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The fastest association reaction is one where the two molecules react the 
instant they come together and so is determined only by diffusion

The rate equations for this system are atypical because two molecules of T are removed
by the f reaction and two molecules are released by the b reaction. Although the association
reaction proceeds at the rate f [T ]2 and the dissociation reaction proceeds at the rate b[T2] as
before, we have

d[T ]

dt
= �2f [T ]2 + 2b[T2] (2.12)

because two T molecules are involved in both reactions. The dimer, T2, obeys

d[T2]

dt
= f [T ]2 � b[T2] (2.13)

because only one molecule of dimer either forms or dissociates.
Summing Eq. 2.12 and twice Eq. 2.13 gives

d[T ]

dt
+ 2

d[T2]

dt
= 0 (2.14)

implying that
[T ] + 2[T2] = constant = [T ]0 + 2[T2]0 (2.15)

where [T ]0 is the initial concentration of monomers and [T2]0 is the initial concentration of
dimers.

The dimerization reaction only changes the form of T molecules, either from monomers to
dimers or vice versa, and does not lead to either the synthesis or destruction of T molecules.
Consequently, the number of T molecules is conserved and determined by the initial numbers of
monomers and dimers. The conservation law, Eq. 2.15, reflects that a dimer contains twice as
many T molecules as a monomer.

2.1.2 Di↵usion-limited reactions

Association rates are expected to be less than ' 109 M�1 s�1. All association reactions proceed
by the two reactants first finding each other and then reacting. We may estimate the fastest
rate at which such association reactions can possibly proceed by assuming that the reactants
react immediately once together, so that treac = 0 in Eq. 2.2. The upper bound on association
reactions is then determined from the time taken for the two reactants to di↵use together (tdi↵).
Using the di↵usion equation and assuming spherical reactants, this maximum rate is [1] (p. 314)

fmax = 4⇡Da (2.16)

where D is the sum of the di↵usion constants of the reactants and a is the typical size of a
reactant.

Remembering that D is measured in units of m2 s�1, note that fmax has units of volume per
second and is the inverse of the time for a pair of reactants to di↵use together in a unit volume.
We would like to convert these units to M�1 s�1 to be able to compare with standard association
rates. We therefore multiply both by Avogadro’s number so as to consider a mole of reactants
di↵using together (similarly to Eq. 2.10) and by 103 to convert the volume units from m3 to
litres:

f (in M) < fmax ⇥ na ⇥ 103. (2.17)
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Association reactions have rates less than approximately 109 M-1 s-1
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2.1.3 The concentration of one molecule

A bacterium such as Escherichia coli has a volume of approximately 1 µm3 or 10�18 m3 or
10�15 litres. The concentration of one molecule is then 1/nA/10�15 M or of order 1 nM. The
budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 ⇥ 10�15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.

2.2 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f�*)�
b

[R⇤]

To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:

[R⇤] + [A]
k�! [R⇤] + [A⇤]

Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
reaction, but catalyzes the conversion of A to its activated form A⇤.

The corresponding di↵erential equations are

d[S]

dt
= �f [R][S] + b[R⇤]

d[R]

dt
= �f [R][S] + b[R⇤]

d[R⇤]

dt
= f [R][S] � b[R⇤]

d[A]

dt
= �k[A][R⇤]

d[A⇤]

dt
= k[A][R⇤]

(2.19)

but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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What is the lowest possible concentration in a bacterium?
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Modelling signal transduction I.i

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec. 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec. 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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If D is 1000 µm2 s�1 and so of order the di↵usion constant of water [2] and around 150 times
larger than the typical di↵usion coe�cients in the cytoplasm [3]) and a is 1 nm, then

f < 4⇡ ⇥
D in m2s�1

z }| {
103 ⇥ 10�12 ⇥

az}|{
10�9 ⇥

naz }| {
6 ⇥ 1023 ⇥

for `z}|{
103

' 7.5 ⇥ 109 M�1s�1.

(2.18)

2.1.3 The concentration of one molecule

A bacterium such as Escherichia coli has a volume of approximately 1 µm3 or 10�18 m3 or
10�15 litres. The concentration of one molecule is then 1/nA/10�15 M or of order 1 nM. The
budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 ⇥ 10�15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.

