2[
R

2]
=

co
ns

ta
nt

=
[R

]0
+

2[
R

2]0

(1
1)

3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(2.49)

where we call n the Hill number, or occasionally the Hill coefficient, and K is the value of the
input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response, the half-maximal (50%) effective concentration.

If the output decreases with increasing levels of input, then the appropriate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(2.50)

and K is now sometimes called the IC50 of the response, the half-maximal inhibitory concentra-
tion.

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function. If the
output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration. If the
output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.

8

1.4 Thermodynamic cycles

Ion channels often undergo thermodynamic cycles. They can switch from a closed to an open
state, which allows ions to pass through the plasma membrane, and then frequently enter a
refractory state. In the refractory state, the channel rarely opens but eventually transitions into
the closed state, where switching to the open state is more probable. Schematically, we can
write
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ � (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

The ion channel is said to undergo a thermodynamic cycle because the channel once open
can go through the refactory and the closed state before opening again.

If we assume that each of these reactions is at equilibrium and so obeys detailed balance,
then we can show that equilibrium imposes a constraint on the reaction rates:

k1k2k3 = k�1k�2k�3. (33)

For a thermodynamic cycle that can reach equilibrium, the rate constants cannot be arbitrarily
chosen and must obey Eq. 33, which implies that the probability of going round the cycle one
way is equal to the probability of going round the cycle the other way. If the rate constants do
not satisfy Eq. 33, the system is using energy to force the cycle to occur preferentially in one
direction. A phenomenon that may not be intended by the modeller.

2 Ultrasensitivity, cooperativity, and Hill numbers

2.1 The Hill number

The response curve of system is the input-output relation and gives the level of output for all
levels of input. Many response curves can be approximately described by a Hill function.

If the output, y, increases with increasing levels of input, x, the appropriate Hill function is

y(x)

ymax

=
xn

Kn + xn
(34)

where n is called the Hill number, or occasionally the Hill coe�cient, and K is the value of
the input that causes the output to be half of its maximum value (ymax). The parameter K is
sometimes called the EC50 of the response or the half-maximal e↵ective concentration.If the output decreases with increasing levels of input, then the approprate Hill function is

y(x)

ymax

=
Kn

Kn + xn
(35)

and K is now sometimes called the IC50 of the response or the half-maximal inhibitory concen-
tration.
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2.7 Describing response curves

The Hill number is often used to characterise the ultrasensitivity of the response. From the
definition of the Hill function, its sensitivity at x = K is

d log y/ymax

d log x

∣∣∣∣
x=K

=
n

2
(2.51)

and is determined solely by the Hill number. A response with a Hill number of 1 is said to be
hyperbolic. The rate of a Michaelis-Menten enzymatic reaction as a function of the substrate
concentration, Eq. 2.89, is a well-known example. If the Hill number is greater than 1, the
response is ultrasensitive, and the response curve has a S- or sigmoidal shape. With Hill numbers
above approximately 3, the response is switch-like or ‘all-or-none’ with little response for inputs
below K and an almost maximal response for all inputs above K. This switch-like response is
sometimes called a ‘soft’ switch because the underlying system is not bistable (Sec. 4).

For different biochemistry, there is different terminology. Responses with a Hill number
greater than 1 are often called ultrasensitive for systems involved in signal transduction and are
often called cooperative for systems involved in gene regulation. A response with a Hill number
below one is sub-sensitive.

2.7.1 Sensitivity

With sensitivity analysis, we aim to determine how the behaviour of a model depends on its
parameter values. The local sensitivity of a steady-state quantity s with respect to changes in a
parameter p is ds/dp. A small change in p, denoted ∆p, gives

s(p+∆p) ≃ s(p) +
ds

dp
∆p+O

(
∆p2

)
(2.52)

from a Taylor expansion, or

∆s = s(p+∆p)− s(p) ≃ ds

dp
∆p. (2.53)

The local sensitivity therefore measures how a small ∆p affects s. It is, however, unhelpful for
comparing different sensitivities because it has units: the units of s divided by the units of p.
Different sensitivities may have different units.

The relative local sensitivity is more common; it is dimensionless. We define the relative
sensitivity as

χ =
ds/s

dp/p
=

p

s
× ds

dp
=

d log s

d log p
. (2.54)

From Eq. 2.53,
∆s

s
≃ 1

s

ds

dp
×∆p

=
p

s

ds

dp
× ∆p

p

and so, from Eq. 2.54, the relative sensitivity satisfies

∆s

s
≃ χ

∆p

p
. (2.55)
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The relative sensitivity therefore measures the fractional change in s resulting from a small
fractional change in p. Fractional changes are absolute and so make clear what we mean by
‘small’.

The Hill number measures the relative sensitivity of the output y to a change in the input
x when the input is at the threshold value, x = K. The Hill number, n, is twice the relative
sensitivity from Eq. 2.51:

n = 2
d log y

d log x

∣∣∣∣
x=K

(2.56)

Eq. 2.56 implies that a system with a high sensitivity at the threshold level of input will be
a sharp, ultrasensitive switch with a high Hill number. For such systems, a small fractional
change in input can cause a large factional change in output, such as when the input crosses the
threshold level.

2.8 Modelling signal transduction II

Considering Fig. 1, we can use a Hill function to immediately write an equivalent to Eq. 2.38:

[R∗] ≃ R0[S]
n

Kn + [S]n
(2.57)

where the Hill number n could be greater than 1 if, for example, multiple molecules of S have
to bind to a receptor R to activate that receptor or if S only binds to R as a dimer. Eq. 2.40
then becomes:

d[A∗]

dt
≃ kR0[S]

n

Kn + [S]n
(A0 − [A∗]). (2.58)

2.9 Allostery – and the Monod-Wyman-Changeux model – as a means
to generate ultrasensitivity

An enzyme is allosteric if its activity is modified by a regulator binding to a site on the enzyme
that is not the enzyme’s functional site. Binding sites on allosteric enzymes interact through
conformational changes: a molecule binding at a regulatory site causes a change in conformation
at the active site and so alters enzymatic activity.

Allostery explains why a molecule that regulates an enzyme need not have a similar structure
to the enzyme’s substrate. This freedom in the structure of regulatory molecules was a great
revelation when discovered in the 1950s.

As an example consider a membrane receptor that activates when bound by an extracellular
ligand. Biochemically the receptor has two conformational states: one active and one inactive.
The active state can signal downstream; the inactivate state cannot. An extracellular ligand
activates the receptor by preferentially binding to the active state over the inactive one. Through
this preference, the ligand stabilises the receptor in the active state. Once active, the receptor
may bind a signalling molecule on its cytoplasmic side. This signalling molecule can have a
completely different structure from the ligand because the ligand binds to a different site on the
receptor.

Allostery is one way to generate ultrasensitive responses, and a celebrated model is the
concerted model of Monod, Wyman, and Changeux [6]. In this model, an enzyme has two
conformations – arbitrarily called a tense state (denoted T ) and a relaxed state (denoted R)
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– and spontaneously changes between these conformations. In the tense state, we consider the
enzyme to be ‘on’ with high activity; in the relaxed state, it is ‘off’ with low activity. Any
molecule that has a higher binding energy for the T state relative to the R state activates the
enzyme.

2.9.1 Allosteric molecules with a single binding site for a regulator

6 Negative feedback and response times 24
6.1 Response times are determined by protein lifetimes . . . . . . . . . . . . . . . . 24
6.2 Negative autoregulation decreases response times . . . . . . . . . . . . . . . . . 26

7 Negative feedback and oscillations 27
7.1 Circadian rhythms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Competitive inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Dimerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 The Tyson et al. model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.2 Relaxation oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Oscillations through both positive and negative feedback . . . . . . . . . . . . . 32

1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ ⇠ (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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KT/2 KR/2

Let a regulatory molecule be X — shown as a red triangle. In the absence of X, we can
describe the spontaneous conformational changes as

T
L−−⇀↽−− R

where L is the equilibrium constant: L = [R]/[T ]. The binding reactions are second-order:

X + T
KT−−⇀↽−− T1

and

X + R
KR−−⇀↽−− R1

with KT and KR being association equilibrium constants – the rate of the association reaction
divided by the rate of the dissociation reaction. Let KT > KR so that X activates the enzyme
because it favours binding the ‘on’ state T .

If there is only one binding site for X on the enzyme and assuming each reaction is at
equilibrium:

L = [R]
[T ]

; [T1] = KT [T ][X] ; [R1] = KR[R][X]. (2.59)

Then the fraction of activated enzymes is

fon =
[T ] + [T1]

[T ] + [T1] + [R] + [R1]

=
[T ] +KT [X][T ]

[T ] +KT [X][T ] + L[T ] +KR[X]L[T ]

=
1 +KT [X]

1 +KT [X] + L(1 +KR[X])

(2.60)
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which is a hyperbolic function increasing with [X]. The enzymatic activity increases with X
because X biases the molecule to adopt the active conformation.

Allowing a two-way reaction between T1 and R1 would not change Eq. 2.60. This reaction
would not prevent the others from reaching equilibrium, and its equilibrium constant, L1 say,
must obey L1 =

KR

KT
L because then the set of reactions form a thermodynamic cycle (Sec. 2.5).

2.9.2 Allosteric molecules with two binding sites for regulators
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ ⇠ (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)

3

closed

openrefractory

k1

k2

k3

k-1
k-2

k-3

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

KT/2 KR/2

T2 R2

Allostery can give sharp, switch-like responses as the concentration of the regulatory molecule
changes. If the enzyme has two identical binding sites for X and if fT is the rate of binding one
of those sites then the association reaction becomes

X + T
2fT−−→ T1

because there are now two choices of binding site for X. Denoting the rate of dissociation by
bT , the dissociation reaction remains

T1

bT−−→ X+ T

because there is only one way that X can dissociate from T1. The overall association constant
is therefore 2fT/bT = 2KT .

We can understand this factor of two by considering explicitly the enzyme’s two binding sites
for X. Let T0,0 denote an enzyme in the tense state with no bound X molecules; T1,0 denote
a tense enzyme with an X bound to the first site; and T0,1 denote a tense enzyme with an X
bound to the second site. Then the reactions are

X + T0,0

fT−−⇀↽−−
bT

T1,0

and

X + T0,0

fT−−⇀↽−−
bT

T0,1
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We can write down the differential equation for X, which will have four terms because of the
four reactions:

d[X]

dt
= −fT [X][T0,0]− fT [X][T0,0] + bT [T1,0] + bT [T0,1]

= −2fT [X][T0,0] + bT [T1,0] + bT [T0,1]
(2.61)

If we define [T1] = [T1,0] + [T0,1] to be the concentration of the enzyme with one molecule of X
bound irrespective of where that molecules binds, then Eq. 2.61 becomes

d[X]

dt
= −2fT [X][T0,0] + bT [T1] (2.62)

which is the differential equation that describes the reaction

X + T
2fT−−⇀↽−−
bT

T1

with T0,0 written as T . The forward reaction rate increases by a factor of two because there are
two possible sites on the enzyme where X can bind and we ignore the particular site where X
does bind.

For the binding of a second X, we have

X + T1

fT−−→ T2

because there is only one binding site for X available on T1. The dissociation of an X from T2

can, however, occur in two ways depending on which X dissociates and whether either T0,1 or
T1,0 forms. So

T2

2bT−−→ X+ T1

The overall association constant is consequently fT/(2bT ) = KT/2. Similar reactions hold for
the binding of X to the R-state.

The fraction of activated enzyme can now be a sigmoidal function of the concentration of
the regulatory molecule. Assuming equilibrium and so detailed balance for all reactions:

L = [R]
[T ]

; [T1] = 2KT [T ][X] ; [T2] =
KT

2
[T1][X] ; [R1] = 2KR[R][X] ; [R2] =

KR

2
[R1][X]

(2.63)
Then the fraction of activated enzymes is

fon =
[T ] + [T1] + [T2]

[T ] + [T1] + [T2] + [R] + [R1] + [R2]

=
[T ] + 2KT [X][T ] + 1

2
KT [X]2KT [X][T ]

[T ] + 2KT [X][T ] + 1
2
KT [X]2KT [X][T ] + L[T ] + 2KR[X]L[T ] + 1

2
KR[X]2KR[X]L[T ]

=
1 + 2KT [X] +K2

T [X]2

1 + 2KT [X] +K2
T [X]2 + L(1 + 2KR[X] +K2

R[X]2)

=
(1 +KT [X])2

(1 +KT [X])2 + L(1 +KR[X])2

(2.64)
which is a sigmoidal function of [X] with a maximum Hill number of 2.
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Figure 2: The response curve of an allosteric protein steepens with a higher number of binding sites
for ligand. Here L = 104, KT = 10KR and levels of ligand, X, are shown in units of KR.

