
Taken liberally from Python for physical
modeling by JM Kinder and P Nelson

Getting help

In IPython, type

help(command)

to find information on command

Use the web, particularly

stackoverflow.com

Keep a log of commands and tricks that you find useful.

Assignment: defining variables

Assignment means to give a variable a new value:

a= 1
name= `Ste11’
print(a)
print(name)
a= 3

Python expressions: doing calculations

Numbers

1.2
1.0e6

Arithmetic

2**2 - 4
3*a - b
(3*a - b + c)/2

Expressions in parentheses are evaluated first.

Specialising Python

To analyse data, we need to augment Python’s abilities by importing extra commands.
Typing

import numpy as np
import matplotlib.pyplot as plt

gives new commands for numerical calculations and statistics and for plotting data.
For example,

np.sqrt(2)
np.log(3.4)

Note we have to prefix with np to access this new commands.

Objects

Everything in Python is an object and can have associated attributes (specialized
data) and methods (specialized functions)

Integer objects

whole numbers

i= 1
int(1.2)

Float objects
floating point numbers

a= 1
a= 1.0
a= 4/3*1.0e4
a.is_integer()
float(i)

a method

For labels and text use string objects

s= “Ste11”
s= ‘Ste11’
s= “Ste11’s partner”
s.swapcase()
s.split()
s= str(1.2)

a method to split a string wherever
there is white space

Each type of object has its own special commands called methods.

Use to see all associated methods and attributes.dir(s)

Displaying strings

You can add all Python objects including strings:

a= 3.14
print(‘pi= ‘ + str(a))
print(‘pi=‘, a)

Strings can be formatted:

f“pi is {np.pi:.5f} to five decimal places”

where {} is a placeholder, where a value will be inserted

{:1d}

{:.5f}

{:.5e}

means insert as a one-digit integer
means insert with 5 digits after the decimal point
means use scientific notation

print(f”pi is {np.pi:.3e}”)

You can print too

For manipulating data use array objects

A type of list for numerical computations from the NumPy module

a= np.array([1,2,3])
a= np.arange(10)
a= np.arange(1,10)
a= np.arange(1,10,2)
a= np.linspace(1,100,10)
a= np.logspace(1,3,4)

Defining arrays
There are many ways to create an array

a= np.ones(4)
a= np.zeros(4)
a= np.empty(4)

Arrays can also be multidimensional

a= np.ones((2,4))
a= np.array([[1,2], [3,4]])

Use

a.shape

to see the shape of an array in rows and columns

Vectorizing (fast) calculations

Numpy applies a mathematical operation to each element of an array.

For example,

data= np.linspace(1,100,200)
sindata= np.sin(data)

You can also use

data*data
2*data
data + data
data**3
2**data

will calculate the sine of each element of the array.

Visualising data

Matplotlib is the module most often used for plotting:

import matplotlib.pyplot as plt
%matplotlib inline

An example:

x= np.linspace(1, 1.0e4, 100)
plt.figure()
plt.plot(x, np.sin(x), ‘r.-‘, label= ‘sine’)
plt.plot(x, np.cos(x), ‘o’, label= ‘cosine’)
plt.title(‘sine and cosine’)
plt.xlabel(‘x’)
plt.ylabel(‘y’)
plt.legend(loc= ‘upper left’)
plt.show()

You can also use plt.xscale(‘log’) and plt.xscale(‘linear’) to
change scales and plt.xlim([min, max]) to change the limits of the axis.

easy to
forget

More on vectoriziation

Another example, calculating a standard deviation:

data= np.linspace(1,100,200)
var= np.mean((data - np.mean(data))**2)

although np.var also exists.

Note that a and b must be the same shape for commands like a + b to work
otherwise

a.shape
b.shape

ValueError: operands could not be broadcast together

is generated. Use

to diagnose the error. You can use np.reshape sometimes to fix things.

Accessing elements of arrays

To access a particular element of an array, use square brackets

a= np.ones(4)
a[0]
a[2]
a[-1]= 0

For a multidimensional array

a= np.array([[1,2], [3,4]])
a[0,0]
a[1,2]
a[1,2]= -1

Slicing arrays

To access a range of elements of an array, we use slicing

a= np.eye(5)
a[0, :]
a[:, 1]

The syntax is

start index : end index: stride

so
a[1:3, :]
a[:-1, 0]

b= np.arange(20)
b[2:12:3]
b[::2]

a[1:4:2, 1]

are all valid.

Selecting subarrays

You can use an array to access elements of an array:

a= np.arange(20)
theseones= (a < 10)
a[theseones]

or in one command

Similarly, you can use

a[a < 10]

a[a == 4]

where

a == 4

tests all elements of a to determine if each is equal to 4

Defining row and column arrays

To define a 1-dimensional row, use

a= np.ones((1,4))

To force a 1-dimensional array to be a row array, use

a= b[None,:]

Similarly, to force a 1-dimensional array to be a column array, use

a= b[:,None]

List objects

c= [1, ‘hello’, 3.0, ‘a’]
c.pop()
c.append(4.5e5)
c= []

Tuple objects

Tuples are like lists but cannot be changed

c= (1, ‘hello’, 3.0, ‘a’)

Other Python objects

Loops: repeating tasks

To perform the same or a similar task multiple times, we use loops.