2.2 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f�*)�
b

[R⇤]

To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:

[R⇤] + [A]
k�! [R⇤] + [A⇤]

Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
reaction, but catalyzes the conversion of A to its activated form A⇤.

The corresponding di↵erential equations are

d[S]

dt
= �f [R][S] + b[R⇤]

d[R]

dt
= �f [R][S] + b[R⇤]

d[R⇤]

dt
= f [R][S] � b[R⇤]

d[A]

dt
= �k[A][R⇤]

d[A⇤]

dt
= k[A][R⇤]

(2.19)

but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 ⇥ 10�15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.

2.2 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f�*)�
b

[R⇤]

To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:

[R⇤] + [A]
k�! [R⇤] + [A⇤]

Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
reaction, but catalyzes the conversion of A to its activated form A⇤.

The corresponding di↵erential equations are

d[S]

dt
= �f [R][S] + b[R⇤]

d[R]

dt
= �f [R][S] + b[R⇤]

d[R⇤]

dt
= f [R][S] � b[R⇤]

d[A]

dt
= �k[A][R⇤]

d[A⇤]

dt
= k[A][R⇤]

(2.19)

but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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notice that the number of receptors is 
conserved

d[R]

dt
+

d[R⇤]

dt
= 0
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Modelling signal transduction I.iii

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec. 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec. 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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If D is 1000 µm2 s�1 and so of order the di↵usion constant of water [2] and around 150 times
larger than the typical di↵usion coe�cients in the cytoplasm [3]) and a is 1 nm, then
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2.1.3 The concentration of one molecule

A bacterium such as Escherichia coli has a volume of approximately 1 µm3 or 10�18 m3 or
10�15 litres. The concentration of one molecule is then 1/nA/10�15 M or of order 1 nM. The
budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 ⇥ 10�15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.

2.2 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f�*)�
b

[R⇤]

To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:

[R⇤] + [A]
k�! [R⇤] + [A⇤]

Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
reaction, but catalyzes the conversion of A to its activated form A⇤.

The corresponding di↵erential equations are
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but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that
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membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:
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To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
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Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
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but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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The number of receptor molecules is conserved because d[R]/dt + d[R⇤]/dt = 0: receptors are
neither created nor destroyed but only change state from inactivated to activated and vice versa.
Writing R0 for the total concentration of receptors so that

R0 = [R] + [R⇤], (2.21)

then, using Eq. 2.20, we can show that

[R⇤] ' [S]R0
b
f + [S]

. (2.22)

The di↵erential equation for [A⇤], the output of the signalling system, then becomes

d[A⇤]

dt
' k[S]R0

b
f + [S]

[A] (2.23)

or
d[A⇤]

dt
' k[S]R0

b
f + [S]

(A0 � [A⇤]) (2.24)

because the number of A molecules is conserved (with a total concentration of A0) because A
also only changes state.

Eq. 2.24 is our model of the signalling pathway. If either [S] = 0 or f = 0, no A⇤ is produced.
If [S] � b/f , the rate of production of A⇤ saturates because all the receptors are bound by S.
There is no reverse reaction that converts A⇤ back into A, and so all the A molecules become
activated at steady-state: [A⇤] = A0.

2.3 Equilibrium and detailed balance

In the absence of any input of energy, chemical reactions reach an equilibrium where the number
of molecules of each species stay constant. All time derivatives are then zero, and the system is
said to be at a steady-state. Equilibrium is, however, a particular steady-state where detailed
balance also holds. Detailed balance means that for each chemical reaction, the forward rate of
the reaction must equal the backward rate of the reaction. When [A], [B], and [C] all become
constant,

d[A]

dt
=

d[B]

dt
=

d[C]

dt
= 0 (2.25)

and the system is at steady-state. To be at equilibrium, we need detailed balance and so that

f [A][B] = b[C] (2.26)

and the rate of association of A and B equals the rate of dissociation of C. For this system,
there is one steady-state, which is equilibrium. For more complex systems, steady-state need not
be equilibrium. For example, systems that contain irreversible reactions can reach steady-state
but can never be at equilibrium because the backward rate of a irreversible reaction is zero and
therefore cannot equal the forward rate: detailed balance does not hold.