2.9.3 Allosteric molecules with n binding sites for regulators

For n binding sites,

fon =
(1 +KT [X])n

(1 +KT [X])n + L(1 +KR[X])n
(2.65)

and the sharpness of the switch increases, with a maximum Hill number of n (Fig. 2). If [X50]
is the concentration of X that makes fon half maximal, so that fon = 1

2
, then Eq. 2.65 implies

L (1 +KR [X50])
n = (1 +KT [X50])

n . (2.66)

Multiplying by [T ] and using [R] = L[T ], we have that

[R] (1 +KR [X50])
n = [T ] (1 +KT [X50])

n (2.67)

showing that the total concentrations of relaxed and tense allosteric molecules are equal at
[X] = [X50], as expected.

Considering the behaviour near [X] = [X50] helps build intuition on why the response be-
comes more sigmoidal for larger n. By differentiating Eq. 2.65, we can show that the rate at
which fon changes with [X] is proportional to n:

∂fon
∂[X]

∣∣∣∣
[X50]

=
n

4
· KT −KR

(1 +KR [X50]) (1 +KT [X50])
. (2.68)

This gradient increases with increasing [X] if X binds preferentially to the T states, KT > KR;
the gradient decreases with increasing [X] if X binds preferentially to the R state, KT < KR.
When [X] = [X50], a small increase in the concentration of X will shift the equilibrium for
each of X’s binding reactions towards having more X bound. For an allosteric molecule with n
binding sites for X, all n reactions will shift, with those involving tense molecules increasing fon
by an amount proportional to nKT , and those involving relaxed molecules decreasing fon by an
amount proportional to nKR, giving the positive and negative terms in Eq. 2.68.

With more than one binding site for the regulatory molecule, the Monod, Wyman, and
Changeux model assumes that all the enzyme’s binding sites transition together – in a concerted
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manner – between the two conformational states [6]. All binding sites on the enzyme are therefore
always in the same conformational state. Typically these binding sites are on identical subunits,
and we consider each subunit to have the same conformation. Other models of allostery relax
the concerted assumption [7].

2.9.4 Limits of the Monod-Wyman-Changeux equation

We can build intuition about Eq. 2.65 by considering various limits.

• Eq. 2.65 always includes basal levels of activation. If there are no input molecules present

fon([X] = 0) =
1

1 + L
(2.69)

and there is basal activation providing L ≪ 1. Remember that [T ] = [R]/L, and so L ≪ 1
implies that molecules are often in the active tense state in the absence of input.

• Full activation is only possible if the input strongly prefers binding to the tense state
over the relaxed state. If we add excess input molecules so that both KT [X] ≫ 1 and
KR[X] ≫ 1, then Eq. 2.65 becomes

fon(KR[X] ≫ 1) ≃ Kn
T

Kn
T + LKn

R

(2.70)

or, defining the bias in binding to be c so that KT = cKR,

fon ≃ cn

cn + L
(2.71)

and there is full activation if there is high bias: cn ≫ L.

• Eq. 2.65 becomes an activating Hill function for high bias and sufficient input. Writing
Eq. 2.65 in terms of KT and the bias c = KT/KR

fon =
(1 +KT [X])n

(1 +KT [X])n + L(1 +KT [X]/c)n
(2.72)

then if we have high bias, c ≫ KT [X],

fon ≃ (1 +KT [X])n

(1 +KT [X])n + L
. (2.73)

If too we have sufficient input, KT [X] ≫ 1, then

fon ≃ (KT [X])n

(KT [X])n + L

=
[X]n

L
Kn

T
+ [X]n

(2.74)

which is a Hill equation (Eq. 2.49) with a Hill number equal to n, the number of regula-
tory binding sites on each allosteric molecule. These limits reduce the system to having
essentially two states: Tn ≃ (KTX)nT and R, with [R] = L[T ].
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• Eq. 2.65 becomes an inhibiting Hill function for low bias and sufficient input. Writing
Eq. 2.65 in terms of KR and the bias c = KT/KR

fon =
(1 + cKR[X])n

(1 + cKR[X])n + L(1 +KR[X])n
(2.75)

then if we have low bias, c ≪ 1
KR[X]

,

fon ≃ 1

1 + L(1 +KR[X])n
. (2.76)

If too we have sufficient input, KR[X] ≫ 1, then

fon ≃ 1

1 + L(KR[X])n

=

1
LKn

R

1
LKn

R
+ [X]n

(2.77)

which is also a Hill function (Eq. 2.50).

Allostery can therefore cause an enzyme to switch sharply between active and inactive states
at a threshold concentration of the regulatory molecule. This cooperative behaviour arises
because the first regulatory molecule prefers binding to the enzyme’s conformational state that
favours binding of more regulatory molecules. The bound enzyme will spend more time in this
conformation making it easier for a second regulatory molecule to bind. It then becomes even
easier for a third molecule to bind.

2.10 Modelling signal transduction III

We can use an allosteric model to describe activation of the receptors in Fig. 1. Consider

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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then the fraction of activated receptors is

f ∗ =
1 +K∗[S]

1 +K∗[S] + L(1 +K[S])
(2.78)
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from Eq. 2.60. The concentration of active receptors is [R∗] = f ∗R0, and so Eq. 2.58 becomes

d[A∗]

dt
≃ kR0(1 +K∗[S])

1 +K∗[S] + L(1 +K[S])
(A0 − [A∗]). (2.79)

When [S] = 0, Eq. 2.79 simplifies

d[A∗]

dt
≃ kR0

1 + L
(A0 − [A∗]) (2.80)

and there is a basal rate of activation even in the absence of ligand. This basal rate goes to zero
as L ≫ 1 because then receptors almost never spontaneously enter the activated state.

If K∗[S] ≫ 1 so that almost all the active receptors are in the R∗
1 state and not in the R∗

state, then Eq. 2.79 becomes

d[A∗]

dt
≃ kR0K

∗[S]

L+ (K∗ +KL)[S]
(A0 − [A∗]) (2.81)

and we recover Eq. 2.40.

2.11 Enzyme kinetics

Almost all studies of enzymes start with the framework introduced by Michaelis and Menten,
which although approximate is both simple and practical. An enzymatic reaction occurs in
two steps: first, the enzyme binds the substrate to form an enzyme-substrate complex; second,
catalysis occurs and this complex dissociates to form the product and release the enzyme:

E + S
f−−⇀↽−−
b

C
k−−→ P + E

For example, E may be a kinase in a signalling network that phosphorylates a substrate S to
form a product P of phosphorylated S.

Using the law of mass action, the rate equations for this system are

d[E]

dt
= −f [E][S] + (b+ k)[C]

d[S]

dt
= −f [E][S] + b[C]

d[C]

dt
= f [E][S]− (b+ k)[C]

d[P ]

dt
= k[C].

(2.82)

Catalysis does not consume the enzyme, and we see that

d[E]

dt
+

d[C]

dt
= 0 (2.83)

so that
[E] + [C] = [E]0 + [C]0 = Etot (2.84)
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where the right-hand side is the total amount of enzyme initially present — Etot. Similarly, the
substrate is only converted into product and no new substrate is created, so that [S] + [C] + [P ]
is a constant: the total amount of substrate is conserved in its various forms — either as free
substrate, in complex with enzyme, or as product.

The Michaelis-Menten approximation typically relies on more substrate being present than
enzyme, often true initially, so that almost all the enzyme is bound in a complex with the
substrate. The concentration of the complex then does not change with time, although [S] and
[P ] do. The concentration of complex remains approximately constant while levels of S remain
sufficiently high. We say that [C] is at quasi-steady state because d[C]/dt ≃ 0, but the system
as a whole is not at steady state, with d[S]/dt < 0 and d[P ]/dt > 0.

If d[C]/dt ≃ 0, then
f [E][S] = (b+ k)[C] (2.85)

from Eqs 2.82. Combining Eq. 2.85 with Eq. 2.84, we can show that

[C] ≃ Etot[S]
b+k
f

+ [S]
(2.86)

and so
d[P ]

dt
≃ kEtot[S]

b+k
f

+ [S]
(2.87)

which depends only on the total amount of enzyme and the concentration of the substrate.
Defining

Vmax = kEtot ; Km = b+k
f (2.88)

we have the Michaelis-Menten equation:

d[P ]

dt
≃ Vmax[S]

Km + [S]
(2.89)

for the initial rate of an enzymatic reaction. The maximum rate of the reaction is given by Vmax

and occurs for high concentrations of substrate. The concentration of substrate at which the
reaction occurs at half this rate is given by the Michaelis-Menten constant, Km.

We have too that
d[S]

dt
+

d[C]

dt
+

d[P ]

dt
= 0 (2.90)

because the substrate is either free or in a complex with the enzyme or has been converted into
the product. The quasi-steady-state assumption, d[C]/dt ≃ 0, implies that Eq. 2.90 becomes

d[S]

dt
≃ −d[P ]

dt
(2.91)

or
d[S]

dt
≃ − Vmax[S]

Km + [S]
(2.92)

from Eq. 2.89, another form of the Michaelis-Menten equation.
The Michaelis-Menten equation is approximate, and more careful analysis shows that

Etot

[S]0 +Km

≪ 1 (2.93)
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is necessary for Eq. 2.89 to hold [8], where [S]0 is the initial concentration of substrate. Eq. 2.93
implies first that the time taken for the enzyme to bind substrate to build the complex C is faster
than the time taken for the levels of substrate to change, and, second, that a negligible amount
of substrate is lost while the complex forms [8]. The initial condition that we can use with the
quasi-steady state approximation is then still [S(t = 0)] = [S]0, the true initial condition of the
system.

In the cell, however, enzymes, such as those in metabolism, often operate in the presence of
their product, which competes with the substrate to bind to the enzyme and is inhibiting. The
Michaelis-Menten equation then no longer holds. Furthermore, metabolic enzymes usually have
more than one substrate [9].

2.12 Modelling signal transduction IV

Given our allosteric model of the activation of the receptors in Fig. 1 (Eq. 2.79), we can consider
how the signal propagates within the cell and model the dynamics of kinase B, which is activated
by A∗. We will assume that this activation obeys Michaelis-Menten kinetics:

A∗ + B
fB−−⇀↽−−
bB

CAB

kB−−→ B∗ +A∗

The rate of change of [B∗] then has a positive term

kB[A
∗][B]

bB+kB
fB

+ [B]
(2.94)

from Eq. 2.87. Note that it is only active A that catalyses the activation of B, and so [A∗] is
equivalent to Etot in Eq. 2.87.

If there is an enzyme that is constitutively active and de-activates B∗, such as a phosphatase
if A∗ is a kinase, then this enzyme too is likely to have Michaelis-Menten kinetics. Denoting the
enzyme as P , we have

P + B∗ f ′
B−−⇀↽−−
b′B

CPB

k′B−−→ B + P

and so a negative term in the rate of change of [B∗] of

− k′
B[P ][B∗]

b′B+k′B
f ′
B

+ [B∗]
. (2.95)

Hence
d[B∗]

dt
≃ kB[A

∗][B]
bB+kB

fB
+ [B]

− k′
B[P ][B∗]

b′B+k′B
f ′
B

+ [B∗]
(2.96)

or
d[B∗]

dt
≃ kB[A

∗](B0 − [B∗])
bB+kB

fB
+B0 − [B∗]

− k′
B[P ][B∗]

b′B+k′B
f ′
B

+ [B∗]
(2.97)

because the total concentration of B is conserved and here equal to B0 = [B] + [B∗]. Often the

assumption that enzyme P works far from saturation is made so that [B∗] ≪ b′B+k′B
f ′
B

. Eq. 2.97

then simplifies
d[B∗]

dt
≃ kB[A

∗](B0 − [B∗])
bB+kB

fB
+B0 − [B∗]

− dB[B
∗] (2.98)
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where

dB =
f ′
Bk

′
B[P ]

b′B + k′
B

. (2.99)

Including similar activation of molecule C by B∗, our final model of the cytoplasmic reactions
of Fig. 1 is

d[A∗]

dt
=

kAR0(1 +K∗[S])

1 +K∗[S] + L(1 +K[S])
(A0 − [A∗])− dA[A

∗]

d[B∗]

dt
=

kB[A
∗](B0 − [B∗])

bB+kB
fB

+B0 − [B∗]
− dB[B

∗]

d[C∗]

dt
=

kC [B
∗](C0 − [C∗])

bC+kC
fC

+ C0 − [C∗]
− dC [C

∗]

(2.100)

assuming that deactivating enzymes, the phosphatase, are present and far from saturation.

2.13 Enzymatic cascades

Enzymatic cascades, where the first enzyme in the cascade activates the second and the second
in turn activates the third and so on, have the potential to generate response curves that are
ultrasensitive. A well understood example involves the MAP kinases involved in the maturation
of oocytes in the frog Xenopus laevis. The hormone progesterone activates the MAP kinase
kinase kinase Mos; Mos activates the MAP kinase kinase MEK1; and MEK1 activates the MAP
kinase p42. Activation of p42 MAP kinase leads ultimately to the oocyte maturing.