For example,

data= [‘Ste11 2.3’, ‘Fus3 0.1’, ‘Ste12 9.8’]
for d in data:
 print(d)

The variable d takes each value in data in turn.

you must indent

m= np.empty(len(data))
i= 0
for d in data:
 ds= d.split()
 m[i]= float(ds[1])
 i += 1

A more complicated example extracts the numerical value for each gene:

note all the commands in the
loop are indented

predefine the array to store
the numerical data

increase i to
store the data
in the next
element of the
array

note the colon

We can shorten the code with enumerate:

More loops

m= np.empty(len(data))
for i, d in enumerate(data):
 ds= d.split()
 m[i]= float(ds[1])

The variable i takes the index for the element in data that is currently in the loop.

Loops can be nested:

for y in np.arange(1970, 2002, 2):
 for m in [‘Jan’, ‘Feb’, ‘Mar’]:
 print(m, str(y))

Branching with if statements

To perform a check on a quantity and then execute different actions depending
on the results, we use if statements:

for d in data:
 if d > 100:
 print(‘high’)
 elif d > 50:
 print(‘medium’)
 elif d > 10:
 print(‘low’)
 else:
 print(‘error’)

note the colon

you must indent

The logical expressions tested can be more complex:

if (a.shape[1] == 100 and a[0] > 0):

if (a > 0 or b > 0):

Writing functions

A function is an independent piece of code that can take inputs and produces
outputs.

Example 1

def printdays():
 for d in [‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’, ‘Fri’]:
 print(d)

To define a function you need def, brackets and a colon and use indentation.

Example 2

def printerrors(d):
 error= np.std(d)
 print(‘d=‘, np.mean(d), ‘+/-‘, error)

Using an input (a function can have any number of inputs)

Example 3

def distance(d1, d2):
 dis= np.sum((d1 - d2)**2)
 return dis

With an input and an output

Note that we’ve assumed that d1 and d2 are NumPy arrays. Better code would
be

def distance(d1, d2):
 d1= np.asarray(d1)
 d2= np.asarray(d2)
 dis= np.sum((d1 - d2)**2)
 return dis

Example 4

def scatter(d1, d2, marker= ‘.’):
 if len(d1) == len(d2):
 plt.figure()
 plt.plot(d1, d2, marker= marker)
 plt.show()
 return np.corrcoef(d1, d2)[0,1]
 else:
 print(‘Arrays must have the same length’)
 return False

With optional inputs

Calling scatter(d1, d2) uses a dot to plot each data point;
calling scatter(d1, d2, ‘+’) uses a cross as does
scatter (d1, d2, marker= ‘+’).

better to always
return a result
then return in
only one case

Modules

Modules are a single file with a collection of functions.

To use your own module, there are several options:

import mymod
mymod.myfunction()

from mymod import myfunction
myfunction()

import mymod as mm
mm.myfunction()

If you edit your module, you need to reload it for the changes to take affect

import mymod

from importlib import reload
reload(mymod)

Navigating directories

In IPython, you can see the current directory with

pwd

You can change into a new directory with

cd newdirectory

and move up a directory with

cd ..

To see the contents of directory, use

ls

To access a directory in your home directory from anywhere, use

cd ~/newdirectory

De-bugging and errors

NameError: used an undefined variable

SyntaxError: mistyped a Python command

ImportError:

AttributeError:

IndexError:

TypeError:

Python cannot find a module you wish to import

mistyped the sub-command of a Python object

tried to access part of an array or list that doesn’t exist

called a function with the wrong type of argument

nan: not a number

If you try and perform a mathematical calculation that returns infinity, such as

np.log(0)
1/0

NumPy will return
np.nan

which stands for “not a number”.

If you get nans as an answer, check to see if you are dividing by zero or taking
either the logarithm or square root of zero.

Magic commands

Magic commands are IPython commands and are prefixed by %

%reset :

%run :

 IPython forgets all variables

run a script

%paste :

%pdb on :

paste text preserving spacing

switch on Python debugger

Exercises

1. Calculate the value of the normal distribution
when s=2, m= 0.1, and x= 1

e�
(x�m)2

2s2

p
2⇡s

1. Using a while loop to make a table where the number of molecules
(from 1 to 10) is printed side-by-side with their concentration in
bacteria.

2. With the dataset data show below

data= ['GAL1', 10, 'GAL2', 0.1, 'GAL3', 0.05, 'GAL7', 0.4]

write a for loop that prints each gene beside its corresponding
value.

3. Use a for loop to sum 1/i for all the numbers i ranging from 0 to 100.

1. Plot in the same figure sin(x) and sin2(x) for x between 0 and 10.
Add a legend and a title to your figure.

2. Plot the fraction of activated protein predicted by the Monod-
Wyman-Changeux model (Eq. 49) for n=1, 2, 4, and 8. Use
subplot, and plot n=1 and n=2 on one subplot and n=4 and n=8
on the other. Add legends to each subplot and label the axes.

1. Write a function to convert numbers of molecules to
concentrations in bacteria.

2. Write a function to calculate the mean of a single
column of numbers.

1. Solve, Eq. 127,

for y after 100 time units assuming that f= 40, n=5, K= 20,
k= 0.2, and p = 0.1. Plot y versus time.

dy

dt
= kp+ f

yn

Kn + yn
� y