The equilibrium dissociation constant is defined as Keq = b/f , and the system at equilibrium
then obeys

[A][B] = Keq[C]. (2.27)
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Modelling signal transduction I.iv

1 Overview

These notes are based on lectures given to M.Sc. students in the School of Biological Sciences
at the University of Edinburgh.

In Secs. 2 and 3, we start with the fundamentals of mathematical modelling, both of signal
transduction and of gene expression. These sections are necessarily the most complex mathe-
matically, but throughout we will illustrate the techniques by developing a model of a signalling
pathway (Fig. 1). We then turn to the e↵ects of positive and negative feedback. Positive feed-
back can generate bistability and is used by cells to di↵erentiate irreversibly (Sec. 4). Negative
feedback can cause oscillations and drives biological rhythms (Sec. 5).
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Figure 1: An idealized model of a eukaryotic signalling pathway: an input, ligand S, activates receptors

at the plasma membrane (activation is shown in purple), which in turn activate a cascade of kinases.

The last kinase in the cascade, C, enters the nucleus once activated and enables expression of a reporter

gene. The protein-product of this gene, G, is the system’s output.
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If D is 1000 µm2 s�1 and so of order the di↵usion constant of water [2] and around 150 times
larger than the typical di↵usion coe�cients in the cytoplasm [3]) and a is 1 nm, then

f < 4⇡ ⇥
D in m2s�1

z }| {
103 ⇥ 10�12 ⇥

az}|{
10�9 ⇥

naz }| {
6 ⇥ 1023 ⇥

for `z}|{
103

' 7.5 ⇥ 109 M�1s�1.

(2.18)

2.1.3 The concentration of one molecule

A bacterium such as Escherichia coli has a volume of approximately 1 µm3 or 10�18 m3 or
10�15 litres. The concentration of one molecule is then 1/nA/10�15 M or of order 1 nM. The
budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 ⇥ 10�15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.

2.2 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f�*)�
b

[R⇤]

To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:

[R⇤] + [A]
k�! [R⇤] + [A⇤]

Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
reaction, but catalyzes the conversion of A to its activated form A⇤.

The corresponding di↵erential equations are

d[S]

dt
= �f [R][S] + b[R⇤]
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dt
= �f [R][S] + b[R⇤]
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dt
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d[A]

dt
= �k[A][R⇤]

d[A⇤]

dt
= k[A][R⇤]

(2.19)

but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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We are interested in downstream effects – activated A
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2.1.3 The concentration of one molecule

A bacterium such as Escherichia coli has a volume of approximately 1 µm3 or 10�18 m3 or
10�15 litres. The concentration of one molecule is then 1/nA/10�15 M or of order 1 nM. The
budding yeast Saccharomyces cerevisiae has a volume of approximately 60 µm3 or 60 ⇥ 10�15

litres. The concentration of one molecule is then of order 10 pM. A human fibroblast has a
volume of approximately 104 µm3 and so the concentration of one molecule is of the order of 0.1
pM.

2.2 Modelling signal transduction I

To begin our model of a biochemical signalling pathway, consider a receptor, R, in the plasma
membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:

[R] + [S]
f�*)�
b

[R⇤]

To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:

[R⇤] + [A]
k�! [R⇤] + [A⇤]

Here [R⇤] appears on both sides of the chemical equation because R⇤ is not consumed by the
reaction, but catalyzes the conversion of A to its activated form A⇤.

The corresponding di↵erential equations are
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dt
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dt
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(2.19)

but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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and so

The number of receptor molecules is conserved because d[R]/dt + d[R⇤]/dt = 0: receptors are
neither created nor destroyed but only change state from inactivated to activated and vice versa.
Writing R0 for the total concentration of receptors so that

R0 = [R] + [R⇤], (2.21)

then, using Eq. 2.20, we can show that

[R⇤] ' [S]R0
b
f + [S]

. (2.22)

The di↵erential equation for [A⇤], the output of the signalling system, then becomes

d[A⇤]

dt
' k[S]R0

b
f + [S]

[A] (2.23)

or
d[A⇤]

dt
' k[S]R0

b
f + [S]

(A0 � [A⇤]) (2.24)

because the number of A molecules is conserved (with a total concentration of A0) because A
also only changes state.