If each step of the cascade is ultrasensitive, then each subsequent step increases the ultra-
sensitivity of the response of the cascade’s final enzyme. For example, if steady-state [B∗] is a
sigmoidal function of [A∗] then

[B∗] = [B∗]max ·
[A∗]nB

KnB
B + [A∗]nB

(2.101)

where nB is the Hill number and KB is the EC50 of the activation of B by A∗. Similarly, if
steady-state [C∗] is a sigmoidal function of [B∗] then

[C∗] = [C∗]max ·
[B∗]nC

KnC
C + [B∗]nC

(2.102)

where nC is the Hill number and KC is the EC50 of B
∗. Inserting Eq. 2.101 into Eq. 2.102 gives

[C∗] = [C∗]max ·

(
[B∗]max

[A∗]nB

K
nB
B +[A∗]nB

)nC

KnC
C +

(
[B∗]max

[A∗]nB

K
nB
B +[A∗]nB

)nC
. (2.103)

If the concentration of A∗ is smaller than its EC50, meaning that [A∗] ≪ KB, then

[C∗] ≃ [C∗]max ·
[A∗]nBnC

K
nBnC
B K

nC
C

[B∗]
nC
max

+ [A∗]nBnC

(2.104)

and the maximum effective Hill number of the response of C∗ to A∗ is nBnC — the product of
the Hill numbers of each stage of the cascade.
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Figure 3: Enzymes lower in a cascade respond more sigmoidally than enzymes higher in the cascade
if the Hill number for activation of each step, n, is greater than 1.

For example, if each element of the cascade has a Hill number of two then a cascade of three
enzymes would have a maximum Hill number of 23 = 8. In contrast, if each element of the
cascade responds hyperbolically (n = 1) then the cascade will have a maximum Hill number of
one regardless of the number of stages in the cascade (Fig. 3).

How could each element of the cascade have a Hill number greater than one? If a kinase
needs to be phosphorylated only once by an upstream kinase to become active then it is dif-
ficult to generate ultrasensitivity without having to impose restrictions on the concentrations
of the enzymes [10]. Many kinases, including many MAP kinases, require, however, two phos-
phorylations to become active. If the activating kinase acts distributively and dissociates from
the downstream kinase after each phosphorylation, then activation of the downstream kinase
‘sees’ the concentration of the upstream kinase twice, once for each phosphorylation. For a
processive kinase, which binds and phosphorylates the substrate twice before dissociating, the
concentration of the upstream kinase is seen only once. We therefore might expect activation of
a kinase by a distributive upstream kinase to be a sigmoidal function of that upstream kinase’s
concentration. Where tested, this expectation has been borne out [11].

2.14 Zero-order ultrasensitivity

A kinase and a phosphatase acting on the same substrate can generate a highly ultrasensitive
response in the level of phosphorylated substrate as the ratio of the concentration of the two
enzymes is varied [10]. A substrate that is continually phosphorylated and then dephosphory-
lated is sometimes said to take part in a ‘futile’ cycle because energy appears to be pointlessly
consumed. Such cycles may, however, be used by the cell to generate ultrasensitive responses.

For example, consider a kinase and a phosphatase that bind identically to a substrate and
either phosphorylate or dephosphorylate with the same rate. If there are initially equal amounts
of both enzymes then half of the substrate is phosphorylated at steady state. Let both enzymes
be saturated – there is so much substrate compared to enzymes that both the kinase and the
phosphatase work close to their maximum rate and no longer have a Michaelis-Menten depen-
dence on the concentration of their substrate. If there is a small increase in the concentration
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of one of the enzymes, say the phosphatase, then the kinase is unable to resist the increase in
phosphatase activity because the kinase is already working at its maximum rate. The extra
phosphatases act as if they are unopposed, and there is a sharp switch in the phosphorylated
state of the substrate with the substrate becoming mostly unphosphorylated. Similarly, a small
increase in the concentration of the kinase away from the symmetric case leads to a switch to
mostly phosphorylated substrate.

This ultrasensitive switch is referred to as ‘zero-order’ because both enzymes should be sat-
urated and work at a constant, or zero-order, rate. If the enzymes are not saturated, then a
small increase in the concentration of, say, the kinase can be opposed by the phosphatase: the
activity of the phosphatase also increases because of the increase in concentration of phospho-
rylated substrate, following the Michaelis-Menten equation (Eq. 2.89). Zero-order ultrasensitive
responses can switch sharply and can have Hill numbers greater than 10.

2.15 Summary

Models of biochemical systems are typically formulated using the law of mass action and so each
chemical reaction proceeds at a rate proportional to the number of ways that the reaction can
occur.

Without input of energy, all systems tend to equilibrium. Equilibrium is a special case of a
steady state, where each individual reaction is balanced by an opposing reaction. This condition
of detailed balance means that no work can be extracted from the equilibrium state, and so all
living cells can be at steady state but not at equilibrium. Equilibrium in a thermodynamic cycle
imposes a condition on the rates of the reactions, and they cannot all be freely chosen.

Several simplifying approximations that do not obey the law of mass action are often used
for rates of reactions, but we can derive these approximations from system with dynamics that
do obey the law of mass action. The Hill function describes a generic reaction rate that involves
switch-like behaviour and does not satisfy mass action. The Michaelis-Menten rate of an enzy-
matic reaction has a Hill number of one, and the Monod-Wyman-Changeux model of allostery
has a maximum Hill number determined by the number of subunits in the allosteric molecule.
Ultrasensitive responses can have Hill numbers that give perfect switching (either all molecules
‘off’ or all molecules ‘on’). Under certain conditions, cascades of switches have a Hill number
that is the product of the Hill numbers for each individual stage.
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3 Modelling gene expression

Gene expression is fundamental to much of biology and modelling gene expression is fundamental
to much of systems biology. We can use equations of chemical reactions to describe binding
of proteins to promoters and to describe transcription and translation. To understand the
average behaviour of a system, we typically model how occupied the promoters of interest are
by transcription factors and RNA polymerase on average.

To proceed, we assume that binding of proteins to the DNA occurs faster than transcription,
translation, and the degradation of both mRNAs and proteins so that each binding reaction is
at equilibrium. We will derive expressions for the promoter occupancy by assuming that the
DNA-binding reactions are at equilibrium, but identical expressions can be found too using ideas
from statistical mechanics [12].

3.1 Modelling constitutive expression

A constitutively expressed gene is unregulated and synthesises mRNA at a constant average rate.
The promoter therefore has two states: it can be either unbound or bound by RNA polymerase.
If Q denotes RNA polymerase and P0 is the unoccupied promoter then

P0 +Q −−⇀↽−− P Q
0

describes the binding of RNA polymerase to the promoter. PQ
0 is the complex of the promoter

bound by RNA polymerase:

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

At equilibrium,
PQ
0 = KQQP0 (3.1)

where Q here represents the number of molecules of Q, which we can convert into a concentration
[Q] by dividing both sides of the equation by the volume of the cell. KQ is an association constant.
We expect KQ > 1 because it is determined by polymerases’s binding energy to the DNA, ∆Gb,

via KQ = e−
∆Gb
RT [12], and ∆Gb < 0.

The number of molecules of the promoter do not change with these reactions — the promoter
only changes state — and, assuming n copies of the promoter, we can write down a conservation
law:

P0 + PQ
0 = n. (3.2)

Using Eq. 3.1, this conservation implies that

P0 +KQQP0 = n (3.3)

and so that
P0 =

n

1 +KQQ
(3.4)
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which is the average number of promoters that are free and not bound by RNA polymerase.
From Eq. 3.1, the average number of bound promoters is

PQ
0 =

nKQQ

1 +KQQ
. (3.5)

3.1.1 Modelling transcription

Transcription occurs only when RNA polymerase Q is bound

PQ
0

u−−→ PQ
0 +M

where u is the rate at which RNA polymerase initiates transcription. We assume that the binding
of RNAP at the promoter is fast compared to u and remains at equilibrium so that a bound
polymerase replaces the one that leaves the DNA after it finishes transcribing. If the mRNA is
degraded

M
dM−−→ ∅

then the rate equation for the mRNA M is

dM

dt
= uPQ

0 − dMM (3.6)

and the half-life of mRNA is log(2)/dM (see Sec. 2.1.2).
Eq. 3.1 and Eq. 3.4 imply that Eq. 3.6 can be written as

dM

dt
=

nuKQQ

1 +KQQ
− dMM. (3.7)

We can see that the rate of transcription increases as the number of RNA polymerase molecules
increase and saturates at a maximum rate of nu.

3.1.2 Modelling translation

Translation is usually modelled as a first-order process with rate, say, v:

M
v−−→ M+P

for mRNA, M , and protein, P . With first-order degradation of proteins,

P
dP−−→ ∅

the equation for protein dynamics is then

dP

dt
= vM − dPP (3.8)

with dP being the protein degradation rate. The half-life of protein is log(2)/dP . In Eq. 3.8, M
is a function of time and obeys Eq. 3.7.

Eq. 3.7 and Eq. 3.8 together model constitutive gene expression.
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3.2 Repression by a single repressor

The average rate of transcription is a Hill function of the concentration of repressor with a Hill
number of one if the repressor binds to a single site on the DNA.

Let P0 denote the free promoter of a gene of interest and let P1 denote the promoter when
a repressor is bound. Then

P0 +R −−⇀↽−− P1

for repressor, R. The binding of the repressor prevents RNA polymerase from binding to the
promoter and so stops transcription. In the absence of repressor, RNA polymerase, denoted Q,
can bind to the promoter

P0 +Q −−⇀↽−− P Q
0

and initiate transcription with a rate u.
If both these binding reactions are at equilibrium then

P1 = KRRP0 ; PQ
0 = KQQP0 (3.9)

whereKR andKQ are association constants and increase in magnitude if binding to the promoter
becomes stronger.

P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

The number of molecules of the promoter do not change with these reactions and, assuming
n molecules in total, we can write:

P0 + PQ
0 + P1 = n (3.10)

Using Eq. 3.9, this conservation implies that

P0 +KQQP0 +KRRP0 = n (3.11)

and so that
P0 =

n

1 +KQQ+KRR
(3.12)

which is the average number of promoters that are free and bound by neither the repressor nor
RNA polymerase. From Eq. 3.9, the average number of promoters that are able to transcribe –
have a bound RNA polymerase – is

PQ
0 =

nKQQ

1 +KQQ+KRR
. (3.13)

The rate equation describing transcription is then

dM

dt
= uPQ

0 − dMM (3.14)
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or, from Eq. 3.13,
dM

dt
=

nuKQQ

1 +KQQ+KRR
− dMM. (3.15)

We may write Eq. 3.15 as

dM

dt
=

(
nuKQQ

1+KQQ

)
1 +

(
KR

1+KQQ

)
R

− dMM (3.16)

which has the form of a Hill function in the concentration of repressor if the number of free RNA
polymerases is approximately constant.

We can further write
dM

dt
= umax

[
1

1 + R
K1

]
− dMM (3.17)

where the maximum rate of transcription is umax =
nuKQQ

1+KQQ
and the half-maximal number of

repressors is K1 =
1+KQQ

KR
. Note that both these quantities are functions of the numbers of free

RNA polymerase, Q.
We again model translation as a first-order process:

dP

dt
= vM − dPP (3.18)

where M satisfies Eq. 3.17.

3.3 Activation by a single activator

The average rate of transcription can also be a Hill function with a Hill number of one if
transcription is controlled by the binding of a single activator.

We will proceed as before and consider the binding of activator, A, to the free promoter

P0 +A −−⇀↽−− P1

as well as the binding of RNA polymerase to the promoter when activator is already bound

P1 +Q −−⇀↽−− P Q
1

We will assume further that transcription only occurs from this PQ
1 state.P0

P1

P0
Q

RNAP

repressor

P0

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

P00

P01

P10

P11

P00
Q

When the number of promoters is conserved and all reactions involving DNA binding are at
equilibrium

P1 = KAAP0 ; PQ
1 = K ′

QQP1, (3.19)
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where KA and K ′
Q are association constants, and

P0 + P1 + PQ
1 = n (3.20)

where n is the number of promoters.
Combining Eq. 3.19 and Eq. 3.20 implies that

PQ
1 =

nK ′
QKAAQ

1 +KAA+K ′
QKAAQ

(3.21)

for the average number of promoters occupied by RNA polymerase. If u is the rate of transcrip-
tion when both polymerase and activator are bound then mRNAs obey

dM

dt
=

uK ′
QQKAA

1 +KAA+KAK ′
QAQ

n− dMM (3.22)

with first-order degradation. We can re-write the average rate of transcription as a function of
only two parameters if Q is constant:

dM

dt
=

(nuK ′
QQ)KAA

1 + (1 +K ′
QQ)KAA

− dMM

=

(
nuK′

Q

1+K′
QQ

)
(1 +K ′

QQ)KAA

1 + (1 +K ′
QQ)KAA

− dMM

= umax

[
A
K1

1 + A
K1

]
− dMM

(3.23)

with umax =
nuK′

QQ

1+K′
QQ

and K−1
1 = (1 + K ′

QQ)KA, and the average transcriptional rate is a Hill

function with a Hill number of one.

3.4 Activation by two activators

We can extend this approach to promoters that bind multiple transcription factors. For example,
consider a promoter that has binding sites for two activators and can initiate transcription only
when activators bind both sites. Denoting P00 as the free promoter, P10 and P01 as the promoter
when a transcription factor binds one site, and P11 as the promoter when transcription factors
bind both sites, then we have

P00 +A −−⇀↽−− P10 and P00 +A −−⇀↽−− P01

and
P01 +A −−⇀↽−− P11 and P10 +A −−⇀↽−− P11

If these reactions are at equilibrium, we can write

P10 = K10AP00 ; P01 = K01AP00 (3.24)

and
P11 = K̃10AP01 ; P11 = K̃01AP10 (3.25)

32



P0

P1

P0
Q

RNAP

repressor

P0

P0
Q

P1
Q

P1

P00

P01

P10

P11

P11
Q

activator

with K10, K01, K̃10, and K̃01 being association constants and the tilde denoting binding when
another activator is already bound.

Eq. 3.24 and Eq. 3.25 form a thermodynamic cycle and so a relationship exists between the
equilibrium association constants

K01K̃10 = K10K̃01 (3.26)

because at equilibrium there should be nothing unique about the route taken to form P11,
whether the activator binds initially to either the first or the second binding site. Finally, let us
assume that RNA polymerase can only bind to the promoter when activators bind both their
sites

P11 +Q −−⇀↽−− PQ
11

and so
PQ
11 = K ′

QQP11 (3.27)

at equilibrium, with Q being the number of free polymerases.
Again we have a fixed number of promoters

P00 + P10 + P01 + P11 + PQ
11 = n (3.28)

which implies that

P00 +K10AP00 +K01AP00 + K̃10K01A
2P00 + K̃10K01K

′
QQA2P00 = n (3.29)

and so

PQ
11 =

nK ′
QK̃10K01QA2

1 +K10A+K01A+ K̃10K01A2 + K̃10K01K ′
QQA2

(3.30)

is the average number of promoters occupied by RNA polymerase.
Letting

K̃10 = KiK10 (3.31)

with Ki greater than one and determined by the free energy of interaction between both activa-

tors when bound at the promoter, Ki = e−
∆Gint
RT , then the number of mRNAs obeys

dM

dt
=

unK ′
QQKiK10K01A

2

1 +K10A+K01A+KiK10K01A2 +KiK10K01K ′
QQA2

− dMM (3.32)
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with u being the rate of transcription from promoter state PQ
11. The average rate of transcription

depends on three parameters if the number of free RNA polymerases is approximately constant

dM

dt
= umax

 A2

K2
2

1 + A
K1

+ A2

K2
2

− dMM (3.33)

with umax =
unK′

QQ

1+K′
QQ

, K−1
1 = K01 + K10, and K−2

2 = KiK10K01(1 + K ′
QQ). The maximal Hill

number is two.
Note that if K̃10 = KiK10 then K̃01 = KiK01 because the energy of interaction between the

activators is the same in both cases. Note too that Eq. 3.26 is then satisfied, as expected.

3.4.1 Multiple transcriptionally active states

We can extend this model by allowing RNAP to bind to the promoter in the absence of the
activators too:

P0 +Q −−⇀↽−− PQ

with PQ = KQQP0. If uℓ is the rate of transcription from this state — such unregulated
transcription is sometimes called leakage, then Eq. 3.32 becomes

dM

dt
= n

uℓKQQ+ uK ′
QQKiK10K01A

2

1 +KQQ+K10A+K01A+KiK10K01A2 +KiK10K01K ′
QQA2

− dMM (3.34)

with a new KQQ term appearing in the numerator and the denominator because we are con-
sidering an extra state of the promoter that is transcriptionally active – the PQ state. If Q is
constant, we can simplify to write

dM

dt
=

ubasal + umax × A2

K2
2

1 + A
K1

+ A2

K2
2

− dMM (3.35)

but now with K−1
1 = K01+K10

1+KQQ
and K−2

2 = KiK10K01
1+K′

QQ

1+KQQ
and with a basal rate of transcription

of ubasal =
uℓnKQQ

1+KQQ
. As before, umax =

unK′
QQ

1+K′
QQ

. For the activators to be efficient, RNAP should

prefer to bind to the promoter when two activators have already bound, K ′
Q > KQ, and the rate

of transcription should be highest from this state, so that u > uℓ.

3.5 General regulation

There is a pattern in the expressions for the average rate of transcription, one expected from
statistical mechanics [12]. Each term in the denominator represents a possible state of the
promoter: we represent the free state by the number 1 and a bound state by the product of the
association constants for each binding event times the number of ways those binding events can
occur. Each term in the numerator represents a state of the promoter from which transcription
can occur. We multiply each of these terms by their rate of transcription and by the number of
promoters.

For example, consider a promoter with two binding sites for repressors where the binding
of a repressor to either site prevents the binding of RNA polymerase. The promoter then has
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1 Modelling biochemical reactions

1.1 Chemical rate equations

Consider two reactions: the first occurs when an A and a B molecule come together, react, and
form a C molecule; the second occurs when a C molecule dissociates back into an A and a B
molecule. For example, the A molecule could be a receptor on the cell membrane and the B
molecule could be an extracellular ligand. These two molecules come together reversibly to form
a receptor-ligand complex, C, which can signal intracellularly. Let the rate at which a pair of A
and B molecules associate into a C molecule be f̃ (measured in inverse seconds) and the rate at
which a C molecule dissociates be b̃ (also measured in inverse seconds), then:

A + B
f̃�*)�̃
b

C

The association rate, f̃ , is determined by two times: the time taken by a molecule of A and
a molecule of B to find each other by di↵usion, tdi↵ , and the time taken for the two molecules
to react once in physical proximity, treac. We can write

f̃ ⇠ (tdi↵ + treac)
�1 . (1)

We wish to describe how the number of C molecules, NC , changes with time. Over a small
interval of time dt, the association and dissociation reactions will both occur (we will include
stochastic e↵ects later). The number of pairs of A and B molecules is NANB, and f̃dtNANB of
these pairs will associate over a time dt. The number of C molecules that dissociate over dt is
b̃dtNC . Therefore, the number of C molecules at a time t + dt is the number of C molecules at
time t plus the number gained in association reactions and minus the number lost in dissociation
reactions:

NC(t + dt) = NC(t) + f̃dtNANB � b̃dtNC . (2)

Taking the limit of dt going to zero, we have

dNC

dt
= f̃NANB � b̃NC (3)

which is an example of a chemical rate equation.

2

Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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3

Chemicalrateequationsareusuallywrittenintermsofconcentrations,whicharemeasured
inmolarunits(numberofmolesofasubstanceperlitre).Let[C]denotethemolarconcentration
ofC,then

[C]=
nC

nAV
(4)

wherenA'6.02⇥10
23

isAvogadro’snumberandVisthevolumeofthecellinlitres.To
convertEq.3intoanequationfortherateofchangeoftheconcentrationofC,wemustdivide
Eq.3bynAV.Thisdivisiongives

d[C]

dt
=f̃nAV[A][B]�b̃[C](5)

where[A]istheconcentrationofAand[B]istheconcentrationofB.Ifwedefinemacroscopic
reactionsrates,forreactionsinvolvingconcentrations,as

f=f̃nAV

b=b̃
(6)

then
d[C]

dt
=f[A][B]�b[C].(7)

TheunitsofthemacroscoperatefareM�1
s�1

,andfhasanupperboundgivenbyareaction
thatisdi↵usion-limited.Theunitsofthemacroscopicratebareunchangedandares�1

.

1.1.1Example:dimerization

Manymembranereceptorsreversiblydimerizetoformareceptor-receptordimer,andsometimes
onlythedimercanbindligandandsignaldownstream.Thedimerizationreactionisunusual.
LetRdenoteareceptorandR2denoteadimerofreceptors.Thesespeciessatisfythereaction

R+R
f
�*)�
b

R2

TherateequationsforthissystemareatypicalbecausetwomoleculesofRareremoved
bythefreactionandtwomoleculesarereleasedbythebreaction.Althoughtheassociation
reactionproceedsattheratef[R]

2
andthedissociationreactionproceedsattherateb[R2],we

have
d[R]

dt
=�2f[R]

2
+2b[R2](8)

becausetwoRmoleculesareinvolvedinbothreactions.Thedimer,R2,obeys

d[R2]

dt
=f[R]

2
�b[R2](9)

becauseonlyonemoleculeofdimerformsordissociates.SummingEq.8andtwiceEq.9gives

d[R]

dt
+2

d[R2]

dt
=0(10)

implyingthat
[R]+2[R2]=constant=[R]0+2[R2]0(11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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Chemical rate equations are usually written in terms of concentrations, which are measured
in molar units (number of moles of a substance per litre). Let [C] denote the molar concentration
of C, then

[C] =
nC

nAV
(4)

where nA ' 6.02 ⇥ 1023 is Avogadro’s number and V is the volume of the cell in litres. To
convert Eq. 3 into an equation for the rate of change of the concentration of C, we must divide
Eq. 3 by nAV . This division gives

d[C]

dt
= f̃nAV [A][B] � b̃[C] (5)

where [A] is the concentration of A and [B] is the concentration of B. If we define macroscopic
reactions rates, for reactions involving concentrations, as

f = f̃nAV

b = b̃
(6)

then
d[C]

dt
= f [A][B] � b[C]. (7)

The units of the macroscope rate f are M�1 s�1, and f has an upper bound given by a reaction
that is di↵usion-limited. The units of the macroscopic rate b are unchanged and are s�1.

1.1.1 Example: dimerization

Many membrane receptors reversibly dimerize to form a receptor-receptor dimer, and sometimes
only the dimer can bind ligand and signal downstream. The dimerization reaction is unusual.
Let R denote a receptor and R2 denote a dimer of receptors. These species satisfy the reaction

R + R
f�*)�
b

R2

The rate equations for this system are atypical because two molecules of R are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [R]2 and the dissociation reaction proceeds at the rate b[R2], we
have

d[R]

dt
= �2f [R]2 + 2b[R2] (8)

because two R molecules are involved in both reactions. The dimer, R2, obeys

d[R2]

dt
= f [R]2 � b[R2] (9)

because only one molecule of dimer forms or dissociates. Summing Eq. 8 and twice Eq. 9 gives

d[R]

dt
+ 2

d[R2]

dt
= 0 (10)

implying that
[R] + 2[R2] = constant = [R]0 + 2[R2]0 (11)
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P0

P1
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RNAP

repressor
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P1
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P00
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P11

P11
Q

activator

P00

P01

P10
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P00
Q

five states: free, bound by polymerase, one site bound by a repressor, the other site bound
by a repressor, and both sites bound by a repressor. The denominator of the average rate of
transcription is

1 +KQQ+K01R +K10R +K11R
2 (3.36)

and the numerator is
nu×KQQ. (3.37)

Three factors determine the association constantK11 for two repressors binding simultaneously to
the promoter: the change in free energy of one repressor binding, which determines its association
constant; the change in free energy of another binding, or its association constant; and the free
energy of interaction between two bound repressors. As before, we have K11 = K01K10Ki.
Therefore the number of mRNAs satisfies the rate equation:

dM

dt
= nu

KQQ

1 +KQQ+K01R +K10R +KiK10K01R2
− dMM (3.38)

which we can write as

dM

dt
=

nuKQQ

1 +KQQ

[
1

1 + K01+K10

1+KQQ
R + KiK10K01

1+KQQ
R2

]
− dMM. (3.39)

The maximal Hill number is two.

3.6 Including non-specific binding to DNA

Although transcriptional regulators have a preferred DNA sequence, one that they bind to
strongly, there will be similar sequences in the genome where the regulator may bind weakly. We
can include the effect of this non-specific binding in our models of transcriptional regulation [12].

Let’s begin with RNA polymerase. As before, we have specific binding to the promoter of
interest, P0,

P0 +Q −−⇀↽−− P Q
0

but now we include non-specific binding to other sites on the DNA, which we will call N :

N + Q −−⇀↽−− NQ

35



We expect the number of non-specific binding sites, nQ say, to be much larger than the number
of specific ones: nQ ≫ n.