Eq. 2.24 is our model of the signalling pathway. If either [S] = 0 or f = 0, no A⇤ is produced.
If [S] � b/f , the rate of production of A⇤ saturates because all the receptors are bound by S.
There is no reverse reaction that converts A⇤ back into A, and so all the A molecules become
activated at steady-state: [A⇤] = A0.

2.3 Equilibrium and detailed balance

In the absence of any input of energy, chemical reactions reach an equilibrium where the number
of molecules of each species stay constant. All time derivatives are then zero, and the system is
said to be at a steady-state. Equilibrium is, however, a particular steady-state where detailed
balance also holds. Detailed balance means that for each chemical reaction, the forward rate of
the reaction must equal the backward rate of the reaction. When [A], [B], and [C] all become
constant,

d[A]

dt
=

d[B]

dt
=

d[C]

dt
= 0 (2.25)

and the system is at steady-state. To be at equilibrium, we need detailed balance and so that

f [A][B] = b[C] (2.26)

and the rate of association of A and B equals the rate of dissociation of C. For this system,
there is one steady-state, which is equilibrium. For more complex systems, steady-state need not
be equilibrium. For example, systems that contain irreversible reactions can reach steady-state
but can never be at equilibrium because the backward rate of a irreversible reaction is zero and
therefore cannot equal the forward rate: detailed balance does not hold.

The equilibrium dissociation constant is defined as Keq = b/f , and the system at equilibrium
then obeys

[A][B] = Keq[C]. (2.27)
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membrane that enters an activated state R⇤ when bound by an extracellular signalling molecule,
S (Fig. 1). We can model this activation by a binary reaction:
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To allow the activated receptors to activate in turn a downstream signalling protein, A say, we
include another binary reaction:
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reaction, but catalyzes the conversion of A to its activated form A⇤.
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but our main focus of interest is the production of A⇤ because A⇤ signals to the interior of the
cell that molecules of S are present exterior to the cell.

We will therefore assume that the binding of S to R is at equilibrium so that

f [R][S] ' b[R⇤]. (2.20)
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The number of receptor molecules is conserved because d[R]/dt + d[R⇤]/dt = 0: receptors are
neither created nor destroyed but only change state from inactivated to activated and vice versa.
Writing R0 for the total concentration of receptors so that
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then, using Eq. 2.20, we can show that
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d[A⇤]

dt
' k[S]R0

b
f + [S]

(A0 � [A⇤]) (2.24)

because the number of A molecules is conserved (with a total concentration of A0) because A
also only changes state.

Eq. 2.24 is our model of the signalling pathway. If either [S] = 0 or f = 0, no A⇤ is produced.
If [S] � b/f , the rate of production of A⇤ saturates because all the receptors are bound by S.
There is no reverse reaction that converts A⇤ back into A, and so all the A molecules become
activated at steady-state: [A⇤] = A0.

2.3 Equilibrium and detailed balance

In the absence of any input of energy, chemical reactions reach an equilibrium where the number
of molecules of each species stay constant. All time derivatives are then zero, and the system is
said to be at a steady-state. Equilibrium is, however, a particular steady-state where detailed
balance also holds. Detailed balance means that for each chemical reaction, the forward rate of
the reaction must equal the backward rate of the reaction. When [A], [B], and [C] all become
constant,

d[A]

dt
=

d[B]

dt
=

d[C]

dt
= 0 (2.25)

and the system is at steady-state. To be at equilibrium, we need detailed balance and so that

f [A][B] = b[C] (2.26)

and the rate of association of A and B equals the rate of dissociation of C. For this system,
there is one steady-state, which is equilibrium. For more complex systems, steady-state need not
be equilibrium. For example, systems that contain irreversible reactions can reach steady-state
but can never be at equilibrium because the backward rate of a irreversible reaction is zero and
therefore cannot equal the forward rate: detailed balance does not hold.

The equilibrium dissociation constant is defined as Keq = b/f , and the system at equilibrium
then obeys

[A][B] = Keq[C]. (2.27)
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because the number of A 
molecules is also conserved