With both binding reactions at equilibrium

PQ
0 = KQQP0 ; NQ = KN

QNQ (3.40)

for association constants KQ and KN
Q . Writing mQ for the number of RNA polymerase molecules

available to transcribe our gene of interest and providing this number does not change over the
time we wish to model, we have that

Q+ PQ
0 +NQ = mQ (3.41)

or
Q+KQQP0 +KN

QNQ = mQ. (3.42)

The number of free polymerases, Q, satisfies

Q =
mQ

1 +KQP0 +KN
QN

. (3.43)

The number of polymerases binding non-specifically should be much greater than the number
binding specifically: NQ ≫ PQ

0 , or KN
QN ≫ KQP0 from Eq. 3.40, because there are so many

more non-specific binding sites. Therefore

Q ≃ mQ

1 +KN
QN

(3.44)

from Eq. 3.43.
We can simplify further. The number of non-specific binding sites satisfies

N +NQ = nQ (3.45)

or
N =

nQ

1 +
NQ

N

≃ nQ

(3.46)

because we expect most non-specific sites to be free, NQ ≪ N . Eq. 3.44 becomes

Q ≃ mQ

1 +KN
Q nQ

. (3.47)

From Eq. 3.47, non-specific binding reduces the number of Q molecules available to bind
specifically to the promoter. The more non-specific binding sites, the greater nQ, and the stronger
the association constant for binding to these sites, the greater KN

Q , the fewer polymerases are
available to bind specifically. If there is no non-specific binding, nQ = 0, and Q ≃ mQ.

Although we focused on RNA polymerase, the same argument holds for any transcriptional
regulator, and so the number of free repressor molecules is

R ≃ mR

1 +KN
R nR

(3.48)
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if there are mR in total and KN
R is the association constant for non-specific binding with nR

non-specific binding sites. For an activator

A ≃ mA

1 +KN
A nA

(3.49)

with the parameters defined similarly.
With these expressions, we can add non-specific binding to any of the equations for transcrip-

tional regulation we have already derived. Consider Eq. 3.15 for regulation by RNA polymerase
and a repressor

dM

dt
=

nuKQQ

1 +KQQ+KRR
− dMM. (3.50)

This equation becomes

dM

dt
=

nuKQ · mQ

1+KN
Q nQ

1 +KQ · mQ

1+KN
Q nQ

+KR · mR

1+KN
R nR

− dMM (3.51)

using Eq. 3.47 and Eq. 3.48. Non-specific binding affects transcription by reducing the number
of available regulators, from mQ for polymerase, decreasing transcription, and from mR for the
repressor, increasing transcription.

3.7 Modelling signal transduction V

We can now add to the model of Sec. 2.12 the expression of the reporter gene in Fig. 1, which
C∗ activates.

The nuclear entry and exit of C∗ can be written as a chemical reaction:

C∗ fn−−⇀↽−−
bn

C∗
n

which, if at equilibrium, implies that

[C∗
n] =

fn
bn

[C∗]. (3.52)

Making the simplest assumption that C∗
n is an activator that binds to a single binding site

on the reporter gene, G, then the mRNA of G, mG, satisfies, following Eq. 3.23,

d[mG]

dt
= uG

[C∗
n]

KC∗

1 + [C∗
n]

KC∗

− dm[mG] (3.53)

with a maximal transcription rate of uG and a degradation rate dm of the mRNA. Following
Eq. 3.18, the protein G obeys

d[G]

dt
= v[mG]− dG[G] (3.54)

for translation rate v and degradation rate dG of the protein G.
Eq. 2.100 with Eq. 3.53 and Eq. 3.54 are the complete model of the pathway of Fig. 1, from

the input S to the output G.
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4 Positive feedback and bistability

Positive feedback, where an increase in the output of a system causes the output of the system
to increase further, can generate a bistable response. For certain parameter values, a system
with positive feedback may have two stable steady states. If the system starts from one set
of initial conditions and evolves with time, it will always eventually reach one steady state; if
the same system starts from a different set of initial conditions, it will always eventually reach
the other steady state. Each steady state has its own basin of attraction defined as all initial
concentrations that evolve to that steady state, and each initial condition must lie in one of the
two basins of attraction. Intuitively, if the level of output does not get sufficiently high then the
system tends to one steady state; if the output gets high enough for the positive feedback to
‘run away’ and generate yet more output, then the system tends to the other steady state.

4.1 MAP kinase cascades: a one dimensional example

Understanding how positive feedback generates multiple steady states is best understood graphi-
cally. Consider the MAP kinase cascade in frog oocytes: activating the last kinase of the cascade
by adding the hormone progesterone causes new synthesis of the MAP kinase kinase kinase Mos.
There is thus positive feedback: more activated Mos causes more activated MAP kinase, which
in turn generates more activated Mos by increasing Mos’s synthesis.

Following Ferrell et al. [13], we consider three processes that control levels of Mos. First,
there is a basal rate of synthesis that depends on progesterone:

basal synthesis = kb[p] (4.1)

where kb is the basal rate and [p] is the concentration of progesterone. Second, positive feedback
occurs because synthesis of Mos is proportional to the concentration of activated MAP kinase.
If we assume that the concentration of MAP kinase is a Hill function of the concentration of
Mos, then this term is:

positive feedback = f
[Mos]n

Kn + [Mos]n
(4.2)

where f measures the strength of the feedback. Finally, Mos degrades, which we model as a first
order process:

degradation = −[Mos] (4.3)

measuring units of time in units of the lifetime of Mos so that the coefficient of [Mos] is one.
Consequently, the rate of change of the concentration of Mos is

d[Mos]

dt
= kb[p] + f

[Mos]n

Kn + [Mos]n
− [Mos]. (4.4)

Typical parameter values are K = 20 nM, n = 5, kb = 0.2, and f = 40 [13].
At steady state, the rate of synthesis of Mos equals its rate of degradation. Therefore to find

steady-state values, we can plot the total synthesis rate and the total degradation rate both as
a function of Mos with any intersections between these two curves determining a steady-state
concentration of Mos (Fig. 4A). Notice that if the rate of synthesis of Mos is not ultrasensitive
but hyperbolic, then the system would have only one stable steady state and no switch-like
behaviour (Fig. 4B).
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Figure 4: We can find steady-state solutions of Eq. 4.4 using a graphical construction: the intersection
of a curve describing the production rate of [Mos] with a curve describing its degradation rate gives
the steady-state [Mos] concentration. A: With a sigmoidal production rate, three steady states exist
of which two are stable. B: With a hyperbolic production rate, there is only one steady state.

Depending on the initial conditions, the system will tend to one of the two steady states. It
will avoid the unstable steady state. Even if the system initiates at the concentrations of the
unstable steady state, any perturbation, no matter how small, will cause the system to tend to
one of the two steady states (Fig. 5).

' 18 nM' 5 nM ' 45 nM

Figure 5: The phase portrait when [p] = 20 nM (see Fig. 6). If the initial [Mos] is above the value
at the unstable steady state, then [Mos] tends to the upper stable steady state. If the initial [Mos] is
below the value at the unstable steady state, then [Mos] tends to the lower stable steady state.
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A bifurcation is a qualitative change in the dynamics of a system [14]. As we change the
concentration of pheromone from, for example, low to high values, the number of steady-state
concentrations of Mos changes from three to one (Fig. 6). This change in pheromone qualitatively
changes the system’s dynamics: there has been a bifurcation.

When the system has one steady state then this steady state is stable (for example, when
[p] = 60 nM), and the evolution of the system over time from any initial condition will ultimately
lead to that steady state. When the system has three steady states (for example, when [p] = 20
nM), two steady states are stable and the steady state between these two steady states is
unstable.
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Figure 6: The number of stable steady states, denoted in red, changes as the concentration of
pheromone changes, which determines the intercept with the y-axis.

As the concentration of pheromone increases from zero, one stable and the unstable steady
state approach each other. At the bifurcation point, one ‘annihilates’ the other, and both disap-
pear (at [p] ≃ 47 nM). The system then has only one steady state. We call this disappearance
of a stable and an unstable steady state a saddle-node bifurcation [14]. Such a bifurcation can
also create a stable and an unstable node if, for example, pheromone now decreases.

4.2 Bifurcation diagrams and hysteresis

A bifurcation diagram shows qualitative changes in the long-term behaviour of the output of a
system as a function of a system parameter. For the MAPK system, we can plot the steady-state
values of protein as a function of the progesterone concentration [p] (Fig. 7).
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For low [p], there are two stable steady states for Mos (Fig. 6); for high [p] there is one
steady state (Fig. 6). Usually we mark stable steady states on bifurcation diagrams with solid
lines and unstable steady states with fainter lines. The signalling system can therefore act as
a switch with the steady-state concentration of Mos jumping from a low to a high value as the
bifurcation parameter – here [p] – changes.
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Figure 7: A bifurcation diagram showing the steady-state concentrations of Mos as a function of the
concentration of pheromone. Stable steady states are in either blue or red; unstable steady states are
in black. A saddle-node bifurcation occurs at [p] ≃ 47 nM. The stable steady states of Fig. 6 are in red.

Bistable systems typically show history-dependent, or hysteretic, behaviour. If we increase
[p] from low to high values, the steady-state level of [Mos] jumps from a low to a high value
at a particular threshold value of [p], when the system goes through a saddle-node bifurcation.
Decreasing [p] will, in this example, cause no jump back to the low state of Mos, and the
system has a permanent memory, always remembering its exposure to the high progesterone
concentration.

Next we will consider a system that has the potential for not one but two saddle-node
bifurcations.

4.3 A genetic switch: a two dimensional example of a saddle-node
bifurcation

In systems with more than one chemical species, bistability and saddle-node bifurcations occur
analogously to the one dimensional case.

For example, consider a protein that activates its own expression [14]. Writing M for mRNA
and P for protein, we can model this two dimensional system as

dM
dt

= ub +
uPn

Kn+Pn − dMM ; dP
dt

= M − dPP (4.5)
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with a Hill function describing the activation of transcription by P . Here dM is the rate of degra-
dation of mRNA; dP is the rate of degradation of protein; u is the maximal rate of transcription
induced by P ; and ub is a basal rate of transcription. The system has positive feedback because
high levels of protein cause higher rates of transcription and so even higher levels of protein.

dP

dt
> 0

dP

dt
< 0

dM

dt
< 0

dM

dt
> 0

Figure 8: The intersection of the nullclines show the steady states of the model of the genetic switch.
Stable steady states are in red; unstable steady states are in green. Here n = 4, ub = 0.01 s−1,
dM = 0.008 s−1, dP = 0.002 s−1, K = 2000, and u = 0.06 s−1.

In two dimensions, we often use graphical approaches to analyse bistable systems. At steady
state, both dM/dt and dP/dt are zero. To find the possible steady states of the system, we plot
the nullclines, defined as the curves where either dM/dt or dP/dt are zero [14]. These curves are

M = 1
dM

(
ub +

uPn

Kn+Pn

)
; M = dPP (4.6)

from Eq. 4.5, and we plot both curves in the same P -M plane (Fig. 8). The steady states are
the points where the nullclines intercept: at these points, dM/dt and dP/dt are both zero.

The genetic switch of Fig. 8 has three steady states. The middle steady state is unstable;
the other two steady states are stable. The stable states are called stable nodes because they
are attracting: a system starting near a stable node will move over time towards the node. The
unstable steady state is called a saddle point: a system near the saddle point is either immediately
repelled from or initially attracted towards and then repelled from the saddle point. An unstable
node in contrast repels all systems that are initialised sufficiently near it.
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A phase portrait shows graphically the dynamics of the system. From Eq. 4.5, dM/dt is
negative above the dM/dt = 0 nullcline, and the dynamics there decreases M ; dM/dt is positive
below the dM/dt = 0 nullcline, and the dynamics there increases M (Fig. 8). Similarly, dP/dt is
positive above the dP/dt = 0 nullcline, and the dynamics increases P ; dP/dt is negative below
the dP/dt = 0 nullcline, and the dynamics decreases P . Using arrows to indicate the local
direction of the dynamics, we can find the phase portrait (Fig. 9).
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Figure 9: The phase portrait for the genetic switch shows two stable steady states in red separated
by an unstable steady state in green. Protein and mRNA are relative to their levels at the unstable
steady state.

As we change the degradation rate of protein, dP , the system undergoes two saddle-node
bifurcations. The number of intersections of the nullclines changes from one to three to one
(Fig. 10). As we change dP , a stable steady state, the node, and an unstable steady state, the
saddle, either can approach and annihilate each other and thus remove bistability or can be
simultaneously created and thus generate bistability. When the rescaled dP ≃ 0.8, a saddle and
a node appear if dP is increasing and disappear if dP is decreasing. Similarly, when the rescaled
dP ≃ 1.3, a node and a saddle point disappear if dP is increasing and appear if dP is decreasing
(Fig. 10). Saddle-node bifurcations can create and destroy bistability in all dimensions.

43



dP= 0.5 dP= 0.6 dP= 0.8

dP= 1.0 dP= 1.2 dP= 2.0

normalized P

no
rm

al
iz

ed
 M

no
rm

al
iz

ed
 M

Figure 10: When we change dp, the system undergoes two saddle-node bifurcations: one at the rescaled
dP ≃ 0.8 and the other at dP ≃ 1.3 (not shown). Protein and mRNA are relative to their levels at the
unstable steady state when dP = 0.002 s−1, and we measure dP relative to 0.002 s−1.

The system exhibits hysteresis, or history-dependent behaviour. If we increase dP from low
values, the system jumps from a high value of P to a low value at the bifurcation, when the
rescaled dP ≃ 1.3 (Fig. 11). If we decrease dP from high values, the system jumps from a low
value of P to a high value at the bifurcation when the rescaled dP ≃ 0.8 (Fig. 11). The value of
the threshold when the jump occurs depends on the history of the change in dP .
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Figure 11: The bifurcation diagram for the genetic switch. The stable steady states are in blue and
the unstable steady states in grey. The stable-steady states of Fig. 10 are in shades of red. Protein and
mRNA are relative to their levels at the unstable steady state when dP = 0.002 s−1, and we measure
dP relative to 0.002 s−1.

This behaviour is general. A system with positive feedback can exhibit hysteresis because
the value of the bifurcation parameter at which the system jumps — undergoes a bifurcation —
is history-dependent: if the system was previously in the high state, then the threshold value
at the bifurcation is different from the threshold value if the system was previously in the low
state. Observing hysteresis experimentally is usually considered sufficient proof that a system
is bistable; observing bimodality, however, is consistent with bistability but insufficient to prove
bistability.
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5 Negative feedback and oscillations

A limit cycle is an isolated and closed trajectory in phase space [14]. Remember that phase
space is the space where we plot the concentration of each chemical species along each axis.
An isolated trajectory means that neighbouring trajectories either spiral towards the closed
trajectory or spiral away from it. Once on a stable limit cycle, the system continues to move
around the cycle: the concentrations of the chemical species continually revisit values they have
had before, and the system oscillates.

5.1 Degradation stabilises molecular numbers

Degradation stabilises protein numbers. Consider a protein P with constitutive expression

dP

dt
= k − dPP. (5.1)

Then at steady state when P = P ∗ the rate of synthesis, k, exactly equals the rate of degradation

k = dPP
∗. (5.2)

If levels of P fluctuate higher than P ∗, then the rate of synthesis is unchanged but the rate of
degradation increases, dPP > dPP

∗ = k, so that degradation dominates synthesis. Degradation
therefore returns the levels of proteins to their steady-state levels. Similarly, if levels of P
fluctuate lower than P ∗, then the rate of degradation decreases, dPP < dPP

∗ = k, allowing
synthesis to dominate and protein levels to regain steady state.

5.2 Negative feedback is stabilising

Negative feedback acts to reduce perturbations to a system, providing an additional restoring
process to degradation.

Consider a gene that is negatively auto-regulated by its protein P so that

dP

dt
=

k

1 + (P/K)n
− dPP (5.3)

where we use a Hill function to describe the auto-regulation. This negative regulation generates
negative feedback in the system. At steady state, P = P ∗ and

k

1 + (P ∗/K)n
= dPP

∗ (5.4)

so that the rate of synthesis of P equals its rate of degradation.
If levels of P fluctuate higher than P ∗, then

k

1 + (P/K)n
<

k

1 + (P ∗/K)n
. (5.5)

The auto-negative regulation increases repression, decreasing the synthesis rate, because there
are more proteins to bind P ’s promoter. Levels of P fall towards P ∗. If levels of P fluctuate
lower than P ∗, then

k

1 + (P/K)n
>

k

1 + (P ∗/K)n
. (5.6)

The repression lessens, increasing the synthesis rate, because there are fewer proteins to bind
the promoter. Levels of P rise towards P ∗.
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5.3 Delayed negative feedback can cause oscillations

Delayed negative feedback can be destabilising and generate oscillations providing both the
feedback is sufficiently strong and the delay is sufficiently long.

Consider again a negatively auto-regulated gene. At steady state, the synthesis rate exactly
matches the degradation rate. If levels of protein fluctuate above average levels, synthesis falls
because repression increases. If the fall in synthesis is delayed, however, then levels of protein
will rise higher than those for a system without a delay. Once levels of protein do return to
the average, there is a mismatch between the current levels of protein and the synthesis rate.
This synthesis rate is determined by the higher levels of protein that existed earlier, because
of the delay. Synthesis is therefore too low compared to the current rate of degradation, which
is determined by the current levels of protein. Protein levels do not stay at the average, but
undershoot it. After undershooting, levels of proteins will eventually start to increase and return
towards the average, but when they reach the average the synthesis rate will again not match the
degradation rate. Now the lower levels of protein that existed earlier determine the synthesis rate,
and synthesis is too high compared to degradation. Protein levels overshoot the average, and a
cycle initiates. The delays in negative feedback cause protein levels to alternatively undershoot
and overshoot their average level; the system oscillates.

Delayed negative feedback can cause oscillations

The delay causes a mismatch between the strength of synthesis and the strength of 
degradation.

synthesis 
determined by 
protein here

*

degradation 
determined by 
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*
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determined by 
protein here
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Oscillations are continual overshoots and undershoots because of the mismatch.

The duration of the 
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mean

synthesis 
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Figure 12: Negative feedback can cause oscillations in the levels of proteins (blue) of a negatively auto-
regulated gene if the negative feedback is sufficiently strong and sufficiently delayed. When proteins
reach their average level (asterisks), the delay causes a mismatch between the synthesis rate and the
degradation rate so that the levels of protein continually undershoot and overshoot – they oscillate.

5.4 Circadian rhythms

Circadian rhythms are free-running oscillations generated by biochemical networks within single
cells. By free-running, we mean they can exist in the absences of cues from the earth’s 24 hour
cycle. Circadian rhythms have a period of approximately 24 hours and can be synchronised by
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environmental signals, such as light and temperature. They are also temperature compensated,
persisting over a range of temperatures.

Researchers have studied circadian rhythms in Drosophila, and Konopka and Benzer discov-
ered the first mutation to disrupt the circadian rhythm. This mutation was in the period or per
gene.

In Drosophila, the basis of the circadian rhythm is delayed negative feedback through neg-
ative auto-regulation of the per gene by the PER protein. After transcription, PER proteins
accumulate in the cytoplasm and re-enter the nucleus only after a delay to repress transcription
of per. A kinase called DBT (double-time) phosphorylates PER in the cytoplasm, and this phos-
phorylation is necessary for PER’s degradation. PER can, however, exist as both a monomer
and a dimer. Although DBT phosphorylates both, only the dimer represses the per gene.

We will follow the model of Tyson et al. [15] (Fig. 13) to explore how the genetic network in
Drosophila generates oscillations. Tyson et al. assume that the PER dimer rapidly equilibrates
between the cytoplasm and the nucleus and that the interconversion of PER monomers and
dimers is also at equilibrium.
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DNA
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Figure 13: The model of circadian rhythms of Tyson et al. involves a delayed negative feedback where
the transcription factor PER represses its own expression when it is a dimer and when it is imported
into the nucleus in a complex with TIM. Tyson et al. choose not to model TIM explicitly, but include
its effects by having different rates of degradation of PER monomers and dimers by DBT.

5.4.1 Competitive inhibition

First we will investigate the rate of phosphorylation of DBT, which is an enzyme that has two
substrates: PER monomers and PER dimers. Assuming that both phosphorylations proceed
with Michaelis-Menten reactions and, denoting P1 for PER monomers and P2 for PER dimers,
we have

D + P1

f1−−⇀↽−−
b1

C1
k1−−→ P ∗

1 +D
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and

D + P2

f2−−⇀↽−−
b2

C2
k2−−→ P ∗

2 +D

where we use D to denote the kinase DBT.
As before (see Eq. 2.87), we assume that both C1 and C2, the kinase-substrate complexes,

are at quasi-steady state. Then

dC1

dt
= f1DP1 − (b1 + k1)C1 ≃ 0

dC2

dt
= f2DP2 − (b2 + k2)C2 ≃ 0

(5.7)

and therefore
C1 ≃ f1DP1

b1+k1
; C2 ≃ f2DP2

b2+k2
. (5.8)

The total amount of kinase, DT , is fixed, and D + C1 + C2 = DT . This conservation law and
Eq. 5.8 implies that

D =
DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

. (5.9)

Consequently, the rate of formation of P ∗
1 , which is k1C1, equals

k1 ×
f1P1

b1 + k1
× DT

1 + f1P1

b1+k1
+ f2P2

b2+k2

(5.10)

using Eq. 5.8 and Eq. 5.9. We can thus write

dP ∗
1

dt
=

k1DTP1

b1+k1
f1

+ P1 +
f2(b1+k1)
f1(b2+k2)

P2

(5.11)

and similarly can show that the rate of formation of P ∗
2 is

dP ∗
2

dt
=

k2DTP2

b2+k2
f2

+ P2 +
f1(b2+k2)
f2(b1+k1)

P1

. (5.12)

PER dimers therefore inhibit the phosphorylation of PER monomers – high P2 decreases dP
∗
1 /dt,

and PER monomers inhibit the phosphorylation of PER dimers – high P1 decreases dP
∗
2 /dt. Both

isoforms competitively inhibit the phosphorylation of the other by sequestering the enzyme DBT.
If the Michaelis-Menten constant of DBT is the same for both substrates, so that b1+k1

f1
=

b2+k2
f2

= K say, then

dP ∗
1

dt
=

V1P1

K + P1 + P2

dP ∗
2

dt
=

V2P2

K + P1 + P2

(5.13)

with V1 = k1DT and V2 = k2DT . Eq. 5.13 is the form used by Tyson et al. [15].

49



5.4.2 The Tyson et al. model

Tyson et al. have three equations in their model: one for per mRNA, one for PER monomers,
and one for PER dimers. They use a Hill function with a Hill number of two to model negative
auto-regulation of per expression by PER dimers. The equation for per mRNA levels is then

dM

dt
=

u

1 +
(

P2

Pc

)2 − dMM (5.14)

with dM being the rate of degradation of mRNA.
PER monomers are translated from the mRNA with rate v, phosphorylated by DBT, actively

degraded at rate dp, and undergo dimerisation

P1 + P1

f−−⇀↽−−
b

P2

so that
dP1

dt
= vM − V1P1

K + P1 + P2

− dPP1 − 2fP 2
1 + 2bP2 (5.15)

using Eq. 5.13. Once phosphorylated, the PER monomers rapidly degrade and no longer con-
tribute to the dynamics.

PER dimers also undergo phosphorylation, degradation, and monomerisation:

dP2

dt
= − V2P2

K + P1 + P2

− dPP2 + fP 2
1 − bP2. (5.16)

Once phosphorylated, the PER dimers degrade too.
By assuming equilibrum between PER monomers and dimers, Tyson et al. were able to

reduce this system of three equations to two equations.

5.4.3 Dimerisation

The dimerisation reaction of PER proteins is

P1 + P1

f−−⇀↽−−
b

P2

and so at equilibrium

P2 =
f

b
P 2
1 . (5.17)

If we write the total number of PER monomers, both free and in dimers, as PT , where PT can
change with time, then

PT = P1 + 2P2 (5.18)

and so

PT = P1 + 2
f

b
P 2
1 (5.19)

which is a quadratic equation for P1:

P 2
1 +

b

2f
P1 −

b

2f
PT = 0. (5.20)
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We can solve this equation following the usual formula

P1 =
−1 +

√
1 + 8f

b
PT

4f
b

=
2PT

1 +
√

1 + 8f
b
PT

(5.21)

where we have multiplied both top and bottom by 2/q with q being

q =
2

1 +
√

1 + 8f
b
PT

. (5.22)

Consequently the equilibrium concentrations both have a convenient form as functions of PT :

P1 = qPT ; P2 =
1
2
(1− q)PT (5.23)

with q given by Eq. 5.22.

5.4.4 The final model with two rate equations

By adding dP1/dt to twice dP2/dt, Tyson et al. find a differential equation for PT = P1 + 2P2:

dPT

dt
= vM − V1q + V2(1− q)

K + 1
2
(1 + q)PT

PT − dPPT (5.24)

using Eq. 5.23, which replaces Eq. 5.15 and Eq. 5.16.
Similarly we use Eq. 5.23 to write Eq. 5.14 in terms of PT rather than P2:

dM

dt
=

u

1 +
(1−q)2P 2

T

4P 2
c

− dMM (5.25)

with q obeying Eq. 5.22.
With now two variables, PT and M , we can investigate the dynamics, Eq. 5.24 and Eq. 5.25,

using phase plane analysis. The nullclines intersect at one point, but this point is unstable for
certain values of the parameters [15], and the system oscillates.

The system has negative feedback because of the repression of the per gene by PER dimers,
and this feedback is delayed because cells must synthesise PER and then convert it into dimers
before it represses transcription. The delayed negative feedback drives the circadian oscillations.

The system also has positive feedback. If the number of dimers is sufficiently high that
the rate of phosphorylation of dimers by DBT saturates, then an increase in the number of
dimers cannot affect the rate of phosphorylation of dimers, but does still decrease the rate
of phosphorylation of PER monomers. PER monomers consequently build up and so too do
PER dimers because of the equilibrium existing between monomers and dimers. An increase in
PER dimers therefore generates a further increase in dimers – the system has positive feedback.
Positive feedback is strongest for dimers rather than monomers because monomers are more
rapidly phosphorylated by DBT, V2 ≪ V1. The positive feedback allows PER dimers to increase
quickly once their numbers become sufficiently high.
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5.5 Relaxation oscillations

Systems with both positive and negative feedback can undergo relaxation oscillations. A relax-
ation oscillation has a slow buildup, where we can think of ‘stress’ accumulating, and then a fast
‘discharge’, where the stress dissipates. The system must therefore have two widely separated
time scales [14].

The Tyson et al.model has positive and negative feedback and both slow and fast times scales.
It exhibits relaxation oscillations. The increase of the numbers of PER dimers generates a slow
time scale. This process is slow because mRNA must first by synthesised and then translated
and because PER monomers are rapidly degraded by DBT (V1 ≫ V2 in Eq. 5.14 and Eq. 5.15).
The decrease in the number of PER dimers once they repress transcription of per generates the
fast time scale. The number of PER dimers quickly falls despite DBT preferentially degrading
monomers because the loss of monomers causes the PER dimers to dissociate to maintain the
dimer-monomer equilibrium.

5.6 Oscillations through both positive and negative feedback

Oscillators with both positive and negative feedback are typically built around an underlying
bistable system, although one that only exists if there is no negative feedback. For example, if
there is no repression of per transcription by PER dimers in the Tyson et al. model then the
system no longer oscillates and has two stable steady states. Tyson et al. postulate that the
circadian oscillator may have evolved from a bistable system, which switches ‘on’ with dawn and
‘off’ with dusk via a component of the network regulated by light. They suggest the dissociation
constant for PER’s dimerisation [15]. A clock improves on a switch because the cell can prepare
for the day in advance without needing activation by light.

With both positive and negative feedback, the limit cycle driving the oscillations is often
built around a hysteretic loop that would be generated by the positive feedback acting alone.
Negative feedback prevents bistability and causes the system to oscillate, but the properties of
the oscillations are still determined by the former hysteretic loop. The dynamics may be slow
when the concentrations of the oscillating species are near the former steady-state values of the
bistable system and will be fast when the concentrations of the oscillating species are moving
between these values. The difference in concentrations between the two former steady states
approximately determines the amplitude of the oscillations, and the time taken by the system
to move around the loop determines their period.

Such relaxation oscillators can have an amplitude and frequency that are robust to stochastic
fluctuations [16]. The amplitude is more robust because it is determined by the stable fixed points
of the former bistability [16, 17]. The period is more robust at least to stochastic effects if the
magnitude of the stochastic fluctuations tend to be higher when the oscillator is moving quickly.
Then this noisy section of the oscillator’s orbit is short-lived and contributes little to the period.
Indeed, the circadian oscillator does moves faster when numbers of molecules are lower [18].

The former stable steady states also allow dual feedback oscillators to tune the frequency of
the oscillations while maintaining their amplitude [17]. Such behaviour is, for example, important
for the effective functioning of the human heart. As the frequency changes, the former steady
states need not. For most systems, however, the limit cycle of the oscillations does not completely
follow the former hysteretic loop, and so the amplitude can change as the frequency changes.
Usually this change is smaller, however, than the equivalent change in amplitude for an oscillator
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built from negative feedback alone [17].

5.6.1 Understanding a dual feedback oscillator

To understand better the role of the negative feedback in a dual feedback oscillator, consider
a two-gene example: gene A is positively auto-regulated and activates a second gene B whose
protein product represses gene A’s transcription [19]. The auto-regulation generates positive
feedback on gene A’s expression; the repression through B generates negative feedback.

A

B

Modelling the positive feedback: Consider first the positive feedback. From Sec. 3.4, an
equation describing the transcription of gene A is

dM

dt
=

ubasal + umax
A2

K2
2

1 + A2

K2
A

− dMM (5.26)

where we include a basal rate and, to make things simpler, assume that a second proteinA quickly
binds the promoter once one binds, giving the denominator a term proportional to protein A2

but no term proportional to A — compare with Eq. 3.35. There is positive feedback because
more protein A increase the rate of transcription causing more protein A to be synthesised. For
translation, we again have Eq. 3.8,

dA

dt
= vM − dAA. (5.27)

If the reactions controlling levels of mRNA are much faster than those controlling levels of
protein, we can then approximate Eq. 5.26 as being at quasi-steady state: dM/dt = 0. Solving
for M , Eq. 5.27 then becomes

dA

dt
=

v

dM

ubasal + umax
A2

K2
A

1 + A2

K2
A

− dAA. (5.28)

Simplifying through re-scaling: We will use re-scaling to reduce the number of parameters.
There are two natural scales in the system — a time scale set by 1/dA and a concentration scale
set by KA. We re-scale by these two parameters to generate two dimensionless variables, t̃ = dAt
and Ã = A/KA. Dividing Eq. 5.28 by KA and by dA, we can write

1

dA
· d

dt

(
A

KA

)
=

v

dAdMKA

ubasal + umax
A2

K2
A

1 + A2

K2
A

− A

KA

(5.29)
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or
dÃ

dt̃
=

v

dAdMKA

[
ubasal + umaxÃ

2

1 + Ã2

]
− Ã. (5.30)

Finally we will define α = vumax

dAdMKA
and b = ubasal/umax giving

dÃ

dt̃
= α

[
b+ Ã2

1 + Ã2

]
− Ã. (5.31)

Comparing Eq. 5.31 and Eq. 5.28, the rescaling has decreased the number of parameters from
six to two.

Adding negative feedback: To include negative feedback on gene A, we will let protein A
activate gene B, and protein B repress gene A. No longer explicitly writing the tildes, but time
is still in units of 1/dA and concentration in units of KA, we can write [19]

dA

dt
=

α [b+ A2][
1 +

(
B
K

)2]
[1 + A2]

− A

dB

dt
= κA− dBB.

(5.32)

There are two simplifying assumptions. First, the binding sites of A and B are sufficiently far
apart on the promoter of gene A that the two proteins do not interact: the equivalent of Ki in
Eq. 3.38 is one so that the denominator in Eq. 5.32 factorises. Second, the rate of transcription
of gene B is simply proportional to A: we model transcription just as in Eq. 3.23, but impose
A ≪ K1.

Bistability for fixed B: Fixing B at a particular concentration, we’ll show is equivalent to
changing the value of α in Eq. 5.32. At steady state, dA/dt = 0 and so

α̃(b+ A2) = A(1 + A2) (5.33)

where
α̃ =

α[
1 +

(
B
K

)2] . (5.34)

Rearranging Eq. 5.33 gives
A3 − α̃A2 + A− α̃b = 0, (5.35)

a cubic equation.
We will use Descartes’s rule of signs to determine the number of positive solutions of Eq. 5.35.

For a polynomial equation

xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 = 0, (5.36)

Descartes showed that the maximum number of positive roots is equal to the number of changes
of sign in the polynomial’s coefficients moving from left to right [20]. Further, if there are N
changes of sign, the number of positive routes is either N or N − 2 or N − 4, etc. For Eq. 5.35,
we have three changes of sign and so either three positive roots – bistability – or one positive
root – monostability (Fig. 14).
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Figure 14: For intermediate, fixed values of B, the positive feedback generates two stable steady-state
solutions for A. By changing B, we change α̃ and so the solutions of Eq. 5.35. Here α = 50, b = 0.01,
K = 0.02, dB = 0.01, and κ = 0.8dB.

A limit cycle when B is not fixed: How B causes oscillations by de-stabilising A is easiest
to understand when levels of B change slowly compared to levels of A [19]. Let dB ≪ 1 in
Eq. 5.32 and let κ, which determines the time scale of B’s synthesis, be of the same size as dB:
κ = O(dB). For example, κ = 0.8dB in Fig. 14. Then B responds slowly to changes in A, which
moves quickly in comparison.

To generate oscillations in an anticlockwise direction around the bistable solutions in Fig. 14,
we wish B to destabilise A when A is at the lower limit of the left branch in Fig. 14. A will
then jump to the right branch. Similarly, B should also destabilise A when A reaches the upper
limit of the right branch so that A jumps back to the left one.

When A is at the left branch’s lower limit, the magnitude of the system’s negative feedback
should therefore be decreasing so that A’s rate of synthesis grows, favouring A moving to the
right branch with its higher levels of A. To have decreasing negative feedback, levels of B should
be falling so that there is less repression. Therefore we require dB/dt < 0 when A is at the left
branch’s lower limit.

When A is at the right branch’s upper limit, the system’s negative feedback should be
increasing so that A’s rate of synthesis diminishes, favouring A moving to the left branch with
its lower levels of A. Therefore we require dB/dt > 0 when A is at the right branch’s upper
limit so that levels of B are rising, generating more repression.

One way to impose these two conditions is to have the nullcline of B, where dB/dt = 0, pass
between the two bistable solutions (Fig. 15A). To the nullcline’s left, for smaller A, dB/dt < 0
from Eq. 5.32, and, to the nullcline’s right, for larger A, dB/dt > 0, as we require. The negative
feedback then destabilises the steady-state solutions, generating oscillations (Fig. 15A). If the
nullcline intercepts the bistable solutions, however, there are no oscillations (Fig. 15B).

When A is near the former low steady states, the system moves slowly. There positive feed-
back is weak, and A’s synthesis rate is only slowly increasing as B slowly decreases. Eventually
there is insufficient B to repress gene A, and levels of A quickly increase through positive feed-
back with A spiking and moving near the former high steady states. The now slowly increasing
B and the high degradation rate of A quickly decrease levels of A. When levels are low enough
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to weaken the positive feedback and B is sufficiently high to repress gene A, A moves quickly
back to near the former low steady states. The positive feedback is then again weak and the
negative feedback is strong because of the high levels of B. Levels of A change slowly once more.

time

time

pr
ot
ei
ns

pr
ot
ei
ns

A

B

A

B

A

B
<latexit sha1_base64="Ajb5NKg3Ri3YQGhzYmM3y2Q115o=">AAAB+nicdVDLSgMxFM3UV62vqS7dBIvgasgMTm3BRdGNywr2AW0pmUymDc08SDJKGedT3LhQxK1f4s6/MX0IKnrgcg/n3EtujpdwJhVCH0ZhZXVtfaO4Wdra3tndM8v7bRmngtAWiXksuh6WlLOIthRTnHYTQXHocdrxJpczv3NLhWRxdKOmCR2EeBSxgBGstDQ0y/1AYJL5F3nmqxyeQzQ0K8hCTs1FdYgsRzfH1cRFdr1ah7aF5qiAJZpD873vxyQNaaQIx1L2bJSoQYaFYoTTvNRPJU0wmeAR7Wka4ZDKQTY/PYfHWvFhEAtdkYJz9ftGhkMpp6GnJ0OsxvK3NxP/8nqpCmqDjEVJqmhEFg8FKYcqhrMcoM8EJYpPNcFEMH0rJGOss1A6rZIO4eun8H/Sdiy7arnXp5WGs4yjCA7BETgBNjgDDXAFmqAFCLgDD+AJPBv3xqPxYrwuRgvGcucA/IDx9gnOyZOu</latexit>

dB

dt
< 0

<latexit sha1_base64="EsUtMFgH6TSpdsCWt8lJShMu6aU=">AAAB+nicdVDLSgMxFM3UV62vqS7dBIvgasgMTm0XQtGNywr2AW0pmUymDc08SDJKGedT3LhQxK1f4s6/MX0IKnrgcg/n3EtujpdwJhVCH0ZhZXVtfaO4Wdra3tndM8v7bRmngtAWiXksuh6WlLOIthRTnHYTQXHocdrxJpczv3NLhWRxdKOmCR2EeBSxgBGstDQ0y/1AYJL5F3nmqxyeQzQ0K8hCTs1FdYgsRzfH1cRFdr1ah7aF5qiAJZpD873vxyQNaaQIx1L2bJSoQYaFYoTTvNRPJU0wmeAR7Wka4ZDKQTY/PYfHWvFhEAtdkYJz9ftGhkMpp6GnJ0OsxvK3NxP/8nqpCmqDjEVJqmhEFg8FKYcqhrMcoM8EJYpPNcFEMH0rJGOss1A6rZIO4eun8H/Sdiy7arnXp5WGs4yjCA7BETgBNjgDDXAFmqAFCLgDD+AJPBv3xqPxYrwuRgvGcucA/IDx9gnQT5Ov</latexit>

dB

dt
= 0

<latexit sha1_base64="tMCoVy8nkxkrXOWAy61nSaim6PY=">AAAB+nicdVDLSgMxFM3UV62vqS7dBIvgasgMTm03UnTjsoJ9QFtKJpNpQzMPkoxSxvkUNy4UceuXuPNvTB+Cih643MM595Kb4yWcSYXQh1FYWV1b3yhulra2d3b3zPJ+W8apILRFYh6Lrocl5SyiLcUUp91EUBx6nHa8yeXM79xSIVkc3ahpQgchHkUsYAQrLQ3Ncj8QmGT+RZ75KofnEA3NCrKQU3NRHSLL0c1xNXGRXa/WoW2hOSpgiebQfO/7MUlDGinCsZQ9GyVqkGGhGOE0L/VTSRNMJnhEe5pGOKRykM1Pz+GxVnwYxEJXpOBc/b6R4VDKaejpyRCrsfztzcS/vF6qgtogY1GSKhqRxUNByqGK4SwH6DNBieJTTTARTN8KyRjrLJROq6RD+Pop/J+0HcuuWu71aaXhLOMogkNwBE6ADc5AA1yBJmgBAu7AA3gCz8a98Wi8GK+L0YKx3DkAP2C8fQLR1ZOw</latexit>

dB

dt
> 0

<latexit sha1_base64="tMCoVy8nkxkrXOWAy61nSaim6PY=">AAAB+nicdVDLSgMxFM3UV62vqS7dBIvgasgMTm03UnTjsoJ9QFtKJpNpQzMPkoxSxvkUNy4UceuXuPNvTB+Cih643MM595Kb4yWcSYXQh1FYWV1b3yhulra2d3b3zPJ+W8apILRFYh6Lrocl5SyiLcUUp91EUBx6nHa8yeXM79xSIVkc3ahpQgchHkUsYAQrLQ3Ncj8QmGT+RZ75KofnEA3NCrKQU3NRHSLL0c1xNXGRXa/WoW2hOSpgiebQfO/7MUlDGinCsZQ9GyVqkGGhGOE0L/VTSRNMJnhEe5pGOKRykM1Pz+GxVnwYxEJXpOBc/b6R4VDKaejpyRCrsfztzcS/vF6qgtogY1GSKhqRxUNByqGK4SwH6DNBieJTTTARTN8KyRjrLJROq6RD+Pop/J+0HcuuWu71aaXhLOMogkNwBE6ADc5AA1yBJmgBAu7AA3gCz8a98Wi8GK+L0YKx3DkAP2C8fQLR1ZOw</latexit>

dB

dt
> 0

Figure 15: The negative feedback generates oscillations by destabilising the steady states. Here α = 50,
b = 0.01, K = 0.02, and dB = 0.01, as before. A When κ = 0.8dB, the nullcline of B passes between the
branches of stable steady states that exist when B is fixed. The negative feedback therefore encourages
A to jump from the left to the right branch when A and B are small and from the right to the left
branch when A and B are large. The systems oscillates. The inset shows the limit cycle generated by
the simulated time series in blue: with dB ≪ 1, the oscillations are around the former steady states
generated by the positive feedback. B When κ = 5dB, the nullcline of B does not pass between the
two branches. At the lower limit of the left branch, when A and B are both small, B is increasing and
so too is the magnitude of the negative feedback. A’s rate of synthesis is therefore falling, favouring A
remaining near the former steady state with its low values of A. There are no oscillations.

We can understand too some of the properties of the oscillations [19]. The difference in time
scales describing A and B’s dynamics imposed by dB ≪ 1, or if we remove the re-scaling by
dB ≪ dA, generates relation oscillations. Levels of B change slowly, but levels of A spike when
A quickly moves from near the former low steady states to near the former high steady states
and then is rapidly degraded. The slow dynamics of B means that B principally determines the
period, which increases as the time scale associated with B increases — when dB decreases. The
positive feedback determines the amplitude of the oscillations through the values of A at the
former steady states: the size of the spikes in A is proportional to the distance between these
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steady states.
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Appendix A Simulating stochastic biochemical reactions

Often we use the Gillespie algorithm [1] to simulate fluctuations in biochemical systems. The
computer “rolls” the equivalent of two dice: one to choose which reaction will occur next and
the other to choose when that reaction will occur.

Consider a system in which n different reactions are possible, then we should first calculate
the probability that each type of reaction will occur at the end of an interval of time t. Let this
probability per unit time be Pi(t) for reaction i. For example, if reaction i corresponds to the
second-order reaction

A + B
f̃−−→ C

then
P (reaction i in an interval δt) = NANB f̃ δt

≡ aiδt

where ai = NANB f̃ is referred to as reaction i’s propensity and δt is sufficiently small that only
one reaction can occur. We can use Eq. A.1 to split the probability Pi(t)δt into two events:

Pi(t)δt = P (no reactions for time t)× P (reaction i in the interval δt) (A.1)

and if we write P0(t) as the probability of no reactions occurring during an interval t, then

Pi(t)δt = P0(t)aiδt. (A.2)

To find P0(t), consider the probability of having no reactions during an interval t+δt, which is
the product of the probability of having no reactions during t and the probability of no reactions
occurring during δt:

P0(t+ δt) = P0(t)
[
1−

n∑
j=1

ajδt
]

(A.3)

where the sum runs over the propensities for all the reactions. Letting δt go to zero implies that

dP0

dt
= −P0

n∑
j=1

aj (A.4)

and so

P0(t) = N exp

(
−t

n∑
j=1

aj

)
(A.5)

where N is a normalisation constant that ensures
∫∞
0

P0(t)dt = 1. Thus we have

Pi(t) = Naie
−t

∑
j aj (A.6)

from Eq. A.2 and where N is chosen so that
∫∞
0

P1(t)dt = 1.
In practice, to choose which reaction to simulate, an n-sided die is rolled with each side

corresponding to a reaction and weighted by that reaction’s propensity. A second die is then
used to determine the time when the reaction occurs by sampling from Eq. A.5. All the chemical
species and the time variable are updated following the chosen reaction. For example, if reaction
i is chosen then the number of A and B molecules are both decreased by one and the number
of C molecules is increased by one, and the propensities of all the reactions are correspondingly
recalculated. The process is then repeated, randomly picking both a new reaction and when it
happens.
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A.1 Mesoscopic and macroscopic rates

The correct way to interpret rate constants is as probabilities per unit time. This interpretation
is consistent with the macroscopic one where rates are considered as the reciprocal of the average
time taken for the reaction to occur.

For example, consider a system with only one molecule of A and one molecule of B that
undergo

A + B
f̃−−→ C

where f̃ is the probability of a pair of molecules reacting in unit time. This reaction’s propensity
will be a = f̃ × 1× 1, and, from Eq. A.5, the time taken for the pair to react is given by

P0(t) = ae−at = f̃e−f̃ t (A.7)

which satisfies
∫∞
0

P0(t)dt = 1. We can then calculate the mean time for the reaction

t̄ =

∫ ∞

0

tf̃e−f̃ tdt = f̃−1 (A.8)

and so we are able to interpret f̃ too as the reciprocal of the mean time for a pair of molecules
to react.

Appendix B Fitting data

Often we want to fit a mathematical model to data, and here we will briefly discuss how to
do so. For illustration, we will consider a simple, one-parameter model for a protein A that is
degraded at a rate k and we wish to infer k from a data set. The differential equation describing
the model is

dA

dt
= −kA (B.1)

and, as well as the parameter k, there is an additional parameter: the initial number of A
molecules, denoted A0.

We will use a Bayesian approach. In Bayesian probability theory, the probability of an event
is interpreted as the degree of belief in that event: the higher the probability, the more confident
we are that the event will or has occurred [21].

Inference uses Bayes’s rule to update our prior (initial) belief to our posterior belief based on
the data that has been observed. In the context of parameter fitting, prior beliefs are typically
some range in which we believe the parameter exists, for example, the positive numbers or
between some minimum and maximum values. For the parameter k and a data set, D, Bayes’s
rule is (the symbol | is read as ‘given’) [21]

P (k|D) =
P (D|k)P (k)

P (D)

∝ P (D|k)P (k)

(B.2)

where ∝ means proportional to: we need not be concerned with the denominator because P (D)
is independent of the parameter k. The probability P (k) is the prior probability of k; the
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probability P (D|k) is known as the likelihood; and the probability P (k|D) is the posterior
probability of k. As we define the prior probability based on our initial knowledge, the likelihood
is the only quantity that must be calculated.

For our problem with two unknowns, Bayes’s rule becomes

P (k,A0|D) ∝ P (D|k,A0)P (k,A0) (B.3)

and we have to calculate the likelihood given values for k and A0 consistent with the prior
probability.

To calculate the likelihood, we need an explicit model of the the measurement error. Usually,
the measurement error, ϵ, is assumed to be identically, independently, and normally distributed
with a mean of zero and a standard deviation σ, which determines its typical size:

Pe(ϵ) =
exp

(
−ϵ2

2σ2

)
√
2πσ

(B.4)

If di is the data point measured at time ti and Ai is the corresponding predicted value, found
by integrating Eq B.1, then di and Ai are related through the measurement error at that time
point, ϵi:

di = Ai + ϵi (B.5)

or
di − Ai = ϵi. (B.6)

Note that the predicted value Ai depends on the values chosen for the parameters k and A0

(values are needed to, for example, numerically integrate Eq B.1). Using Eq B.4, we can write

P (di|k,A0) = P (di|Ai)

= Pe(di − Ai) =
exp

(
−(di−Ai)

2

2σ2

)
√
2πσ

(B.7)

assuming that the value of σ is known in advance and is part of our prior information.
For the complete likelihood, the error in each data point is assumed to be independent of

the error in any other data point, which means that

P (D|k,A0) = P (d0, . . . , dn|k,A0)

= P (d0, . . . , dn|A0, A1, . . . , An)

= P (ϵi, . . . , ϵn)

= Pe(ϵi) . . . Pe(ϵn)

(B.8)

where we assume n data points. Using Eq B.7, Eq B.8 is

P (D|k,A0) =
i=n−1∏
i=0

exp
(

−(di−Ai)
2

2σ2

)
√
2πσ

=
exp

(
−∑n−1

i=0
−(di−Ai)

2

2σ2

)
(√

2πσ
)n

(B.9)

60



which is the complete expression for the likelihood remembering that the Ai are the predictions
of the model at times ti and need to be found typically through numerically integration.

Eq B.9 with the prior distribution, P (k,A0), and Eq B.3 allows the posterior probability of
k and A0 to be calculated. Figs. 16 and 17 show two example calculations of the posterior prob-
abilities. Although the posterior probability itself is the complete result of the inference, often
we wish to give a ‘best-fit’ value for the parameters. These ‘best-fit’ values are the values of the
parameters corresponding to the peaks (the modes) of the corresponding posterior distributions
and the errors in the inference are given by the width of the posterior distributions at these
peaks.

Numerical tricks

When calculating probabilities, often numbers can be small, and there are a few tricks to avoid
underflow errors (numbers too small for the computer to store accurately).

First, typically the negative logarithm of the likelihood is calculated. Taking the logarithm
of Eq B.9, this ‘energy’, as it is sometimes called in analogy with approaches from physics, is

E =
n−1∑
i=0

(di − Ai)
2

2σ2
+ n log(

√
2π) + n log(σ) (B.10)

and the most likely values of the parameters are the ones that maximise the likelihood and
so minimise the energy. The energy is a sum of squares, which justifies the ‘sum of squares’
approaches that are often used in fitting.

Second, we often wish to find the most probable values of the parameters and so numerically
would like to find the values of the parameters that maximise the posterior probability or,
equivalently for suitable prior distributions, minimise the energy. Parameter values are typically
positive in systems biology, but numerical optimisation schemes may not allow this bound to be
imposed. A trick is to transform the parameters

k = exp(k̃) ; A0 = exp(Ã0) (B.11)

and minimise the energy as a function of k̃ and Ã0. If the optimisation causes either of these
transformed parameters to become negative, then k and A0 are still positive from Eq B.11.
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Figure 16: Inference with a few data points (n = 10). The data (top), the log posterior probability
(middle with the maximum posterior probability marked as a blue dot and the true values of k = 2.3
and A0 = 1000 marked with a red diamond), and the posterior probabilities for k and A0 (bottom)
are shown (determined by summing the posterior probability over either A0 or k values), with the best
estimates and their associated errors.
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Figure 17: Inference improves with more data (n = 40). The data (top), the log posterior probability
(middle), and the posterior probabilities for k and A0 (bottom) are shown. Notice how the posterior
probabilities have tightened.
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